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Multidimensional Modeling

Torben Bach Pedersen, Aalborg University, Denmark, tinv.cs.aau.dk/ tbp

SYNONYMS
Dimensional modeling; Star schema modeling

DEFINITION
Multidimensional modelings the process of modeling the data in a universe of discaussey the modeling
constructs provided by a multidimensional data model. fBrienultidimensional models categorize data as
being eitherfactswith associated numerical measyresas being dimensiorithat characterize the facts and are
mostly textual. For example, in a retail busingesductsare sold tawustomerst certairtimesin certainamounts
and at certairprices A typical fact would be gurchase Typical measures would be the amount and price of
the purchase. Typical dimensions would be the location efpthrchase, the type of product being purchased,
and the time of the purchase. Queries then aggregate meeadues over ranges of dimension values to produce
results such as the total sales per month and product type.

HISTORICAL BACKGROUND

Multidimensional databases do not have their origin in lbase technology, but stem from multidimensional matriehtg,
which has been used for (manual) data analyses since thEte€entury. During the late 1960s, two companies, IRl and
Comshare, independently began the development of syskahkaiter turned into multidimensional database systerhe. T
IRI Express tool became very popular in the marketing aimab®a in the late 1970s and early 1980s; it later turned into
a market-leading OLAP tool and was acquired by Oracle. Coratly, the Comshare system developed into System W,
which was heavily used for financial planning, analysis, @mbrting during the 1980s.

A concurrent development started in the early 1980s in tka af so-called statistical data managemehich focused

on modeling and managing statistical data [1], initiallythim social science contexts such as census data. Many tampor
concepts of multidimensional modeling such as summalliga@énsuring correct aggregate query results for complex data
have their roots in this area. An overview is found in [15].

In 1991, Arbor was formed with the specific purpose of creata multiuser, multidimensional database server,” which
resulted in the Essbase system. Arbor, now Hyperion, latensed a basic version of Essbase to IBM for integratiam int
DB2. It was Arbor and Codd who in 1993 coined the term OLAP [2].

Another significant development in the early 1990s was theidof large data warehousks for storing and analyzing
massive amounts of enterprise data. Data warehouses &allypased on relational star schenmasnowflake schemas
an approach to implementing multidimensional databasieg) uslational database technology. The 1996 version of [5]
popularized the use of star schema modeling for data wassisou

From the mid 1990s and beyond, the introduction of the “daket operator [4] sparked a considerable research interest
the field of modeling multidimensional databases for useatia gdvarehouses and On-Line Analytical ProceséDigAP).

In 1998, Microsoft shipped its MS OLAP Server, the first ndiltiensional system aimed at the mass market. This has lead
to the current situation where multidimensional systemedrareasingly becoming commodity products that are shigpe
no extra cost together with leading relational databaseBys

A more in-depth coverage of the history of multidimensiodatabases is available in the literature [16]. Surveys of
multidimensional data models can also be found in the liteeg[12, 17].

SCIENTIFIC FUNDAMENTALS



First, an overview of the concept of a multidimensional ciggiven, then dimensions, facts, and measures are covered i
turn.

Data Cubes Data cubes provide true multidimensionality. They geneeapreadsheets to any number of dimensions. In
addition, hierarchies in dimensions and formulas are €ilats, built-in concepts, meaning that these are suppwaitedut
duplicating their definitions. A collection of related cibie commonly referred to asraultidimensional databaser a
multidimensional data warehouse

A dimensional cube for, e.g., CD sales can be obtained bydird) additional dimensions apart from just the album and
the city where the album was sold. The most pertinent exaofiaa additional dimension is a time dimension, but it is also
possible to include other dimensions, e.g., an artist dgioenthat describes the artists associated with albums.cluiba,

the combinations of a dimension value from each dimensidineléhecellsof the cube. The actual sales counts are stored
in the corresponding cells.

In a cube, dimensions are first-class concepts with assdaiimains, meaning that the addition of new dimension gdtue
easily handled. Although the term “cube” implies 3 dimensia cube can have any number of dimensions. It turns out that
most real-world cubes have 4-12 dimensions [5, 16]. Altlothgre is no theoretical limit to the number of dimensions,
current tools often experience performance problems wieenamber of dimensions is more than 10-15. To better suggest
the high number of dimensions, the term “hypercube” is ofteed instead of “cube.”

Figure lillustrates a three-dimensional cube based onuimdar of CD sales of two particular albums in Aalborg, Dermar
and New York, USA, for 2006 and 2007. The cube then contailes saunts for two cities, two albums, and two years.
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Figure 1: Sales Data Cube

Depending on the specific application, a highly varying patage of the cells in a cube are non-empty, meaning thascube
range fromsparseto dense Cubes tend to become increasingly sparse with increagimgngionality and with increasingly
finer granularities of the dimension values.

A non-empty cell is called gact The example has a fact for each combination of time, albunth city where at least one
sale was made. A fact has associated with it a numberaaisuresThese are numerical values that “live” within the cells.
In our case, there is only one measure, the sales count.

Generally, only 2 or 3 dimensions may be viewed at the same, tatthough for low-cardinality dimensions, up to 4
dimensions can be shown by nesting one dimension withinhanain the axes. Thus, the dimensionality of a cube is
reduced at query time hyrojectingit down to 2 or 3 dimensions viaggregatiorof the measure values across the projected-
out dimensions. For example, if the user wants to view justday City and Time, she aggregates over the entire dimensio
that characterizes the sales by Album for each combinafi@itg and Time.

An important goal of multidimensional modeling is to “prdeias much context as possible for the facts” [5]. The concept
of dimensioris the central means of providing this context. One consecgief this is a different view odata redundancy
than in relational databases. In multidimensional datedasontrolled redundancy is generally considered apjatepas
long as it considerably increases the information valubefdata. One reason to allow redundancy is that multidinoeasi
data is ofterderivedfrom other data sources, e.g., data from a transactioratlaahl system, rather than being “born” as
multidimensional data, meaning that updates can moreydasihandled [5]. However, there is usually no redundancy in
the facts, only in the dimensions.

Having introduced the cube, its principal elements, dinerss facts, and measures, are now described in more detail.
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Dimensions The notion of a dimension is an essential and distinguiskimgcept for multidimensional databases.
Dimensions are used for two purposes: seéectionof data and thgroupingof data at a desired level of detail.

A dimensionis organized into a containment-like hierarcbyposed of a number t@vels each of which represents a level
of detail that is of interest to the analyses to be perfornigt instances of the dimension are typically caétiension
values Each such value belongs to a particular level.

In some cases, it is advantageous for a dimension tomaltiple hierarchieglefined on it. For example, a Time dimension
may have hierarchies for botfiscal Yearand Calendar Yeardefined on it. Multiple hierarchies share one or more
common lowest level(s), e.g., Day and Month, and then grbapd into multiple levels higher up, e.g., Fiscal Quarter an
Calendar Quarter to allow for easy reference to several whgsouping. Most multidimensional models allow multiple
hierarchies. A dimension hierarchy is defined in the metadathe cube, or the metadata of the multidimensional dagba
if dimensions can be shared.

In Figure 2, the schema and instances of a sampdationdimension capturing the cities where CDs are sold are shown.
The Location dimension has three levels, the City level pélire lowest. City level values are grouped itountrylevel

T / T \
Country Den|mark /U/SA\
City Aalborg New York Tucson  Washington DC

Figure 2: Schema and Instance for the Location Dimension

values, i.e., countries. For example, Aalborg is in Denma@tle T (“top”) level representsll of the dimension, i.e., every
dimension value is part of thé (“top”) value.

In some multidimensional models, a level may have assatiatdh it a number oflevel propertieghat are used to hold
simple, non-hierarchical information. For example, theadion of an album can be a level property in the Album level of
the Music dimension. This information could also be captwsing an extra Duration dimension. Using the level propert
has the effect of not increasing the dimensionality of thigecu

Unlike the linear spaces used in matrix algebra, there ig&jlg no ordering and/or distance metric on the dimension
values in multidimensional models. Rather, the only ormgiis the containment of lower-level values in higher-level
values. However, for some dimensions, e.g., the Time dirnanan ordering of the dimension values is available and is
used for calculating cumulative information such as “tstles in year to date.”

