Skip to main content

Hardware-Based Computational Intelligence for Size, Weight, and Power Constrained Environments

  • Chapter
  • First Online:
Network Science and Cybersecurity

Part of the book series: Advances in Information Security ((ADIS,volume 55))

  • 3377 Accesses

Abstract

Nanotechnology research is an enabling field and is closely aligned with advances in neuromorphic architectures, energy efficient computing, and autonomy efforts. The development of neuromorphic circuits leverages a mixture of proven CMOS technologies with experimental devices and architectures that pose significant challenges for integration and fabrication. This chapter examines the pressures pushing the development of unconventional computing designs for size, weight, and power constrained environments and briefly reviews some of the trends that are influencing the development of solid-state neuromorphic systems. Later sections provide high level examples of selected approaches to hardware design and fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.W. Singer, Wired for War: The Robotics Revolution and Conflict in the 21st Century (Penguin, New York, 2009)

    Google Scholar 

  2. W.J.A. Dahm (2012), Report on Technology horizons: a vision for air force science and technology during 2010–2030, http://www.aviationweek.com/media/pdf/Check6/USAF_Technology_Horizons_report.pdf. Accessed 04 Jan 2013

  3. J. Misra, I. Saha, Artificial neural networks in hardware: a survey of two decades of progress, J. Neurocomput. 74, 239–255 (2010)

    Google Scholar 

  4. D. Lammers (2012), Intel cancels Tejas, moves to dual-core designs. In EE Times. http://www.eetimes.com/electronics-news/4048847/Intel-cancels-Tejas-moves-to-dual-core-designs. Accessed 31 Jan 2013

  5. M.D. Hill, M.R. Marty, Amdahl’s law in the multicore era. Computer 41(7), 33–38 (2008)

    Article  Google Scholar 

  6. H. Esmaeilzadeh, E. Blem, R.S. Amant, K. Sankaralingam, D. Burger, Dark silicon and the end of multicore scaling, in 38th Annual International Symposium on Computer Architecture (ISCA), pp. 365–376, 4–8 June 2011

    Google Scholar 

  7. P.M. Kogge, Hardware Evolution Trends of Extreme Scale Computing, University of Notre Dame, 26 April 2011

    Google Scholar 

  8. J. Koomey, Growth in Data Center Electricity use 2005 to 2010 Analytics Press, Oakland (2011)

    Google Scholar 

  9. J. Blau (2012), Technology Time Machine 2012: Beyond CMOS, in IEEE Spectrum. http://spectrum.ieee.org/tech-talk/semiconductors/devices/technology-time-machine-2012-beyond-cmos?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+IeeeSpectrum+(IEEE+Spectrum). Accessed 31 Jan 2013

  10. Y.V. Pershin, M. Di Ventra, Adv. Phys. 60, 145–227 (2011)

    Article  Google Scholar 

  11. G. Snider, Prolog: Memristor Minds, in Advances in Neuromorphic Memristor Science and Applications, Springer Series in Cognitive And Neural Systems 4, ed. by R. Kozma, R. Pino, G. Pazienza (Springer, New York, 2012), pp. 3–7

    Chapter  Google Scholar 

  12. H. Ames, M. Versace et al., Persuading Computers to Act More Like Brains, in Advances in Neuromorphic Memristor Science and Applications, Springer Series in Cognitive and Neural Systems 4, ed. by R. Kozma, R. Pino, G. Pazienza (Springer, New York, 2012), pp. 37–61

    Chapter  Google Scholar 

  13. C. Yakopcic, T.M. Taha et al., Analysis of a memristor based 1T1M crossbar architecture, in The 2011 International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 3243–3247 (2011)

    Google Scholar 

  14. D.B. Strukov, K.K. Likharev, Reconfigurable Nano-Crossbar Architectures, in Nanoelectronics and Information Technology, 3rd edn., ed. by R. Waser (Wiley, New York, 2012), pp. 543–562

    Google Scholar 

  15. GS. Rose, H. Manem et al., Leveraging memristive systems in the construction of digital logic circuits and architectures, in Proceedings of the IEEE , 100(6), 2033–2049 (2012)

    Google Scholar 

  16. J. Rajendran, H. Manem et al., An energy-efficient memristive threshold logic circuit. IEEE. Trans. Comput. 61(4), 6:1–6:22 (2012)

    Article  MathSciNet  Google Scholar 

  17. J. Rajendran, H. Manem et al., An approach to tolerate variations for memristor based applications, in Proceedings of the 24th International Conference on VLSI Design (VLSI Design) pp. 18–23 (2011)

    Google Scholar 

  18. J. Rajendran, H. Manem et al., Memristor based programmable threshold logic array, in IEEE/ACM International Symposium on Nanoscale Architectures, pp. 5–10 (2010)

