Skip to main content

Local Field Potential Interaction with the Extracellular Medium

Encyclopedia of Computational Neuroscience

Definition

The local field potential (LFP) is the electric potential in the extracellular space around neurons. The LFP is generated by electric currents and charges and is also interacting in several possible ways with the extracellular medium, such as capacitive interactions, polarization, or trough ionic diffusion. These types of interaction confer specific frequency dependence of the extracellular electric potential and thus are important for correctly interpreting the LFP, as well as estimating the underlying neuronal sources (inverse problem).

Detailed Description

Introduction

In contrast to the electroencephalogram (EEG) recorded at the surface of the scalp, the local field potential (LFP) is recorded by inserting microelectrodes into neural tissue, and it is recordable using a variety of electrode systems, such as metal or silicon electrodes or glass micropipettes. Early studies established that action potentials have a limited participation to EEGs or LFPs (Bremer 1938, 1949;...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bédard C, Destexhe A (2009) Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophys J 96:2589–2603

    Article  PubMed Central  PubMed  Google Scholar 

  • Bédard C, Destexhe A (2011) A generalized theory for current-source density analysis in brain tissue. Phys Rev E 84:041909

    Article  Google Scholar 

  • Bedard C, Destexhe A (2012) Modeling local field potentials and their interaction with the extracellular medium. In: Brette R, Destexhe A (eds) Handbook of neural activity measurement. Cambridge University Press, Cambridge, pp 136–191

    Chapter  Google Scholar 

  • Bédard C, Kröger H, Destexhe A (2004) Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J 86:1829–1842

    Article  PubMed Central  PubMed  Google Scholar 

  • Bédard C, Kröger H, Destexhe A (2006a) Model of low-pass filtering of local field potentials in brain tissue. Phys Rev E 73:051911

    Article  Google Scholar 

  • Bédard C, Kröger H, Destexhe A (2006b) Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys Rev Lett 97:118102

    Article  PubMed  Google Scholar 

  • Bédard C, Rodrigues S, Roy N, Contreras D, Destexhe A (2010) Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials. J Comput Neurosci 29:389–403

    Article  PubMed  Google Scholar 

  • Beggs J, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–11177

    CAS  PubMed  Google Scholar 

  • Bhattacharya J, Petsche H (2001) Universality in the brain while listening to music. Proc Biol Sci 268:2423–2433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bremer F (1938) L’activité électrique de l’écorce cérébrale. Actualités Scientifiques et Industrielles 658:3–46

    Google Scholar 

  • Bremer F (1949) Considérations sur l’origine et la nature des “ondes” cérébrales. Electroencephalogr Clin Neurophysiol 1:177–193

    Article  CAS  PubMed  Google Scholar 

  • Creutzfeldt O, Watanabe S, Lux HD (1966a) Relation between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr Clin Neurophysiol 20:1–18

    Article  CAS  PubMed  Google Scholar 

  • Creutzfeldt O, Watanabe S, Lux HD (1966b) Relation between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol 20:19–37

    Article  CAS  PubMed  Google Scholar 

  • de Montigny M, Rousseaux G (2006) On the electrodynamics of moving bodies at low velocities. Eur J Phys 27:755–768

    Article  Google Scholar 

  • Dehghani Nima C, Bédard SS, Cash EH, Destexhe A (2010) Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media. J Computational Neurosci 29:405–421 (special issue “Modeling Extracellular Potentials”)

    Article  CAS  Google Scholar 

  • Destexhe A (1998) Spike-and-wave oscillations based on the properties of GABAB receptors. J Neurosci 18:9099–9111

    CAS  PubMed  Google Scholar 

  • Eccles JC (1951) Interpretation of action potentials evoked in the cerebral cortex. J Neurophysiol 3:449–464

    CAS  Google Scholar 

  • Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng 17:25–104

    CAS  PubMed  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996a) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249

    Article  CAS  PubMed  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  CAS  PubMed  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996c) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum tissues. Phys Med Biol 41:2271–2293

    Article  CAS  PubMed  Google Scholar 

  • Gold C, Henze DA, Koch C, Buzsaki G (2006) On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95:3113–3128

    Article  CAS  PubMed  Google Scholar 

  • Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  • Klee MR, Offenloch K, Tigges J (1965) Cross-correlation analysis of electroencephalographic potentials and slow membrane transients. Science 147:519–521

    Article  CAS  PubMed  Google Scholar 

  • Kronig RDL (1926) On the theory of dispersion of X-rays. J Opt Soc Am 12:547

    Article  CAS  Google Scholar 

  • Landau LD, Lifshitz EM (1981) Electrodynamics of continuous media. Pergamon Press, Moscow

    Google Scholar 

  • Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823

    Article  CAS  PubMed  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    CAS  PubMed  Google Scholar 

  • Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38(2):356–368

    CAS  PubMed  Google Scholar 

  • Niedermeyer E, Lopes da Silva F (eds) (1998) Electroencephalography, 4th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Novikov E, Novikov A, Shannahoff-Khalsa D, Schwartz B, Wright J (1997) Scale-similar activity in the brain. Phys Rev E 56:R2387–R2389

    Article  CAS  Google Scholar 

  • Nunez PL (1981) Electric fields of the brain. The neurophysics of EEG. Oxford University Press, Oxford, UK

    Google Scholar 

  • Nunez PL, Srinivasan R (2005) Electric fields of the brain, 2nd edn. Oxford University Press, Oxford, UK

    Google Scholar 

  • Peters A, Palay SL, Webster HF (1991) The fine structure of the nervous system. Oxford University Press, Oxford, UK

    Google Scholar 

  • Pettersen KH, Einevoll GT (2011) Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophys J 94:784–802

    Article  Google Scholar 

  • Planck M (1932) Theory of electricity and magnetism. Macmillan, London, 80441143

    Google Scholar 

  • Protopapas AD, Vanier M, Bower J (1998) Simulating large-scale networks of neurons. In: Koch C, Segev I (eds) Methods in neuronal modeling, 2nd edn. MIT Press, Cambridge, MA, pp 461–498

    Google Scholar 

  • Rall W, Shepherd GM (1968) Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol 31:884–915

    CAS  PubMed  Google Scholar 

Further Reading

  • Koch C, Segev I (eds) (1998) Methods in neuronal modeling, 2nd edn. MIT Press, Cambridge, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Bédard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bédard, C., Destexhe, A. (2014). Local Field Potential Interaction with the Extracellular Medium. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_720-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_720-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Local Field Potentials: Interaction with the Extracellular Medium
    Published:
    13 January 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_720-2

  2. Original

    Local Field Potential Interaction with the Extracellular Medium
    Published:
    15 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_720-1