Most models require dimension hierarchies to fdralanced trees This means that the dimension hierarchy must have
uniform height everywhere, e.g., all departments, evenlgmas, must be subdivided into project groups. Additibnal
direct links between dimension values can only go betweenddiate parent-child levels, and not jump two or more levels
For example, all cities are first grouped into states and ithtercountries, cities cannot be grouped directly undentoes

(as is the case in Denmark which has no states). Finally, mactiop value has precisely one parent, e.g., a product must
belong to exactly one product group. Below, the relaxatioihese constraints is discussed.

Facts Facts are the objects that representghbjectof the desired analyses, i.e., the interesting “thing,” \werg or
process, that is to be analyzed to better understand itwioeha

In most multidimensional data models, the factsiarplicitly defined by their combination of dimension values. If a non-
empty cell exists for a particular combination, a fact exigitherwise, no fact exists. (Some other models treat &ts
first-class objects with a separate identity [12].) Nextsimoultidimensional models require that each fact be mapped
precisely one dimension value at the lowest level in eactedsion. Other models relax this requirement [12].

A fact has a certaigranularity, determined by the levels from which its combination of disien values are drawn. For
example, the fact granularity in our example cube is “YeaAllyum by City.” Granularities consisting of higher-level o
lower-level dimension levels than a given granularity, €¥ear by Alboum Genre by City” or “Day by Album by City” for
our example, are said to lsearseror finer than the given granularity, respectively.

It is commonplace to distinguish among three kinds of faetgentfacts, statefacts, andcumulative snapshdacts [5].
Event facts (at least at the finest granularity) typicallydel@vents in the real worldneaning that a unique instance, e.g., a
particular sale of a given (particular physical instanca)gfroduct in a given store at a given time, of the overall-vealld
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process that is captured, e.g., sales for a supermarket,deaepresented by one fact. Examples of event facts ieclud
sales, clicks on web pages, and movement of goods in and ¢ugtadf warehouses (flow).

A snapshot fact models trstateof a given process at a given point in time. Typical exampfesapshot facts include the
inventory levels in stores and warehouses, and the numheyes$ using a web site. For snapshot facts, the same physical
object, e.g., a specific physical instance of a can of bears shelf, with which the captured real-world process, e.g.,
inventory management, is concerned, may be “measuredVatadime points, meaning that data related to that pddicu
physical object will occur in several facts at differentémoints. This is unlike event facts, where a specific physicgct

such as a particular instance of a can of beans can only besoé] and will thus only occur in one fact.

Cumulative snapshot facts are used to handle informationtabprocess up to a certain point in tim&or example, the
total sales in the year to date may be considered as a fach thkeotal sales up to and including the current month this
year can be easily compared to the figure for the correspgmdamth last year.

Often, all three types of facts can be found in a given datehause, as they support complementary classes of analyses.
Indeed, the same base data, e.g., the movement of goodsdalawarehouse, may often find its way into three cubes of
different types, e.g., warehouse flow, warehouse invengony warehouse flow in year-to-date.

Measures A measurenas two components: raumerical propertyof a fact, e.g., the sales price or profit, anfbemula
(most often a simple aggregation function such as SUM) thiate used to combine several measure values into one. In a
multidimensional database, measures generally représeptoperties of the chosen facts that the users want tg, sy,

with the purpose of optimizing them.

Measures then take on different values for different comtidms of dimension values. The property and formula arseho
such that the value of a measure is meaningful for all continina of aggregation levels. The formula is defined in the
metadata and thus not replicated as in the spreadsheet kexakhpst multidimensional data models provide the built-in
concept of measures, but a few models do not. In these matiwlsnsion values are used for computations instead [12].

It is important to distinguish among three classes of measuramelhadditive semi-additiveandnon-additivemeasures,

as these behave quite differently in computations.

Additive measure values can be summed meaningfully alogglanension. For example, it makes sense to add the total
sales over Album, Location, and Time, as this causes noawarhong the real-world phenomena that caused the individua
values. Additive measures occur for any kind of fact.

Semi-additive measure values cannot be summed along onererahthe dimensions, most often the Time dimension.
Semi-additive measures generally occur when the fact igp&f $napshot or cumulative snapshot. For example, it ddes no
make sense to sum inventory levels across time, as the saer@any item, e.g., a specific physical instance of an album,
may be counted several times, but it is meaningful to surmitorg levels across albums and stores.

Non-additive measure values cannot be summed along anydiame usually because of the chosen formula. For example,
this occurs when averages for lower-level values cannoubareed into averages for higher-level values. Non-additive
measures can occur for any kind of fact.

The Modeling Process Now, the process to be carried out when doing multidimeradiorodeling is covered. One
difference from “ordinary” data modeling is that the muitiensional modeler should not try to include all the avddalata
and all their relationships in the model, but only thosepwaittich are essential “drivers” of the business. Anothdediice

is that redundancy may be ok (in a few, well-chosen placesjridducing redundancy makes the model more intuitive for
the user. For example, time-related information may beestan both a Calendar time dimension and a Fiscal Year time
dimension, or specific customer info may be present both irragm-oriented Customer dimension or a group-oriented
Demographics dimension.

Kimball [5, 6] advocates a four-step process when doingidiniensional modeling.

Choose the business process(es) to model
2.Choose the grain of the business process
3.Choose the dimensions
4.Choose the measures

Step 1 refers to the facts that not all business processesmayually important for the business. For example, in a
supermarket, there are business processesafesandpurchasesbut the sales process is probably the one with the largest
potential for increasing profits, and should thus be piiged. Step 2 says that data should be captured at the rigint gra
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or granularity, compared to the analysis needs. For exarfiptdvidual sales items” may be captured, or perhaps lislyg
aggregated) “total sales per product per store per day” neagrécise enough, enabling performance and storage gains.
Step 3 then goes on to refine the schema of each part of theigiaia complete dimension with levels and attributes. For
the example above, a Store, a Product, and a Time dimenga@pacified. Finally, Step 4 chooses the numerical measures
to capture for each combination of dimension values, fomg{a dollar sales, unit sales, dollar cost, profit, etc.

When doing multidimensional modeling “in the large” for nyappes of data (many cubes) and several user groups, the most
important task is to ensure that analysis results are cabfeacross cubes, i.e., that the cubes are somehow “cditegati
This is ensured by (as far as possible) picking dimensiomsmag@asures from a set of common so-called “conformed”
dimensions and measures [5, 6] rather than “re-defininihg"¢same concept, e.g., product, each time it occurs in a new
context. New cubes can then be put onto the common “DW bugih@ljused together. This sounds easier than it is, since
it often requires quite a struggle with different parts ofcaganisation to define for example a common Product dimensio
that can be used by everyone.

Complex Multidimensional Modeling Multidimensional data modeling is not always as simple axdieed above.

A complexity that is almost always present is that of harglthangein the dimension values. Kimball [5, 6] calls
this the problem ofslowly changing dimensions For example, customer addresses, product category naames,
the way products are categorized may change over time. Thi ime handled to ensure correct results both for
current and historical data. Kimball advises three typesloWly changing dimensions: Type 1 (overwrite previous
value with current value), Type 2 (keep versions of dimemsiows), and Type 3 (keep previous and current value in
different columns). Finally, the concept ofinidimensiong6] advocates the separation of relatively static infoliorat
(customer name, etc) and dynamic information (income, rarmbkids, etc.) into separate dimensions. Please read the
Data Warehouse Maintenance, Evolution, and Versiorimtgy for details on slowly changing dimensions.

The traditional multidimensional data models and impletagon techniques assume that the data being modeled & quit
regular. Specifically, it is typically assumed that all &aotap (directly) to dimension values at the lowest levelshef t
dimensions and only to one value in each dimension. Further,assumed that the dimension hierarchies are simply
balanced trees. In many cases, this is adequate to suppatesired applications satisfactorily. However, situagioccur
where these assumptions fail.

In such situations, the support offered by “standard” mdirttiensional models and systems is inadequate, and moreaati/a
concepts and techniques are called for. Now, the impactedudar hierarchies on the performance enhancing techniqu
known as patrtial, or practical, pre-computation, is rewddw

Complex multidimensional data are problematic as they atesammarizable. Intuitively, data summarizablef the
results of higher-level aggregates can be derived fromedhelts of lower-level aggregates. Without summarizapilisers

will either get wrong query results, if they base them on Ieleeel results, or the system cannot use pre-computedriowe
level results to compute higher-level results. When it idorger possible to pre-compute, store, and subsequentbere
lower-level results for the computation of higher-levedults, aggregates must instead be calculated directly liiasa data,
which leads to considerable increases in computation#.cos

It has been shown that summarizability requires that aggeduinctions be distributive and that the ordering of digiem
values bestrict, onto, andcovering[7, 12]. Informally, a dimension hierarchy &rict if no dimension value has more
than one (direct) parenpntoif the hierarchy is balanced, amdveringif no containment path skips a level. Intuitively,
this means that dimension hierarchies must be balancesl tfdhis is not the case, some lower-level values will baesit
double-counted or not counted when reusing intermediateyqesults.

i T
/\
USA Den\mark Finance Logistics Research
25
/ “,“"

/// /
California New York

Berkeley New York Aalborg Copenhagen

\ DKFinance Testcenter DKLogistics

Figure 3: Irregular Dimensions

Figure 3 contains two dimension hierarchies: a Locatioman@y including a State level, and the hierarchy for the
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Organization dimension for some company. The hierarchyh#oléft is non-covering as Denmark has no states. If
aggregates at the State level are pre-computed, there evillbbvalues for Aalborg and Copenhagen, meaning that facts
mapped to these cities will not be counted when computingirgtotals.

To the right in figure, the hierarchy is non-onto because thgeBrch department has no further subdivision. If aggesgat
are materialized at the lowest level, facts mapping diydotthe Research department will not be counted. The hieydsc
also non-strict as the TestCenter is shared between Fiauckeogistics. If aggregates are materialized at the milests,

data for TestCenter will be counted twice, for both Finanee hogistics, which is, in fact, what is desired at this level
However, this means that data will be double-counted iféteggyregates are then combined into the grand total.

There exists several design solutions that aims to solveithielems associated with irregular hierarchies by altgtire
dimension schemas or hierarchies [8, 11].

KEY APPLICATIONS*

Multidimensional data models have three important appboaareas within data analysis. First, multidimensionabels
are used imata warehousingBriefly, a data warehouse is a large repository of integrdéta obtained from several sources
in an enterprise for the specific purpose of data analysigic@ily, this data is modeled as being multidimensionathés
offers good support for data analyses.

Second, multidimensional models lie at the cor®ofLine Analytical ProcessinGDLAP) systems. Such systems provide
fast answers to queries that aggregate large amounts aflleatdetail data to find overall trends, and they presentehelts

in a multidimensional fashion. Consequently, a multidisienal data organization has proven to be particularly sugted

for OLAP. The widely acknowledged “OLAP Report” company [gpvides an “acid test” for OLAP by defining OLAP
as “Fast Analysis of Shared Multidimensional InformatigfRASMI). In this definition, “Fast” refers to the expectatio
of response times that are within a few seconds, “Analy®$8rs to the need for easy-to-use support for business logic
and statistical analyses, “Shared” suggests a need forigemechanisms and concurrency control for multiple users
“Multidimensional” refers to the expectation that a datadmlowith hierarchical dimensions is used, and “Information
suggests that the system must be able to manage all thegdglaita and derived information.

Third, multidimensional data are increasingly becomirglihsis fodata mining where the aim is to (semi-) automatically
discover unknown knowledge in large databases. Indeedyristout that multidimensionally organized data are also
particularly well suited for the queries posed by data ngrtools.

FUTURE DIRECTIONS

A pressing need for multidimensional modeling is the aspéstandardization, i.e., agreeing on a common data model,
a graphical notation for it, and support by tools. Also, éetntegration between ordinary “operational modeling”
and multidimensional modeling is needed. Another futuiseaech line is the modeling of important system aspects
such as security, quality, requirements, evolution, andraperability [14]. This will be extended to also cover the
modeling of business intelligence applications such aa dahing, patterns, Extraction-Transformation-Load{gdL),
What-if Analysis and Business Process Modeling [14]. Finally, an imporiaetof research will cover the modeling of
more (complex) types of data, including integrating muttidnsional data with text data, semistructured/XML/wetada
and spatial/spatio-temporal/mobile data [13].

CROSS REFERENCE*
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