    Google Scholar 

  19. J. Rajendran, R. Karri, G.S. Rose, Parallel memristors improve variation tolerance in memristive digital circuits, in IEEE International Symposium on Circuits and Systems. pp. 2241–2244 (2011)

    Google Scholar 

  20. H. Manem, G.S. Rose, Design considerations for variation tolerant multilevel cmos/nano memristor memory, in ACM Great Lakes Symposium on VLSI. pp. 287–292 (2010)

    Google Scholar 

  21. H. Manem, G.S. Rose, A Crosstalk Minimization technique for sublithographic programmable logic arrays, in IEEE Conference on Nanotechnology. pp. 218–222 (2009)

    Google Scholar 

  22. H. Manem, J. Rajendran, G.S. Rose, Design Considerations for Multi-Level CMOS/Nano Memristive Memory. ACM. J. Emerg. Technol. Comput. Syst. 8(1), 1–22 (2012)

    Article  Google Scholar 

  23. H. Manem, G.S. Rose, A read-monitored write circuit for 1T1 M memristor memories, IEEE International Symposium on Circuits and Systems. pp. 2938–2941 (2011)

    Google Scholar 

  24. M. Soltiz, C. Merkel et al., RRAM-based adaptive neural logic block for implementing non-linearly separable functions, in Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) (2012)

    Google Scholar 

  25. M. Solti, D. Kudithipudi et al., Submitted 2012. Single-Layer Neural Logic Blocks Using Memristive Synapses, Submitted to IEEE Transaction on Computers (2012)

    Google Scholar 

  26. H. Manem, J. Rajendran, G.S. Rose, Stochastic gradient descent inspired training technique for a hybrid CMOS/Nano trainable threshold gate array. IEEE. Trans. Circuits. Syst. 59(5), 1051–1060 (2012)

    Article  MathSciNet  Google Scholar 

  27. A.R. Omondi, J.C. Rajapakse, FPGA Implementations of Neural Networks (Springer, Netherlands, 2006)

    Book  Google Scholar 

  28. A. Eide, T. Lindblad et al., An implementation of the zero instruction set computer (ZISC036) on a PC/ISA-bus card, in 1994 WNN/FNN (1994)

    Google Scholar 

  29. F.M. Dias, A. Antunes, A. Mota, Artificial Neural Networks: a Review of Commercial Hardware. Eng. Appl. Artif. Intell. IFAC 17(8), 945–952 (2004)

    Article  Google Scholar 

  30. The CogniMem Communique (2012) CogniMem Technologies, Inc., Folsom, 1(2). http://www.cognimem.com/_docs/Newsletters/CogniMem%20Communique’,%20Vol%201,%20Issue%202.pdf. Accessed 31 Jan 2013

  31. J.Y. Boulet, D. Louis et al., (1997) Patent US5621863, http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/5621863. Accessed 31 Jan 2013

  32. Y. Q. Liu, D. Wei, N. Zhang, M.Z. Zhao Vehicle-license-plate recognition based on neural networks, in Information and Automation (ICIA), 2011 IEEE International Conference on, pp. 363–366 (2011)

    Google Scholar 

  33. K. Shen, C.I. Bargmann, The immunoglobin superfamily protein SYG-1 determines the location of specific synapses in C. Elegans. In Cell. 112(5), 619–630 (2003)

    Article  Google Scholar 

  34. K. Diefendorff, P.K. Dubey, How multimedia workloads will change processor design. In Computer 30(9), 43–45 (1997)

    Article  Google Scholar 

  35. R.E. Pino, G. Genello et al., Emerging neuromorphic computing architectures and enabling hardware for cognitive information processing applications. Air Force Research Lab Rome, Information Directorate (2010)

    Google Scholar 

  36. D. Shires, S.J. Park et al., Asymmetric core computing for US Army high-performance computing applications (No. ARL-TR-4788). Army Research Lab Aberdeen Proving Ground MD, Computational and Information Sciences Dir (2009)

    Google Scholar 

  37. B. Barney, Introduction to parallel computing. Lawrence. Livermore. Nat. Lab. 6(13), 10 (2010)

    Google Scholar 

  38. R. Zbikowski, Fly like a fly [micro-air vehicle], in Spectrum, IEEE 42(11), pp. 46–51 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryant Wysocki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wysocki, B., McDonald, N., Thiem, C., Rose, G., Gomez, M. (2014). Hardware-Based Computational Intelligence for Size, Weight, and Power Constrained Environments. In: Pino, R. (eds) Network Science and Cybersecurity. Advances in Information Security, vol 55. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7597-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7597-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7596-5

  • Online ISBN: 978-1-4614-7597-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics