Skip to main content

Extracellular Potentials, Forward Modeling of

  • 260 Accesses

Definition

Forward modeling of extracellular potentials refers to the calculation of electrical potentials recorded inside or outside the brain due to activity in neuronal (and, if relevant, glial) sources. This contrasts the “inverse” problem which amounts to estimating the underlying neural sources from recorded potentials.

Detailed Description

Extracellular potentials recorded inside or outside the brain are generated by transmembrane currents from cells in the vicinity of the recording electrode. To propagate from the membrane to a recording electrode inside the brain, the signal has to pass through brain tissue consisting of a tightly packed matrix of neurons and glial cells embedded in the extracellular medium (Nunez and Srinivasan 2006). A well-founded biophysical forward-modeling scheme (Rall and Shepherd 1968; Holt and Koch 1999), incorporating detailed reconstructed neuronal morphologies, allows for precise calculations of extracellular potentials – both spikes(the...

This is a preview of subscription content, log in via an institution.

References

  • Bakker R, Schubert D, Levels K, Bezgin G, Bojak I, Kötter R (2009) Classification of cortical microcircuits based on micro-electrode-array data from slices of rat barrel cortex. Neural Netw 22:1159–1168

    Article  PubMed  Google Scholar 

  • Bédard C, Kröger H, Destexhe A (2004) Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J 86:1829–1842

    Article  PubMed Central  PubMed  Google Scholar 

  • Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451

    Article  PubMed  Google Scholar 

  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    Article  PubMed  Google Scholar 

  • Camuñas Mesa LA, Quiroga RQ (2013) A detailed and fast model of extracellular recordings. Neural Comput 25:1191–1212

    Article  PubMed  Google Scholar 

  • Carnevale NT (2007) Neuron simulation environment. Scholarpedia 2:1378

    Article  Google Scholar 

  • De Schutter E (ed) (2009) Computational modeling methods for neuroscientists. MIT Press, Cambridge, MA

    Google Scholar 

  • Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013a) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–785

    Article  CAS  PubMed  Google Scholar 

  • Einevoll GT, Lindén H, Tetzlaff T, Lęski S, Pettersen KH (2013b) Local field potential: biophysical origin and analysis. In: Quiroga RQ, Panzeri S (eds) Principles of neural coding. CRC Press, Boca Raton, pp 37–59

    Chapter  Google Scholar 

  • Gold C, Henze DA, Koch C, Buzsáki G (2006) On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95:3113–3128

    Article  CAS  PubMed  Google Scholar 

  • Gold G, Henze DA, Koch C (2007) Using extracellular action potential recordings to constrain compartmental models. J Comput Neurosci 23:39–58

    Article  PubMed  Google Scholar 

  • Hämäläinen M, Haari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography – theory, instrumentation, and application to noninvasive studies of the working human brain. Rev Mod Phys 65:413–496

    Article  Google Scholar 

  • Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci 6:169–184

    Article  CAS  PubMed  Google Scholar 

  • Lempka SF, McIntyre CC (2013) Theoretical analysis of the local field potential in deep brain stimulation applications. PLoS ONE 8:e59839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lęski S, Lindén H, Tetzlaff T, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 9:e1003137

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindén H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29:423–444

    Article  PubMed  Google Scholar 

  • Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT (2011) Modeling the spatial reach of the LFP. Neuron 72:859–872

    Article  PubMed  Google Scholar 

  • Lindén H, Hagen E, Lęski S, Norheim ES, Pettersen KH, Einevoll GT (2013) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front Neuroinform 7:41

    Google Scholar 

  • Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823

    Article  CAS  PubMed  Google Scholar 

  • Mechler F, Victor JD (2012) Dipole characterization of single neurons from their extracellular action potentials. J Comput Neurosci 32:73–100

    Article  PubMed Central  PubMed  Google Scholar 

  • Nelson MJ, Pouget P (2010) Do electrode properties create a problem in interpreting local field potential recordings? J Neurophysiol 103:2315–2317

    Article  PubMed  Google Scholar 

  • Ness TB, Hagen E, Negwer M, Bakker R, Schubert D, Einevoll GT (2012) Modeling extracellular spikes and local field potentials recorded in MEAs. In: Proceedings of the 8th international meeting on Multielectrode arrays, Reutlingen

    Google Scholar 

  • Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38:356–368

    CAS  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  • Pettersen KH, Einevoll GT (2008) Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophys J 94:784–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT (2006) Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J Neurosci Methods 154:116–133

    Article  PubMed  Google Scholar 

  • Pettersen KH, Hagen E, Einevoll GT (2008) Estimation of population firing rates and current source densities from laminar electrode recordings. J Comput Neurosci 24:291–313

    Article  PubMed  Google Scholar 

  • Pettersen KH, Lindén H, Dale AM, Einevoll GT (2012) Extracellular spikes and CSD. In: Brette R, Destexhe A (eds) Handbook of neural activity measurement. Cambridge University Press, Cambridge, pp 92–135

    Chapter  Google Scholar 

  • Rall W, Shepherd GM (1968) Theoretical reconstruction of field potentials and dendro-dendritic synaptic interactions in olfactory bulb. J Neurophysiol 31:884–915

    CAS  PubMed  Google Scholar 

  • Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79:375–390

    Article  CAS  PubMed  Google Scholar 

  • Schomburg EW, Anastassiou CA, Buzsáki G, Koch C (2012) The spiking component of oscillatory extracellular potentials in the rat hippocampus. J Neurosci 32(34):11798–11811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thorbergsson PT, Garwicz M, Schouenborg J, Johansson AJ (2012) Computationally efficient simulation of extracellular recordings with multielectrode arrays. J Neurosci Methods 211:133–144

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaute T. Einevoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Einevoll, G.T. (2013). Extracellular Potentials, Forward Modeling of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Extracellular Potentials, Forward Modeling of
    Published:
    01 September 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_59-2

  2. Original

    Extracellular Potentials, Forward Modeling of
    Published:
    07 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_59-1