Skip to main content

Control of Locomotion and Scratching in Turtles

  • Living reference work entry
  • Latest version View entry history
  • First Online:
  • 237 Accesses

Definition

The spinal cord contains central pattern generators, which are networks of neurons that can generate coordinated patterns of activity in motor neurons (motor patterns) in the absence of sensory feedback. The turtle spinal cord contains central pattern generators for several kinds of limb movements and is convenient to study physiologically because turtles, being diving animals, have evolved mechanisms to keep tissue healthy under low-oxygen (hypoxic) conditions. Turtle locomotion includes swimming and stepping. Spinal cord central pattern generators have been demonstrated in turtles for forward swimming and for three forms of scratching, a rhythmic behavior in which the same-side (ipsilateral) hind limb repeatedly rubs against a specific location on the body surface that has been irritated or tickled. Stimulation in a transition zone, at the border of the receptive fields for two forms of scratching, or simultaneous two-site stimulation for two forms of scratching, or for...

This is a preview of subscription content, log in via an institution.

References

  • Alaburda A, Hounsgaard J (2003) Metabotropic modulation of motoneurons by scratch-like spinal network activity. J Neurosci 23:8625–8629

    CAS  PubMed  Google Scholar 

  • Alaburda A, Russo R, MacAulay N, Hounsgaard J (2005) Periodic high-conductance states in spinal neurons during scratch-like network activity in adult turtles. J Neurosci 25:6316–6321

    Article  CAS  PubMed  Google Scholar 

  • Berkinblit MB, Deliagina TG, Feldman AG, Gelfand IM, Orlovsky GN (1978) Generation of scratching I. Activity of spinal interneurons during scratching. J Neurophysiol 41:1040–1057

    CAS  PubMed  Google Scholar 

  • Berkowitz A (2001a) Broadly tuned spinal neurons for each form of fictive scratching in spinal turtles. J Neurophysiol 86:1017–1025

    CAS  Google Scholar 

  • Berkowitz A (2001b) Rhythmicity of spinal neurons activated during each form of fictive scratching in spinal turtles. J Neurophysiol 86:1026–1036

    CAS  Google Scholar 

  • Berkowitz A (2002) Both shared and specialized spinal circuitry for scratching and swimming in turtles. J Comp Physiol A 188:225–234

    Article  Google Scholar 

  • Berkowitz A (2005) Physiology and morphology indicate that individual spinal interneurons contribute to diverse limb movements. J Neurophysiol 94:4455–4470

    Article  PubMed  Google Scholar 

  • Berkowitz A (2007) Spinal interneurons that are selectively activated during fictive flexion reflex. J Neurosci 27:4634–4641

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz A (2008) Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching. J Neurophysiol 99:2887–2901

    Article  PubMed  Google Scholar 

  • Berkowitz A (2009) Population coding. In: Encyclopedia of neuroscience, vol 7. Elsevier, Oxford, pp 757–764

    Chapter  Google Scholar 

  • Berkowitz A (2010) Multifunctional and specialized spinal interneurons for turtle limb movements. Ann N Y Acad Sci 1198:119–132

    Article  PubMed  Google Scholar 

  • Berkowitz A, Hao ZZ (2011) Partly shared spinal cord networks for locomotion and scratching. Integr Comp Biol 51:890–902

    Article  PubMed  Google Scholar 

  • Berkowitz A, Stein PS (1994a) Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface. J Neurosci 14:5089–5104

    CAS  Google Scholar 

  • Berkowitz A, Stein PS (1994b) Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses. J Neurosci 14:5105–5119

    CAS  Google Scholar 

  • Berkowitz A, Yosten GL, Ballard RM (2006) Somato-dendritic morphology predicts physiology for neurons that contribute to several kinds of limb movements. J Neurophysiol 95:2821–2831

    Article  PubMed  Google Scholar 

  • Berkowitz A, Roberts A, Soffe SR (2010) Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front Behav Neurosci 4:36. doi:10.3389/fnbeh.2010.00036

    PubMed Central  PubMed  Google Scholar 

  • Booth V, Rinzel J, Kiehn O (1997) Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol 78:3371–3385

    CAS  PubMed  Google Scholar 

  • Briggman KL, Kristan WB (2008) Multifunctional pattern-generating circuits. Annu Rev Neurosci 31:271–294

    Article  CAS  PubMed  Google Scholar 

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond 84:308–319

    Article  Google Scholar 

  • Cazalets JR, Borde M, Clarac F (1995) Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J Neurosci 15:4943–4951

    CAS  PubMed  Google Scholar 

  • Cowley KC, Schmidt BJ (1997) Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord. J Neurophysiol 77:247–259

    CAS  PubMed  Google Scholar 

  • Currie SN (1999) Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations. J Physiol Paris 93:199–211

    Article  CAS  PubMed  Google Scholar 

  • Currie SN, Lee S (1996) Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-d-aspartate antagonist. J Neurophysiol 76:81–92

    CAS  PubMed  Google Scholar 

  • Currie SN, Lee S (1997) Glycinergic inhibition contributes to the generation of rostral scratch motor patterns in the turtle spinal cord. J Neurosci 17:3322–3333

