Skip to main content

Local Field Potential, Methods of Recording

  • Living reference work entry
  • First Online:

Definition

The term local field potential (LFP) refers to the electrical field recorded using a small-sized electrode in the extracellular space of brain tissue that is referenced against an electrode recorded either inside or outside that tissue. Such recordings were first made in animals over 130 years ago (Caton 1875) and constitute an increasingly important tool both in neurophysiology and medicine. LFPs can be recorded using a wide variety of electrodes of varied impedance and geometry. In many experimental preparations, the primary purpose of the electrode will be to record action potentials, which are usually filtered above 500 Hz. The field potential represents the slow fluctuations, usually below 300 Hz, that are caused by all ionic process around the electrode (Buzsaki et al. 2012). Fluctuations in the LFP represent spatiotemporally synchronous events in these ionic processes, and LFPs are therefore typically used to measure large population responses to a stimulus or...

This is a preview of subscription content, log in via an institution.

References

  • Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    Article  PubMed  CAS  Google Scholar 

  • Carsten W, de Munck JC (2007) Volume conduction. Scholarpedia 2:1738

    Article  Google Scholar 

  • Caton R (1875) The electric currents of the brain. BMJ 2:278

    Google Scholar 

  • Chen CC, Pogosyan A, Zrinzo LU, Tisch S, Limousin P, Ashkan K et al (2006) Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson’s disease surgery. Exp Neurol 198:214–221

    Article  PubMed  Google Scholar 

  • Engel AK, Moll CK, Fried I, Ojemann GA (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6:35–47

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, O’Donnell P (2001) Network synchrony in the nucleus accumbens in vivo. J Neurosci 21:4498–4504

    PubMed  CAS  Google Scholar 

  • Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72:847–858

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kandel A, Buzsaki G (1993) Cerebellar neuronal-activity correlates with spike and wave EEG patterns in the rat. Epilepsy Res 16:1–9

    Article  PubMed  CAS  Google Scholar 

  • Magill PJ, Sharott A, Bolam JP, Brown P (2004) Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat. J Neurophysiol 92:2122–2136

    Article  PubMed  Google Scholar 

  • Nelson MJ, Pouget P (2010) Do electrode properties create a problem in interpreting local field potential recordings? J Neurophysiol 103:2315–2317

    Article  PubMed  Google Scholar 

  • Niedermeyer E, Lopes da Silva F (2005) Electroencephalography: basic principles, clinical applications and related fields, 5th edn. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  • Pesaran B (2009) Uncovering the mysterious origins of local field potentials. Neuron 61:1–2

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Bibbig A, LeBeau FE, Buhl EH, Whittington MA (2004) Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu Rev Neurosci 27:247–278

    Article  PubMed  CAS  Google Scholar 

  • Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M et al (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96:3248–3256

    Article  PubMed  Google Scholar 

  • Whittington MA, Doheny HC, Traub RD, LeBeau FE, Buhl EH (2001) Differential expression of synaptic and nonsynaptic mechanisms underlying stimulus-induced gamma oscillations in vitro. J Neurosci 21:1727–1738

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Sharott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Sharott, A. (2014). Local Field Potential, Methods of Recording. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_723-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_723-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics