
Graphics Processing Units

Graphics Processing Units (GPUs) are coprocessors that traditionally perform
the rendering of 2-dimensional and 3-dimensional graphics information for dis-
play on a screen. In particular computer games request more and more realis-
tic real-time rendering of graphics data and so GPUs became more and more
powerful highly parallel specialist computing units. It did not take long until
programmers realized that this computational power can also be used for tasks
other than computer graphics. For example already in 1990 Lengyel, Reichert,
Donald, and Greenberg used GPUs for real-time robot motion planning [43].
In 2003 Harris introduced the term general-purpose computations on GPUs
(GPGPU) [28] for such non-graphics applications running on GPUs. At that
time programming general-purpose computations on GPUs meant expressing
all algorithms in terms of operations on graphics data, pixels and vectors. This
was feasible for speed-critical small programs and for algorithms that operate
on vectors of floating-point values in a similar way as graphics data is typically
processed in the rendering pipeline.

The programming paradigm shifted when the two main GPU manufactur-
ers, NVIDIA and AMD, changed the hardware architecture from a dedicated
graphics-rendering pipeline to a multi-core computing platform, implemented
shader algorithms of the rendering pipeline in software running on these cores,
and explicitly supported general-purpose computations on GPUs by offering
programming languages and software-development toolchains.

This chapter first gives an introduction to the architectures of these modern
GPUs and the tools and languages to program them. Then it highlights several
applications of GPUs related to information security with a focus on applications
in cryptography and cryptanalysis.

1 An introduction to modern GPUs

Graphics processing units have evolved to coprocessors of a size larger than typ-
ical CPUs. While CPUs use large portions of the chip area for caches, GPUs
use most of the area for arithmetic logic units (ALUs). The main concept that
both NVIDIA and AMD GPUs use to exploit the computational power of these
ALUs is executing a single instruction stream on multiple independent data
streams (SIMD) [23]. This concept is known from CPUs with vector registers
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and instructions operating on these registers. For example, a 128-bit vector
register can hold four single-precision floating-point values; an addition instruc-
tion operating on two such registers performs four independent additions in
parallel. Instead of using vector registers, GPUs use hardware threads that all
execute the same instruction stream on different sets of data. NVIDIA calls
this approach to SIMD computing “single instruction stream, multiple threads
(SIMT)”. The number of threads required to keep the ALUs busy is much larger
than the number of elements inside vector registers on CPUs. GPU performance
therefore relies on a high degree of data-level parallelism in the application.

To alleviate these requirements on data-level parallelism, GPUs can also
exploit task-level parallelism by running different independent tasks of a com-
putation in parallel. This is possible on all modern GPUs through the use of
conditional statements. Some recent GPUs support the exploitation of task-level
parallelism also through concurrent execution of independent GPU programs.
Each of the independent tasks again needs to involve a relatively high degree of
data-level parallelism to make full use of the computational power of the GPU,
but exploitation of task-level parallelism gives the programmer more flexibility
and extends the set of applications that can make use of GPUs to accelerate
computations.

The remainder of this section gives an overview of the hardware architectures
of modern GPUs, introduces the relevant programming languages, and discusses
typical performance bottlenecks and GPU benchmarking issues. The section
focuses on NVIDIA GPUs because most of the implementations of subsequent
sections target these GPUs.

1.1 NVIDIA GPUs

In 2006 NVIDIA introduced the Compute Unified Device Architecture. Today
all of NVIDIA’s GPUs are CUDA GPUs. CUDA is not a computer architecture
in the sense of a definition of an instruction set and a set of architectural regis-
ters; binaries compiled for one CUDA GPU do not necessarily run on all CUDA
GPUs. More specifically, NVIDIA defines different CUDA compute capabilities
to describe the features supported by CUDA hardware. The first CUDA GPUs
had compute capability 1.0. In 2011 NVIDIA released GPUs with compute ca-
pability 2.1, which is known as “Fermi” architecture. Details about the different
compute capabilities are described in [50, Appendix F].

A CUDA GPU consists of multiple so-called streaming multiprocessors (SMs).
The threads executing a GPU program, a so-called kernel , are grouped in blocks.
Threads belonging to one block all run on the same multiprocessor but one mul-
tiprocessor can run multiple blocks concurrently. Blocks are further divided into
groups of 32 threads called warps; the threads belonging to one warp are exe-
cuted in lock step, i.e., they are synchronized. As a consequence, if threads inside
one warp diverge via a conditional branch instruction, execution of the differ-
ent branches is serialized. On GPUs with compute capability 1.x all streaming
multiprocessors must execute the same kernel. Compute capability 2.x supports
concurrent execution of different kernels on different streaming multiprocessors.
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Each streaming multiprocessor contains several so-called CUDA cores, 8
per SM in compute capability 1.x , 32 per SM in compute capability 2.0 and
48 per SM in compute capability 2.1. One could think that for example a
reasonable number of threads per SM is 8 for compute-capability-1.x GPUs or
48 for compute-capability-2.1 GPUs. In fact it needs many more threads to
fully utilize the ALUs; the reason is that concurrent execution of many threads
on one SM is used to hide arithmetic latencies and up to some extent also
memory-access latencies. For compute capability 1.x NVIDIA recommends to
run at least 192 or 256 threads per SM. To fully utilize the power of compute-
capability-2.x GPUs even more threads need to run concurrently on one SM. For
applications that involve a very high degree of data-level parallelism it might now
sound like a good idea to just run as many concurrent threads as possible. The
problem is that the register banks are shared among threads; the more threads
are executed the fewer registers are available per thread. Finding the optimal
number of threads running concurrently on one streaming multiprocessor is a
crucial step to achieve good performance.

Aside from registers, each thread also has access to various memory domains.
Each streaming multiprocessor has several KB of fast shared memory accessible
by all threads on this multiprocessor. This memory is intended to exchange data
between the threads of a thread block, latencies are as low as for register access
but throughput depends on access patterns. The shared memory is organized
in 16 banks. If two threads within the same half-warp (16 threads) load from
or store to different addresses on the same memory bank in the same instruc-
tion, these requests are serialized. Such requests to different addresses on the
same memory bank are called bank conflicts, for details see [50, Section 5.3.2.3].
Graphics cards also contain several hundred MB up to a few GB of device mem-
ory. Each thread has a part of this device memory dedicated as so-called local
memory. Another part of the device memory is global memory accessible by
all threads. Access to device memory has a much higher latency than access
to shared memory or registers. For details on latencies and throughput see [50,
Sections 5.3.2.1 and 5.3.2.2]. Additionally, each thread has cached read-only
access to memory!constant memoryconstant memory and texture and surface
memory. Loads from constant cache are efficient if all threads belonging to a
half-warp load from the same address; if two threads within the same half-warp
load from different addresses in the same instruction, throughput decreases by a
factor equal to the number of different load addresses. Another decision (aside
from the number of threads per SM) that can have huge impact on performance
is what data is kept in which memory domain.

Communication between CPU and GPU is done by transferring data between
the host memory and the GPU device memory or by mapping page-locked host
memory into the GPU’s address space. Asynchronous data transfers between
page-locked host memory and device memory can overlap with computations on
the CPU. For some CUDA devices since compute capability 1.1 they can also
overlap with computations on the GPU. For details on data transfers to and
from NVIDIA GPUs see [50, Sections 3.4 and 3.5]. Since CUDA 4.0 NVIDIA
simplifies data exchange between host memory and device memory of Fermi
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GPUs by supporting a unified virtual address space. For details see [50, Sections
3.2.7 and 3.3.9]. The unified virtual address space is particularly interesting in
conjunction with peer-to-peer memory access between multiple GPUs. This
technique makes it possible to access the memory of one GPU directly from
another GPU without data transfers through host memory. For details see [50,
Sections 3.2.6.4 and 3.2.6.5].

1.2 AMD GPUs

The hardware and software technologies that allow programmers to use AMD
GPUs for general-purpose computations are called AMD Accelerated Parallel
Processing (APP) formerly known as ATI Stream. For a detailed description of
the architecture and the programming environment see [3].

Each APP device consists of multiple so-called compute units, each compute
unit contains multiple stream cores, which, in turn, contain multiple processing
elements. Multiple instances of a GPU program (kernel) are executed concur-
rently on different data, one such instance of a kernel is called a work-item.
Multiple work-items are executed by all stream cores of one compute unit in
lock step, one such group of work items executed together is called wavefront .
The number of work-items in a wavefront is hardware dependent. The pro-
grammer decides how many work-items are scheduled to one compute unit in a
so-called workgroup. Best performance is obtained if this number is a multiple
of the size of a wavefront.

In principle different compute units can execute different kernels concur-
rently. However, the number of different kernels running on one APP device
may be limited. All stream cores of one compute element execute the same in-
struction sequence consisting of very-large-instruction-word (VLIW) arithmetic
instructions, control-flow instructions and memory load and store instructions.
The up to four or five (depending on the device) instructions inside a VLIW
instruction word are co-issued to the processing elements.

Similar to NVIDIA GPUs, AMD GPUs have various memories with different
visibility to work-items and different latencies and throughputs. The private
memory is specific to each work-item and is kept in a register file with very fast
access. Work-items inside one workgroup, i.e. running on the same compute
unit, can communicate through local memory. This “local memory” is not a
part of the device memory as on NVIDIA GPUs. In fact it is very similar to what
NVIDIA calls shared memory, a relatively small memory with fast access for
efficient exchange of data between work-items. Access to local memory is about
an order of magnitude faster than access to device memory. Furthermore all
work-items executing in one context have access to the global device memory
and cached read-only access to a part of the device memory called constant
memory.

Communication with the host is done through DMA transfers between host
and device memory. Computation on both the CPU and the GPU can overlap
with DMA transfers.
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1.3 Programming GPUs in high-level languages

With the CUDA architecture NVIDIA introduced language extensions to the
C programming language that allowed to write programs that are partially
executed on the GPU. The resulting programming language is called “C for
CUDA”. Note that depending on the compute capability some restrictions apply
for the part of the program that is executed by the GPU, for example compute
capability 1.x does not support recursive function calls. For details on C for
CUDA see [50].

The first software-development tool that AMD offered for general-purpose
computation on GPUs was called Close-to-Metal (CTM) which gave low-level
access to the native instruction set of the GPU. High-level-language support
was first offered in the ATI Stream SDK v1 with the ATI Brook+ language,
which is based on BrookGPU developed at Stanford University [14].

Both solutions, C for CUDA and Brook+ could only be used to implement
software for the respective manufacturer’s GPUs. As a more portable approach
both NVIDIA and AMD now also support the OpenCL programming language
and API developed by the Khronos group. This programming language is de-
signed for development of software for parallel computations on arbitrary het-
erogeneous systems. Two versions of the language have been released, OpenCL
1.0 in November 2008 [26] and OpenCL 1.1 in June 2004 [27].

Today the recommended way to program NVIDIA GPUs is using either C
for CUDA [50] or OpenCL for CUDA [51]. AMD recommends OpenCL as high-
level programming language for their GPUs in their latest Accelerated Parallel
Processing SDK [3].

The compilation process is very similar for all of the high-level languages. In
a first step the compiler separates the parts of the program that run on the CPU
from the parts that run on the GPU. The CPU part is further compiled using
native C or C++ compilers for the respective host architecture. The GPU part is
first translated to an intermediate low-level language. For NVIDIA this language
is called PTX, for AMD it is called IL. The advantage of this intermediate
language is that it is somewhat device independent. More specifically, PTX
code is compatible across minor revisions of the compute capability; IL code
is forward compatible. The GPU driver contains a just-in-time compiler for
this intermediate language. Code that needs to run on GPUs with different
hardware capabilities can thus be translated only to intermediate language,
final compilation to binary code is performed by the respective driver. This last
compilation step can also be done offline to produce binaries for a specific GPU
architecture.

1.4 Programming GPUs in assembly

Most software today is written in high-level languages, but some areas of com-
puting still employ hand-optimized assembly routines to achieve best perfor-
mance. One of these areas is high-performance computing – in computations
that run for weeks or months even small performance gains are typically worth
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the effort of implementing parts of the software in assembly. Now that GPUs
explicitly support applications in high-performance computing one would ex-
pect that the manufacturers also provide assemblers. However, this is not the
case. Until the CUDA 4.0 toolkit was released in May 2011, NVIDIA offered
neither an assembler nor a disassembler for their GPUs, an assembler is still not
provided by NVIDIA. To fill this gap, van der Laan reverse-engineered the bi-
nary format and developed the cubin utilities [57] consisting of the disassembler
decuda and the assembler cudasm.

For the Fermi GPUs (compute capability 2.0 and 2.1) NVIDIA includes the
cuobjdump disassembler in the CUDA 4.0 toolkit. An assembler for Fermi GPUs
is being developed by the asfermi project [33].

AMD documents the instruction-set architecture of their recent GPUs, for
example in [2] for the Radeon R600 series, in [5] for the Radeon R700 series,
and in [4] for the Evergreen series. AMD does not document the complete ELF
format of the binaries and does not provide an assembler for their GPUs. Sim-
ilar to NVIDIA, community projects work on assemblers that support different
families of AMD GPUs [53] [48].

1.5 GPU performance bottlenecks

What makes GPUs a very interesting computing platform for many algorithms
is their pure computing power. For example, an NVIDIA GTX 295 graphics
card containing two GT200b GPUs can dispatch a total of 745 billion single-
precision floating-point operations per second. For comparison, all 4 cores of
a 2.4 GHz Intel Core 2 Quad CPU can dispatch a total of 57.6 billion single-
precision floating-point operations, more than one order of magnitude less. One
might thus expect that GPUs speed up computations by a factor of 10 or more,
but as the examples in the following sections show this is not the case for many
applications. The reason is that in order to make use of the computational
power of GPUs, applications need to fulfill two conditions:

• The degree of data-level parallelism required to keep hundreds of threads
busy is much larger than the degree of data-level parallelism that is re-
quired for the SIMD implementations of current CPUs. For example,
keeping 192 threads on each of the 60 multiprocessors of 2 GPUs on
an NVIDIA GTX 295 graphics card busy needs 11520 independent data
streams. Keeping the 4 cores of a CPU busy working on 128-bit vector
registers needs just 16 such independent streams. Less data-level paral-
lelism typically requires multiple threads to work on the same data which
involves communication and thread synchronization overhead.

• GPU performance depends on memory-access patterns much more than
CPU performance does. The reason is that GPUs spend most of their
chip area on ALUs while CPUs spend a large part of the chip area on
fast caches that reduce load and store latencies. Computations that can
keep the active set of data in the available registers benefit from the large
computational power of the ALUs but the high latencies of device-memory
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loads and stores typically incur huge performance penalties in applications
that cannot. Some applications can use the shared memory on NVIDIA
GPUs or the local memory on AMD GPUs as cache, Fermi GPUs make
this easy by using a configurable amount of shared memory as transparent
cache. If the same data is required by all threads this is indeed a very
good solution. However, if each thread requires different data in cache
(for example register content temporarily spilled to memory) the amount
of shared memory per thread is typically too small. Compilers therefore
use device memory for register spills. Another way to deal with high
memory latencies is to run more threads and thus hide the latencies. Note
that this comes at the price of a smaller number of registers per thread
and even higher requirements on data-level parallelism.

Another potential bottleneck is data transfer between host memory and
device memory. All modern graphics cards are connected through PCI Express.
Throughput rates highly depend on the version of PCI Express, and the number
of lanes. For example the theoretical throughput of PCI Express 2.0 with 16
lanes (commonly denoted x16) is 8 GB/s in both directions. The throughput
obtained in practice is considerably lower and depends on the size of data packets
transmitted over the bus. For details see, for example, [20]. More serious
than throughput limitations can be the latency incurred by data transfers over
PCI Express, at least for applications that require frequent communication and
cannot interleave communication with computations.

With these limitations in mind it is interesting to see that GPU advertise-
ments and also various scientific papers claim speedups by a factor of 100 and
more of software running on a GPU compared to software running on a CPU.
In most of the cases a careful look at how these speedups were achieved re-
veals that the CPU implementation is far from state of the art—for example it
does not use the SIMD computing capabilities of modern CPUs—and the CPU
implementation is not set up to run on multiple cores.

Despite these misleading comparisons found in many places, GPUs are very
powerful computing devices and with careful optimization GPUs can speed up
many computations considerably compared to the same computations running
on a CPU. The following sections give examples of applications of GPU com-
puting in information security and try to put the performance numbers in a
meaningful perspective in comparison to state-of-the-art CPU implementations.

2 GPUs as cryptographic coprocessors

Cryptographic computations such as encryption and decryption, hashing, signa-
ture generation, and signature verification rely on high performance in software
for many applications. Furthermore most of the algorithms involved can be im-
plemented in relatively small code size and it is feasible to hand-optimize code
on the assembly level. This is why for example AES and RSA encryption were
among the algorithms that were implemented using shader instructions of the
graphics rendering pipeline of traditional GPUs [29] [62] [47].
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In 2006, before CUDA was introduced by NVIDIA, Cook and Keromytis
published a book on cryptography on graphics cards [21]. This book claims
that using GPUs for cryptography has two additional advantages aside from
speeding up computations:

• The authors suggest that GPU implementations may be more resistant
to (at least existing) side-channel attacks. They do not claim that GPU
implementations are inherently protected against any side-channel attacks
that work against CPU implementations. In fact, there is no immediate
reason to believe that GPUs generally offer better protection against any
side channel attacks than CPUs. Certainly one of the most relevant class
of attacks, namely cache-timing attack (see, e.g, [56]) will not work on
GPUs that have uncached access to memory, but at least the most recent
NVIDIA GPUs use part of their shared memory as transparent cache for
access to the GPU’s main memory [49].

• Chapter 3 of [21] describes a video-streaming service that uses GPUs to
decrypt video data that shall only be displayed but never be stored or
modified. The system uses the GPU as “the only trusted component in a
spyware-safe system”.

This idea starts from the assumption that GPUs and graphics drivers are
more trustworthy than the operating system for computations involving
sensitive data such as cryptographic keys. This is a dangerous assumption
to make, attackers controlling the operating system can also exchange the
graphics driver, there is not even a guarantee that any code really runs on
the GPU.

When using GPUs for cryptographic computations one should keep in mind
that GPUs and graphics drivers are not designed for computations on sensitive
data and should be used for such computations only with precaution. For in-
stance, on various graphics cards it is possible for a computing kernel to read
out parts of the memory content left behind by a previously executed kernel.
Keeping cryptographic keys in these parts of the memory can be used to speed
up computations – for example a key can be expanded once and be left in
constant memory for all subsequent kernel launches as suggested in [52]. On
the other hand this can also be a serious security threat in multi-user environ-
ments if one user manages to launch a GPU kernel that reads out the key of
another user. In environments where data in GPU memory can be protected,
for example on a single-user server, or with careful protections to avoid memory
readout, modern GPUs can be used as powerful cryptographic coprocessors for
throughput-oriented applications.

2.1 AES on GPUs

In particular the possibility to implement the Advanced Encryption Standard
(AES), the most widely used symmetric encryption algorithm, on GPUs has
attracted a lot of attention. AES is a block cipher with supported key sizes of
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128, 192 and 256 bits and a block size of 128 bits. Most implementations focus
on AES with 128-bit keys. In this setting the key is first expanded into 11 round
keys K0, . . . ,K11. Each 128-bit input block (state) is then transformed in 10
rounds, each round involving one of the 11 round keys. The first round key K0

is xored to the block before the first round. The most common implementation
technique for AES, described in [22, Section 5.2.1], operates on 32-bit words and
uses 4 lookup tables T0, T1, T2, and T3 of size 1 KB (256 32-bit words) each.
The 128-bit state is represented as 4 such 32-bit words. The operations of one
round of AES in C notation is given in Listing 2.1.

Listing 1 One round of AES encryption in C, the 128-bit input state is in 32-bit
unsigned integers y0, y1, y2, y3, the output state is in 32-bit unsigned integers
z0, z1, z2, z3; the 128-bit round key is in 32-bit unsigned integers k0, k1, k2,
k3.

z0 = T0[ y0 >> 24 ] ^ T1[(y1 >> 16) & 0xff] \

^ T2[(y2 >> 8) & 0xff] ^ T3[ y3 & 0xff] ^ k0;

z1 = T0[ y1 >> 24 ] ^ T1[(y2 >> 16) & 0xff] \

^ T2[(y3 >> 8) & 0xff] ^ T3[ y0 & 0xff] ^ k1;

z2 = T0[ y2 >> 24 ] ^ T1[(y3 >> 16) & 0xff] \

^ T2[(y0 >> 8) & 0xff] ^ T3[ y1 & 0xff] ^ k2;

z3 = T0[ y3 >> 24 ] ^ T1[(y0 >> 16) & 0xff] \

^ T2[(y1 >> 8) & 0xff] ^ T3[ y2 & 0xff] ^ k3;

To achieve the required degree of parallelism, GPU implementations of AES
typically either consider many independent streams that are encrypted in par-
allel or they use a parallel mode of operation such as ECB or CTR that allows
to encrypt blocks of a single stream independently. The most important de-
cision to make for high-performance AES encryption on GPUs is how to use
the available memory domains. CPU implementations store lookup tables and
expanded keys in RAM, after some rounds of AES the tables will be in level-1
cache and lookups are fast. On most GPUs a straight-forward adaptation of
this approach—placing tables and expanded keys in device memory—will incur
high latency penalties because access to device memory is uncached (except for
NVIDIA Fermi GPUs where part of the shared memory is used as transparent
cache). A better approach is to place the lookup tables in the fast shared mem-
ory of NVIDIA GPUs or the local memory of AMD GPUs. Recall that loads
from shared memory on NVIDIA GPUs can be as fast as register access but that
throughput and latency depend on the access pattern. AES table lookups have
an unpredictable access pattern, so one must expect penalties due to memory-
bank conflicts. One solution to avoid these penalties is to store multiple copies
of the lookup tables in the fast memory such that each entry is available on
each memory bank. If shared memory is not large enough to hold these copies
of the tables, it may still be possible to store copies of only one of the tables
and obtain entries of the other tables through rotations (see, e.g., [22, Section



10

5.2.1]). The best combination of optimization techniques depends on the target
GPU.

Not only the decision about location and layout of the lookup tables is
important, also handling of the round keys influences performance. This is
relatively easy if one big stream is encrypted in a parallel mode of operation. In
this case all threads use the same key and it can be stored in constant memory.
Unlike lookups from the tables, the round keys are accessed in a completely
predictable pattern; they are broadcasted to all threads which is exactly what
the constant memory is made for. The situation is different for the encryption of
many independent streams under different keys. If each thread needs different
round keys, there is not enough fast memory on most GPUs to store all these
round keys. Instead of loading round keys from slow device memory it may be
a better choice to expand the key on the fly. Again, the best solution highly
depends on the specific target GPU.

A completely different approach to implement AES is bitslicing. This tech-
nique was first introduced for the Data Encryption Standard (DES) by Biham
in [12] and has also been used for various AES implementations [45, 41, 37].
The idea of this technique is transposition of data: Instead of storing a 128-bit
state in, e.g., 4 32-bit registers, it uses 128 registers, 1 register per bit. This rep-
resentation of data allows to simulate a hardware implementation, logical gates
become bit-logical instructions. For just one computation this is not efficient,
but if all n bits of registers are used to perform computations on n independent
streams, this can be very efficient. Note that on top of the high degree of par-
allelism required for GPU computations, bitslicing requires another factor of n
of parallelism, n being the register width.

Various GPU implementations of AES are described in the literature. In
[63] Yang and Goodman describe different implementations of AES for AMD
GPUs. Their bitsliced implementation aims at key search so keys need to be
expanded into round keys on the fly. On an AMD HD 2900 XT GPU this
implementation performs encryption of one block under 145 million keys per
second, this corresponds to a throughput of 18.5 Gbit/s. For the lookup-table-
based implementation they report an AES encryption throughput of 3.5 Gbit/s
on an AMD HD 2900 XT GPU.

The implementation by Manavski described in [44] uses a lookup-table-based
approach to achieve a peak throughput of 8.28 Gbit/s on an NVIDIA 8800 GTX
graphics card (G80 GPU); to achieve this peak throughput at least 8 MB of data
need to be encrypted under the same key. This implementation exploits paral-
lelism inside AES, 4 threads perform the transformation of one 128-bit block.
Harrison and Waldron report a throughput of 15.423 Gbit/s in [30] for their
lookup-table based implementation of AES on an NVIDIA G80 GPU. This peak
performance is achieved for input messages of ≥ 65 MB, overhead from data
transfers to and from the GPU is not included in the benchmarks. Both the im-
plementation in [44] and the implementation in [30] achieve a significantly lower
throughput when data transfers are included in the benchmarks: 2.5 Gbit/s for
[44] and 6.9 Gbit/s for [30].

Two more recent papers report speeds beyond 30 Gbit/s on NVIDIA GPUs.
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Osvik, Bos, Stefan, and Canright in [52] describe an implementation of AES with
128-bit keys that achieves 30.9 Gbit/s throughput on one GPU of an NVIDIA
GTX 295 graphics card (containing 2 GT200b GPUs). The implementation
interleaves data transfers with computations by using page-locked host mem-
ory. Interleaving data transfers with kernel execution was not possible for the
GPUs used for benchmarking in [44] and [30]. This throughput is achieved
for encryption under one key in constant memory but the paper also describes
an implementation with on-the-fly key schedule suitable for key-search applica-
tions, that achieves a throughput of 23.8 Gbit/s. Jang, Han, Han, Moon, and
Park present a GPU-accelerated SSL proxy in [36]. For the AES implementa-
tion included in this proxy they report 32.8 Gbit/s on an NVIDIA GTX 285
graphics card (GT200b GPU), not including data transfers. They also report
detailed performance numbers of AES encryption in the non-parallel CBC mode
for different numbers of independent streams on an NVIDIA GTX 580 graphics
card (GF110 GPU).

Note that these high throughputs of AES on GPUs can only be achieved by
performing AES encryption on thousands of blocks in parallel. This amount of
data-level parallelism can certainly be found for some database applications or
when writing large amounts of data to an encrypted hard disk. The encryption
of typically small Internet packages in applications that do not just need high
throughput but also low latency will still do better with a CPU-based approach,
not only when using CPUs that support AES in hardware. For example the
bitsliced implementation for Intel processors presented in [37] encrypts 1500-
byte packets in 7.27 cycles per byte on a 2668 MHz Intel Core i7 920 CPU. This
corresponds to a throughput of more than 11.7 Gbit/s on 4 cores.

2.2 Asymmetric cryptography on GPUs

Also asymmetric cryptographic primitives can be accelerated by laying off the
computations from the CPU to the GPU. As for symmetric primitives like AES
one way to obtain the necessary degree of parallelism is to consider operations
on many independent messages. However, there is another source for paral-
lelism inherent in the algorithms. Most state-of-the art asymmetric algorithms
involve operations on large integers, for example RSA signature generation is
the computation of md mod n, where m, d and n are integers of 1024 bits or
larger. Arithmetic on such integers, in particular multiplication, squaring and
modular reduction, needs to be decomposed in many operations on machine
words. Elliptic-curve cryptography involves modular arithmetic on integers of
smaller size—typically between 160 bits and 256 bits—but arithmetic on those
integers still decomposes into many operations on machine words. For example
when using a multiplier with 32-bit output, schoolbook multiplication of two
256-bit integers requires 256 multiplications of 16-bit limbs and 240 additions
of the 32-bit multiplication outputs. Most of these operations are independent
and can be done in parallel by multiple threads. Exploiting such parallelism
inside one computation has some obvious advantages. If multiple threads pro-
cess one input stream together, fewer independent input streams are required
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to make use of the computational power of the GPU. This makes GPU compu-
tations attractive also for applications that require low latency rather than high
throughput. Furthermore, when multiple threads carry out one computation
together the overall amount of data involved in the computations is smaller;
this can be used to fit all data into memory domains that offer low-latency
access. However, exploiting data-level parallelism inside computations like big-
integer multiplication comes with the disadvantage that it involves overhead
from thread synchronization and exchange of data between treads.

Several papers describe implementations of RSA on modern graphics cards.
In [55] Szerwinski and Güneysu describe a CUDA implementation that per-
forms 813 modular exponentiations (RSA encryption) of 1024-bit integers on a
NVIDIA 8800 GTS graphics card. This paper furthermore reports a throughput
of 104.3 modular exponentiations for 2048-bit RSA encryption. Harrison and
Waldron in [31] focus on RSA decryption and report 5536.75 RSA-1024 decryp-
tions per second on an NVIDIA 8800 GTX graphics card. This computation
can make use of the Chinese Remainder Theorem to perform arithmetic on half-
size integers. The RSA implementation included in the SSL proxy described in
[36] can perform for example 74732 RSA-1024 decryptions or 12044 RSA-2048
decryptions per second on an NVIDIA GTX 580 graphics card. What is partic-
ularly interesting about this implementation is that it does not purely focus on
throughput but also needs to keep the latency low enough for the application
in the SSL proxy. For RSA-1024 the latency is at 3.8 ms, for RSA-2048 it is
13.83 ms.

To put this into perspective to what is currently possible on CPUs, the
eBACS benchmarking project [11] reports, for example, more than 11000 1024-
bit integer exponentiations per second on all 6 cores of an AMD Phenom II
X6 1090T. Again, this speed does not require the large number of indepen-
dent parallel computations that GPU implementations need and although it is
much slower from a pure throughput perspective it may be the better choice for
applications that do not process multiple messages in parallel.

Also elliptic-curve cryptography has been implemented on GPUs. Szerwinski
and Güneysu report 1412 scalar multiplications per second on the NIST P-224
elliptic curve on an NVIDIA 8800 GTS graphics card in [55]. On the same
curve but the more recent NVIDIA GTX 285 graphics card Antão, Bajard, and
Sousa report 9990 scalar multiplications per second. More than an order of
magnitude slower at significantly lower security is the implementation of scalar
multiplication on an elliptic-curve over a binary field described in [19]. Cohen
and Parhi report only 96.5 scalar multiplications per second.

Elliptic-curve scalar multiplication has received more attention on CPUs,
for example [10] reports 226872 cycles for a scalar multiplication on a 255-bit
elliptic curve on an Intel Xeon E5620 CPU running at 2.4 GHz. This corre-
sponds to more than 40000 scalar multiplication per second on all four cores.
Even faster speeds for CPU implementations are reported in [34] for scalar mul-
tiplication on elliptic curves with efficiently computable endomorphisms. These
comparative numbers may suggest that GPU implementations of elliptic-curve
cryptography cannot compete with state-of-the-art CPU implementations, not



3. GPUS IN CRYPTANALYSIS 13

even in throughput-oriented applications. However, the next section describes
implementations of elliptic-curve operations on GPUs for cryptanalysis that
outperform CPU implementations. The reason that there are no faster GPU
implementations targeting constructive applications may be that there are sim-
ply not many applications that require only throughput and can ignore latency.

An asymmetric cryptosystem that appears to be much better suited for im-
plementation on GPUs than elliptic-curve cryptography or RSA is NTRU. The
central operation for encryption and decryption is convolution which can be
carried out by many threads without significant communication or synchroniza-
tion due to its parallel structure. In [32] Hermans, Vercauteren, and Preneel
describe an implementation of NTRU with a set of parameters that aims at the
256-bit security level. This implementation is able to perform 218000 encryption
operations per second on an NVIDIA GTX 280 graphics card (GT200 GPU).

3 GPUs in cryptanalysis

Cryptanalytical computations are in many ways similar to cryptographic com-
putations. In many cases breaking a cryptographic system means executing the
same or very similar computations that are used in the constructive use of the
cryptosystem. One example is brute-force key recovery of symmetric ciphers
that simply performs encryption with many different keys. Another example is
hash-function collision search with the computationally most expensive part be-
ing computing hashes. An example in the cryptanalysis of asymmetric systems
is Pollard’s rho algorithm to solve the discrete logarithm problem (DLP). Again
the computationally most expensive part are the same or very similar operations
in the same mathematical structures that are involved in the legitimate use of
the DLP-based system.

In three very important points cryptanalytical computations are different
from cryptographic computations and all three make them even better suited for
GPUs. First they typically involve an arbitrary amount of data-level parallelism,
the same computations are carried out on huge amounts of independent data;
this is exactly the sort of computations that GPUs are best at. Second many
of these computations do not care about latency, they are purely throughput
oriented. Third there is no confidential data involved that needs to be protected,
one could say that the opposite is true, revealing the confidential data is the
target of the computation.

The most obvious applications of GPUs for cryptanalysis are attacks against
symmetric encryption and hash functions. Various commercial solutions for
password recovery already include GPU implementations to speed up the com-
putations. These tools typically try out many different passwords from a given
word list and either compare with given hash values or derive symmetric keys
from a list of known passphrases to recover the content of encrypted files.

The power of GPUs was also used by the winner of Engineyard’s SHA-1
programming contest: The task was to find an input to SHA-1 that has minimal
Hamming distance to a given hash value. Lange in [42] reports that code by
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Bernstein is able to compute more than 328 million hashes per second on an
NVIDIA GTX 295 graphics card. Each of these hashes required computation
of only one 64-byte block of input, so this corresponds to a throughput of more
than 167 Gbit/s. As a comparison, all four cores of a 2.4 GHz Intel Core 2 Quad
Q6600 CPU involved in the same computation computed 47 million hashes per
second. Also the SHA-3 candidates have been implemented on GPUs, password
recovery being the most obvious application. In [13] Bos and Stefan describe
implementations of all of the SHA-3 round-2 candidates on NVIDIA GT200
GPUs. The reported throughputs reach from 0.9 Gbit/s for Cubehash 16/1
up to 36.8 Gbit/s for Blake-32 and BMW-256 on one GPU of an NVIDIA
GTX 295 graphics card. Again to put this into perspective, on a recent CPU,
the Intel Core i7-2600K, hashing with Blake-32 takes 6.68 cycles/byte [11]; this
corresponds to a throughput of 16.29 Gbit/s.

These applications in password recovery are quite straightforward, but GPUs
have also been used for cryptanalysis of asymmetric systems. One of the most
famous problems closely related to the RSA cryptosystem is the factorization
of large numbers. A critical step inside the factorization of large RSA numbers
with the number-field sieve is the factorization of many smaller numbers using
the elliptic-curve factorization method (ECM). In [9] Bernstein, Chen, Cheng,
Lange and Yang describe an implementation of ECM for 280-bit numbers. This
implementation running on both GT200b GPUs of an NVIDIA GTX 295 graph-
ics card outperforms a state-of-the-art CPU implementation running on all 4
cores of an Intel Core 2 Quad Q9550 by a factor of more than 2.8. The GPU
implementation tries 400.7 curves per second, the CPU implementation 142.17
curves per second. A much higher ECM throughput for slightly smaller num-
bers is reported in [8]. For example for 210-bit numbers a GTX 295 graphics
card is reported to try 4928 curves per second. Although these numbers are
not as impressive as the speedups achieved by using GPUs in symmetric crypt-
analysis the results show that GPUs can also be used to speed up elliptic-curve
arithmetic.

This is confirmed for elliptic curves over binary fields in [7]. As part of a large
effort to solve Certicom’s elliptic-curve discrete-logarithm-problem (ECDLP)
challenge ECC2K-130 [15], [16], this paper presents an implementation of Pol-
lard’s rho algorithm for GT200b GPUs. On the two GPUs inside the GTX 295
graphics card this implementation is able to perform 63 million Pollard rho it-
erations per second. As a comparison, the CPU implementation computing the
same iteration function described in [6] performs 22.45 million iterations per
second on all 4 cores of an Intel Core 2 Extreme Q6850 CPU.

GPUs have also been considered for solving the discrete-logarithm problem
on elliptic curves over large prime fields. The implementation described in [17]
targets an ECDLP on a 109-bit prime curve and is reported to “have generated
about 320.000 points/second” on an NVIDIA 8800 GTS graphics card with a
G92 GPU. This probably means 320000 iterations per second, but it is unclear
what the exact performance of the implementation is.
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4 Malware detection on GPUs

Similar to cryptographic applications, malware-detection software is expected to
operate in the background with as little influence on the system’s performance
as possible. A large computational task of virus detection is pattern matching
of byte sequences found in files with known signatures of malware. This task is
highly parallel, so it is an application that can run at high speed on GPUs.

Seamans and Alexander describe an implementation of parallel virus signa-
ture matching for NVIDIA GPUs in [54]. The authors integrated this imple-
mentation into the ClamAV virus scanner [18] and compare the performance
of this implementation running on an NVIDIA GTX 7800 graphics card to the
original CPU implementation running on an unspecified 3-GHz Intel Pentium
4 CPU; the authors do not specify the number of CPU cores used for this com-
parison. The speedup obtained by running the pattern matching on the GPU
depends on the number of matches because matches need to be communicated
back to the CPU. If no matches are found the GPU implementation is 27 times
faster than the CPU implementation; this factor drops to 17 at a match rate of
1% and further to 11 at a match rate of 50%.

In [59] Vasiliadis and Ioannidis describe an implementation of virus-signature
pattern matching targeting more recent NVIDIA GPUs. Their implementation
filters out clean, unsuspicious regions, it is included as a preprocessing step
into the ClamAV [18] virus scanner. The authors achieve a 100-times higher
throughput with this approach running on an NVIDIA GTX295 graphics card
compared to the CPU-only virus scanner running on 1 core of an Intel Xeon
E5520 CPU. Compared to the CPU implementation running on 8 cores of 2
CPUs the speedup is still 10-fold.

The approach of using the GPU as a coprocessor for malware detection
is not purely academic. In December 2009 Kaspersky announced that they
incorporated an implementation of the “similarity service” for NVIDIA Tesla
cards into their infrastructure. The press release [38] does not give much detail
but claims a 360-times speedup of the GPU implementation running on an
NVIDIA Tesla S1070 compared to the a CPU implementation running on a
2.6 GHz Intel Core 2 Duo processor. This comparison does not give details
about the number of CPU cores used, it also does not say whether the speedup
is obtained from running the GPU code on one or all four GPUs included in the
Tesla S1070.

Signature matching is also one of the main performance bottlenecks of network-
intrusion-detection systems. Consequently GPUs can also be used to speed up
such systems. This was first described by Jacob and Brodley who use a tradi-
tional GPGPU approach targeting the NVIDIA 6800 GT graphics card in [35].
They conclude that with their GPU pattern-matching extension to the open-
source intrusion detection system Snort “there was no appreciable speedup in
packet processing under normal-load conditions”. A more efficient approach tar-
geting the NVIDIA 8600 GT graphics card is described in [58]. Vasiliadis, Anto-
natos, Polychronakis, Markatos, and Ioannidis present a GPU pattern-matching
extension of Snort that increases the overall Snort throughput capacity by a fac-
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tor of 2 compared to CPU-only Snort running on a 3.4 GHz Intel Pentium 4
processor. The most comprehensive solution for intrusion detection involving
GPUs to date is presented in [61]. Vasiliadis, Polychronakis, and Ioannidis
describe a Snort-based intrusion detection solution that exploits parallelism on
multiple levels. The system makes use of multiple GPUs and multiple CPU cores
and copes with a network throughput of 5.2 GBit per second. This performance
number was achieved on a system with two NVIDIA GTX 480 graphics cards
and two Intel Xeon E5520 CPUs. The pure pattern-matching step reaches a
peak performance of more than 70 GBit per second on the two graphics cards.

5 Malware targeting GPUs

GPUs can not only be used to accelerate malware detection, malware itself can
also use GPUs to hide from virus scanners. In [60] Vasiliadis, Polychronakis,
and Ioannidis describe an implementation of a malware unpacker running on
an NVIDIA GPU. The complete malware package consists of two parts, the
unpacker running on the GPU and the actual malware that runs on the CPU.
These two parts communicate through host memory mapped into the GPU’s
address space.

Unpackers are one of the most common techniques to hide malware from
scanners: The malware code is packed or encrypted in some way and gets un-
packed (decrypted) only when it is actually executed. The advantage from the
malware author’s perspective of using GPU code for the unpacker is twofold as it
offers better protection against detection by both static and dynamic malware-
detection systems. Static systems try different known unpacking techniques to
recover the original malware. This becomes harder if the computational power
of the GPU is used for computationally more expensive unpacking algorithms.
Dynamic unpacking tools use the unpacker that is included in the malware, for
example inside a sandbox or virtual machine. At least existing dynamic tools
do not support GPU binaries and would thus fail.

As a second step [60] also describes GPU-assisted run-time polymorphism
on the function level. The malware binary is never fully decrypted, only the
currently executed function resides in memory, when returning from a function
call the function is encrypted again and the next function context is decrypted.

The implementations are still just a proof of concept and there have been
no reports of real-world malware using the GPU to hide from scanners. Some
of the claimed advantages of using the GPU to hide malware can obviously be
addressed by malware-detection tools also using the GPU. Others will require
better tools for static and dynamic analysis of GPU code. It will be interesting
to see whether or how much GPUs become a new battlefield in the everlasting
fight between malware and malware detection.
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6 Accessing GPUs from web applications

Software becomes more and more web centric; programs such as office suites,
image-processing software, and games, which traditionally run directly on a
computer, are now implemented as applications running inside a web browser.
The most consistent implementation of this approach is Google’s Chromium OS,
an operating system that is designed to run a web browser as only application
– all other software is web applications running inside this browser.

As a consequence of higher demands for advanced graphics in web applica-
tions various technologies have been developed to let those applications access
the GPU. The most prominent three approaches are WebGL developed initially
by Mozilla and now by the Khronos group [39], Silverlight 5 developed by Mi-
crosoft [46], and Flash 11 developed by Adobe.

All of these approaches have in common that they expose the graphics driver
and hardware to software originating from the Internet and thus from typically
untrusted sources. The implications for security of this approach have so far
been discussed primarily for WebGL. In March 2011, version 1.0 of the specifi-
cation of WebGL was released by the Khronos group. Browsers supporting this
specification include Mozilla’s Firefox and Google’s Chrome. Only about two
months later Forshaw publicized an article [24] that describes several security
issues in these implementations and claims that these are actually caused by
design flaws in WebGL. One of these issues is the possibility to remotely exploit
vulnerabilities in the graphics driver to crash or freeze the system. Another one
is a cross-site timing attack that extracts image data processed on the GPU. A
follow-up article by Forshaw, Stone, and Jordon [25] describes an attack target-
ing the WebGL implementation of Firefox. In this attack a malicious website
can take screenshots of arbitrary applications running on the client computer.

Khronos has reacted to these articles in a WebGL security whitepaper [40]
that describes approaches to address the security issues. These approaches
can not all be implemented only on the browser side but need support on the
graphics-driver side.

Even without any vulnerabilities in the framework the computational power
of GPUs enables attacks that would otherwise be infeasible. For example the
JavaScript bitcoin miner of bitp.it has been discontinued because “Javascript is
just too slow to mine bitcoins” [1]. This would certainly be different with the
computing power of GPUs open to web applications. Mining bitcoins on the
GPU in the background while a user is visiting a website could on the one hand
be a legitimate new way of funding websites (if the user is asked for permission),
on the other hand it would most likely also be done silently and thus become
sort of a web Trojan.

The discussion about WebGL security and more general security issues re-
lated to exposing the GPU and the graphics driver to untrusted code from the
Internet is still ongoing. On the one hand WebGL, Silverlight 5, and Flash 11
are still very young technologies and maybe some of the vulnerabilities are just
teething troubles. On the other hand the concept of letting web applications
access the driver layer of a client’s operating system flies in the face of conven-
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tional wisdom that tells us that untrusted code should be kept as far away from
any critical parts of a system as possible. The future will have to show what
changes are required to browsers, operating systems, and drivers to deal with
current and future security vulnerabilities and whether it is actually possible to
establish these technologies without exposing their users to severe risks.
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