    CAS  PubMed  Google Scholar 

  • Currie SN, Stein PS (1989) Interruptions of fictive scratch motor rhythms by activation of cutaneous flexion reflex afferents in the turtle. J Neurosci 9:488–496

    CAS  PubMed  Google Scholar 

  • Currie SN, Stein PS (1990) Cutaneous stimulation evokes long-lasting excitation of spinal interneurons in the turtle. J Neurophysiol 64:1134–1148

    CAS  PubMed  Google Scholar 

  • Currie SN, Stein PS (1992) Glutamate antagonists applied to midbody spinal cord segments reduce the excitability of the fictive rostral scratch reflex in the turtle. Brain Res 581:91–100

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Lezama R, Perrier JF, Nedergaard S, Svirskis G, Hounsgaard J (1997) Metabotropic synaptic regulation of intrinsic response properties of turtle spinal motoneurones. J Physiol 504(Pt 1):97–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deliagina TG, Orlovsky GN, Pavlova GA (1983) The capacity for generation of rhythmic oscillations is distributed in the lumbosacral spinal cord of the cat. Exp Brain Res 53:81–90

    Article  CAS  PubMed  Google Scholar 

  • Earhart GM, Stein PS (2000) Scratch-swim hybrids in the spinal turtle: blending of rostral scratch and forward swim. J Neurophysiol 83:156–165

    CAS  PubMed  Google Scholar 

  • Field EC, Stein PS (1997) Spinal cord coordination of hindlimb movements in the turtle: interlimb temporal relationships during bilateral scratching and swimming. J Neurophysiol 78:1404–1413

    CAS  PubMed  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks V (ed) Handbook of physiology, Sect. 1. The nervous system. Motor control, vol 2. American Physiological Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Guertin PA, Hounsgaard J (1998) NMDA-Induced intrinsic voltage oscillations depend on l-type calcium channels in spinal motoneurons of adult turtles. J Neurophysiol 80:3380–3382

    CAS  PubMed  Google Scholar 

  • Hao ZZ, Spardy LE, Nguyen EB, Rubin JE, Berkowitz A (2011) Strong interactions between spinal cord networks for locomotion and scratching. J Neurophysiol 106:1766–1781

    Article  PubMed  Google Scholar 

  • Ho S, O’Donovan MJ (1993) Regionalization and intersegmental coordination of rhythm-generating networks in the spinal cord of the chick embryo. J Neurosci 13:1354–1371

    CAS  PubMed  Google Scholar 

  • Hounsgaard J, Kiehn O (1989) Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J Physiol 414:265–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hounsgaard J, Kjaerulff O (1992) Ca2+-mediated plateau potentials in a subpopulation of interneurons in the ventral horn of the turtle spinal cord. Eur J Neurosci 4:183–188

    Article  PubMed  Google Scholar 

  • Hounsgaard J, Mintz I (1988) Calcium conductance and firing properties of spinal motoneurones in the turtle. J Physiol 398:591–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hounsgaard J, Nicholson C (1990) The isolated turtle brain and the physiology of neuronal circuits. In: Jahnsen H (ed) Preparations of vertebrate central nervous system in vitro. Wiley, New York, pp 155–181

    Google Scholar 

  • Juranek J, Currie SN (2000) Electrically evoked fictive swimming in the low-spinal immobilized turtle. J Neurophysiol 83:146–155

    CAS  PubMed  Google Scholar 

  • Keifer J, Stein PS (1983) In vitro motor program for the rostral scratch reflex generated by the turtle spinal cord. Brain Res 266:148–151

    Article  CAS  PubMed  Google Scholar 

  • Kjaerulff O, Kiehn O (1996) Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J Neurosci 16:5777–5794

    CAS  PubMed  Google Scholar 

  • Lennard PR, Stein PS (1977) Swimming movements elicited by electrical stimulation of turtle spinal cord. I Low-spinal and intact preparations. J Neurophysiol 40:768–778

    CAS  PubMed  Google Scholar 

  • Lutz PL, Milton SL (2004) Negotiating brain anoxia survival in the turtle. J Exp Biol 207:3141–3147

    Article  CAS  PubMed  Google Scholar 

  • Mejia-Gervacio S, Hounsgaard J, Diaz-Munoz M (2004) Roles of ryanodine and inositol triphosphate receptors in regulation of plateau potentials in turtle spinal motoneurons. Neuroscience 123:123–130

    Article  CAS  PubMed  Google Scholar 

  • Mortin LI, Stein PS (1989) Spinal cord segments containing key elements of the central pattern generators for three forms of scratch reflex in the turtle. J Neurosci 9:2285–2296

    CAS  PubMed  Google Scholar 

  • Mortin LI, Stein PS (1990) Cutaneous dermatomes for initiation of three forms of the scratch reflex in the spinal turtle. J Comp Neurol 295:515–529

    Article  CAS  PubMed  Google Scholar 

  • Mortin LI, Keifer J, Stein PS (1985) Three forms of the scratch reflex in the spinal turtle: movement analyses. J Neurophysiol 53:1501–1516

    CAS  PubMed  Google Scholar 

  • Perrier JF, Hounsgaard J (1999) Ca(2+)-activated nonselective cationic current (I(CAN)) in turtle motoneurons. J Neurophysiol 82:730–735

    CAS  PubMed  Google Scholar 

  • Perrier JF, Hounsgaard J (2003) 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an l-type calcium current. J Neurophysiol 89:954–959

    Article  CAS  PubMed  Google Scholar 

  • Robertson GA, Stein PS (1988) Synaptic control of hindlimb motoneurones during three forms of the fictive scratch reflex in the turtle. J Physiol 404:101–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson GA, Mortin LI, Keifer J, Stein PS (1985) Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns. J Neurophysiol 53:1517–1534

    CAS  PubMed  Google Scholar 

  • Romanes GJ (1964) The motor pools of the spinal cord. Prog Brain Res 11:93–119

    Article  CAS  PubMed  Google Scholar 

  • Ruigrok TJH, Crowe A (1984) The organization of motoneurons in the turtle lumbar spinal cord. J Comp Neurol 228:24–37

    Article  CAS  PubMed  Google Scholar 

  • Russo RE, Hounsgaard J (1994) Short-term plasticity in turtle dorsal horn neurons mediated by l-type Ca2+ channels. Neuroscience 61:191–197

    Article  CAS  PubMed  Google Scholar 

  • Russo RE, Hounsgaard J (1996) Plateau-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord. J Physiol 493(Pt 1):39–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Samara RF, Currie SN (2007) Crossed commissural pathways in the spinal hindlimb enlargement are not necessary for right left hindlimb alternation during turtle swimming. J Neurophysiol 98:2223–2231

    Article  PubMed  Google Scholar 

  • Samara RF, Currie SN (2008a) Electrically evoked locomotor activity in the turtle spinal cord hemi-enlargement preparation. Neurosci Lett 441:105–109

    Article  CAS  Google Scholar 

  • Samara RF, Currie SN (2008b) Location of spinal cord pathways that control hindlimb movement amplitude and interlimb coordination during voluntary swimming in turtles. J Neurophysiol 99:1953–1968

    Article  Google Scholar 

  • Simon M, Perrier JF, Hounsgaard J (2003) Subcellular distribution of l-type Ca2+ channels responsible for plateau potentials in motoneurons from the lumbar spinal cord of the turtle. Eur J Neurosci 18:258–266

    Article  PubMed  Google Scholar 

  • Stein PS (2005) Neuronal control of turtle hindlimb motor rhythms. J Comp Physiol A 191:213–229

    Article  CAS  Google Scholar 

  • Stein PS (2008) Motor pattern deletions and modular organization of turtle spinal cord. Brain Res Rev 57:118–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein PS (2010) Alternation of agonists and antagonists during turtle hindlimb motor rhythms. Ann N Y Acad Sci 1198:105–118

    Article  PubMed Central  PubMed  Google Scholar 

  • Stein PS, Daniels-McQueen S (2002) Modular organization of turtle spinal interneurons during normal and deletion fictive rostral scratching. J Neurosci 22:6800–6809

    CAS  PubMed  Google Scholar 

  • Stein PS, Daniels-McQueen S (2003) Timing of knee-related spinal neurons during fictive rostral scratching in the turtle. J Neurophysiol 90:3585–3593

    Article  PubMed  Google Scholar 

  • Stein PS, Daniels-McQueen S (2004) Variations in motor patterns during fictive rostral scratching in the turtle: knee-related deletions. J Neurophysiol 91:2380–2384

    Article  PubMed  Google Scholar 

  • Stein PS, McCullough ML (1998) Example of 2:1 interlimb coordination during fictive rostral scratching in a spinal turtle. J Neurophysiol 79:1132–1134

    CAS  PubMed  Google Scholar 

  • Stein PS, Camp AW, Robertson GA, Mortin LI (1986) Blends of rostral and caudal scratch reflex motor patterns elicited by simultaneous stimulation of two sites in the spinal turtle. J Neurosci 6:2259–2266

    CAS  PubMed  Google Scholar 

  • Stein PS, Victor JC, Field EC, Currie SN (1995) Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching. J Neurosci 15:4343–4355

    CAS  PubMed  Google Scholar 

  • Stein PSG, McCullough ML, Currie SN (1998) Reconstruction of flexor/extensor alternation during fictive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection. J Neurosci 18:467–479

    CAS  PubMed  Google Scholar 

  • Svirskis G, Hounsgaard J (1998) Transmitter regulation of plateau properties in turtle motoneurons. J Neurophysiol 79:45–50

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Berkowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Berkowitz, A. (2014). Control of Locomotion and Scratching in Turtles. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_42-4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_42-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Control of Locomotion and Scratching in Turtles
    Published:
    07 June 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_42-4

  2. Original

    Control of Locomotion and Scratching in Turtles
    Published:
    12 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_42-3