Skip to main content

Finite Element Modeling for Extracellular Stimulation

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahuja AK, Behrend MR, Kuroda M, Humayun MS, Weiland JD (2008) An in vitro model of a retinal prosthesis. IEEE Trans Biomed Eng 55:1744–1753

    Article  PubMed Central  PubMed  Google Scholar 

  • Altman KW, Plonsey R (1990) Point source nerve bundle stimulation: effects of fiber diameter and depth on simulated excitation. IEEE Trans Biomed Eng 37:688–698

    Article  CAS  PubMed  Google Scholar 

  • Anastassiou CA, Montgomery SM, Barahona M, Buzsáki G, Koch C (2010) The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci 30:1925–1936

    Article  CAS  PubMed  Google Scholar 

  • Blair EA, Erlanger J (1933) A comparison of the characteristics of axons through their individual electrical responses. Am J Physiol 106:524–564

    Google Scholar 

  • Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34:661–670

    Article  PubMed Central  PubMed  Google Scholar 

  • Danner SM, Hofstoetter US, Ladenbauer J, Rattay F, Minassian K (2011) Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study. Artif Organs 25:257–262

    Article  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Annu NY Acad Sci 860:360–376

    Article  CAS  Google Scholar 

  • Gaunt RA, Prochazka A, Mushahwar VK, Guevremont L, Ellaway PH (2006) Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses. J Neurophysiol 96:2995–3005

    Article  CAS  PubMed  Google Scholar 

  • Goo YS, Ye JH, Lee S, Nam Y, Ryu SB, Kim KH (2011) Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas. J Neural Eng 8:035003

    Article  PubMed  Google Scholar 

  • Histed MH, Bonin V, Reid RC (2009) Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63:508–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Jönsson R, Hanekom T, Hanekom JJ (2008) Initial results from a model of ephaptic excitation in the electrically excited peripheral auditory nervous system. Hear Res 237:49–56

    Article  PubMed  Google Scholar 

  • Kasi H, Hasenkamp W, Cosendai G, Bertsch A, Renaud P (2011) Simulation of epiretinal prostheses – evaluation of geometrical factors affecting stimulation thresholds. J Neuroeng Rehabil 8:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuhn A, Keller T, Lawrence M, Morari M (2009) A model for transcutaneous current stimulation: simulations and experiments. Med Biol Eng Comput 47:279–289

    Article  PubMed  Google Scholar 

  • Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115:2431–2441

    Article  PubMed  Google Scholar 

  • Ladenbauer J, Minassian K, Hofstoetter US, Dimitrijevic MR, Rattay F (2010) Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 18:637–645

    Article  PubMed  Google Scholar 

  • Lai HY, Liao LD, Lin CT, Hsu JH, He X, Chen YY, Chang JY, Chen HF, Tsang S, Shih YY (2012) Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. J Neural Eng 9:036001

    Article  PubMed  Google Scholar 

  • Mainen ZF, Joerges J, Hugenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15:1427–1439

    Article  CAS  PubMed  Google Scholar 

  • Martinek J, Stickler Y, Reichel M, Mayr W, Rattay F (2008) A novel approach to simulate Hodgkin-Huxley-like excitation with COMSOL multiphysics. Artif Organs 32:614–619

    Article  PubMed  Google Scholar 

  • McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329–337

    Article  CAS  PubMed  Google Scholar 

  • Minassian K, Persy I, Rattay F, Pinter MM, Kern H, Dimitrijevic MR (2007) Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci 26:275–295

    Article  CAS  PubMed  Google Scholar 

  • Miocinovic S, Lempka SF, Russo GS, Maks CB, Butson CR, Sakaie KE, Vitek JL, McIntyre CC (2009) Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol 216:166–176

    Article  PubMed Central  PubMed  Google Scholar 

  • Mou Z, Triantis IF, Woods VM, Toumazou C, Nikolic K (2012) A simulation study of the combined thermoelectric extracellular stimulation of the sciatic nerve of the Xenopus laevis: the localized transient heat block. IEEE Trans Biomed Eng 59:1758–1769

    Article  PubMed  Google Scholar 

  • Oozeer M, Veraart C, Legat V, Delbeke J (2005) Simulation of intra-orbital optic nerve electrical stimulation. Med Biol Eng Comput 43:608–617

    Article  CAS  PubMed  Google Scholar 

  • Ranck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440

    Article  PubMed  Google Scholar 

  • Rattay F (1986) Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng 33:974–977

    Article  CAS  PubMed  Google Scholar 

  • Rattay F (1987) Ways to approximate current-distance relations for electrically stimulated fibers. J Theor Biol 125:339–349

    Article  CAS  PubMed  Google Scholar 

  • Rattay F (1990) Electrical nerve stimulation: theory, experiments and applications. Springer, New York

    Book  Google Scholar 

  • Rattay F (1999) The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89:335–346

    Article  CAS  PubMed  Google Scholar 

  • Rattay F, Wenger C (2010) Which elements of the mammalian central nervous system are excited by low current stimulation with microelectrodes? Neuroscience 170:399–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rattay F, Minassian K, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. Quantitative analysis by computer modeling. Spinal Cord 38:473–489

    Article  CAS  PubMed  Google Scholar 

  • Rattay F, Leao RN, Felix H (2001) A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability. Hear Res 153:64–79

    Article  CAS  PubMed  Google Scholar 

  • Rattay F, Greenberg R, Resatz S (2002) Neuron modeling. In: Finn WE, LoPresti PG (eds) Handbook of neuroprosthetic methods. CRC Press, Boca Raton, pp 39–71

    Google Scholar 

  • Renshaw B (1940) Activity in the simplest spinal reflex pathways. J Neurophysiol 3:373–387

    Google Scholar 

  • Stickler Y, Martinek J, Rattay F (2009) Modeling needle stimulation of denervated muscle fibers: voltage-distance relations and fiber polarization effects. IEEE Trans Biomed Eng 56:2396–2403

    Article  PubMed  Google Scholar 

  • Stoney SD, Thompson WD, Asanuma H (1968) Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J Neurophysiol 31:659–669

    PubMed  Google Scholar 

  • Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521

    Article  CAS  PubMed  Google Scholar 

  • Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW (2001) Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc Natl Acad Sci U S A 98:11697–11701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Neuroimage 30:813–826

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ding L, van Drongelen W, Hecox K, Frim DM, He B (2006) A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method. Neuroimage 31:1513–1524

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

We wish to acknowledge the support of the Vienna Science and Technology Fund (WWTF), Proj. Nr. LS11-057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Rattay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Rattay, F., Danner, S.M., Hofstoetter, U.S., Minassian, K. (2014). Finite Element Modeling for Extracellular Stimulation. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_593-5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_593-5

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Finite Element Modeling for Extracellular Stimulation
    Published:
    27 May 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_593-5

  2. Original

    Finite Element Modeling for Extracellular Stimulation
    Published:
    04 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_593-4