Skip to main content

Three-Dimensional GIS and Geological Applications

  • Reference work entry
  • First Online:
  • 15 Accesses

Synonyms

Geoscientific information system; Spatial information system

Definition

An information system for the in−/output, modeling, management, processing, analyzing and visualization of geoscientific data including geo-referenced three-dimensional geometric, topological and attribute data. The three-dimensional geometric data may consist of points/vertices (x,y,z-coordinates), curves, surfaces and polyhedra, respectively. The topological data may consist of nodes, edges, faces and solids, respectively. Typical attribute data are descriptions of geological strata, i.e., properties of strata such as “geological age,” “soil type,” “main components of the stratum” etc.

The implementation of a three-dimensional GIS provides data types, spatial access structures including geometric/topological algorithms and a spatial or visual query language for the modeling, management and analysis of geo-referenced three-dimensional data.

Historical Background

Three-dimensional GIS have two roots in the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Abdul-Rahman A, Zlatanova S, Coors V. Innovations in 3D geoinformation systems, lecture notes in geoinformation and cartography. Heidelberg: Springer; 2006.

    Book  Google Scholar 

  2. Balovnev O, Bode T, Breunig M, Cremers AB, Müller W, Pogodaev G, Shumilov S, Siebeck J, Siehl A, Thomsen A. The story of the GeoToolKit - an object-oriented geodatabase kernel system. Geoinformatica. 2004;8(1):5–47.

    Article  Google Scholar 

  3. Beckmann N., Kriegel H-P, Schneider R, Seeger B. The R*-tree: an efficient and robust access method for points and rectangles. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1990. p. 322–31.

    Google Scholar 

  4. Brisson E. Representing geometric structures in d dimensions: topology and order. In: Proceedings of the 5th Annual Symposium on Computational Geometry; 1989. p. 218–27.

    Google Scholar 

  5. V. and Coors A (eds.). Zipf 3D–Geoinformations systeme, Grundlagen und Anwendungen. Wichmann – Hüthig: Heidelberg; 2004.

    Google Scholar 

  6. GOCAD. http://www.gocad.org.

  7. Götze HJ, Lahmeyer B. Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics. 1988;53(8):1096–108.

    Article  Google Scholar 

  8. Güting RH. An introduction to spatial database systems. VLDB J. 1994;3(4):357–99.

    Article  Google Scholar 

  9. Guttman A. R-Trees: a dynamic index structure for spatial searching. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1984. p. 47–57.

    Google Scholar 

  10. Lienhardt P. Subdivision of n-dimensional spaces and n-dimensional generalized maps. In: Proceedings of the 5th Annual Symposium on Computational Geometry; 1989. p. 228–36.

    Google Scholar 

  11. Lienhardt P. N-dimensional generalized combinatorial maps and cellular quasi-manifolds. J Comp Geom Appl. 1994;4(3):275–324.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lévy B , Mallet J-L. Discrete smooth interpolation: constrained discrete fairing for arbitrary meshes, ISA-GOCAD (Inria Lorraine/CNRS), ENSG. Vandoeuvre Nancy. http://www.earthdecision.com/news/white_papers/DSI.pdf.

  13. Mallet JL. Geomodelling. New York: Oxford University Press; 2002.

    Google Scholar 

  14. OGC. http://www.opengeospatial.org.

  15. Pigot S. A topological model for a 3D spatial information system. In: Proceedings of the 5th International Symposium on Spatial Data Handling; 1992. p. 344–60.

    Google Scholar 

  16. Raper J, editor. Three dimensional applications in geographical information systems. London: Taylor & Francis; 1989.

    Google Scholar 

  17. Samet H. The design and analysis of spatial data structures. Reading: Addison-Wesley; 1990.

    Google Scholar 

  18. Schaeben H, Apel M, vd. Boogart G, Kroner U. GIS 2D, 3D, 4D, nD. Informatik-Spektrum. 2003;26(3): 173–179.

    Google Scholar 

  19. Siehl A. Construction of geological maps based on digital spatial models. Geol Jb A. 1988;104:253–61.

    Google Scholar 

  20. Turner AK, editor. Three-dimensional modeling with geoscientific information systems. Dordrecht: Kluwer Academic; 1991.

    Google Scholar 

  21. P, van Oosterom S, Zlatanova F, Penninga E, editors. Fendel Advances in 3D geoinformation systems, lecture notes in geoinformation and cartography. Heidelberg: Springer; 2007.

    Google Scholar 

  22. Vinken R. Digital geoscientific maps - a research project of the DFG. In: Proceedings of the International Colloquium at Dinkelsbühl, Geolog. Jahrbuch A104; 1988. p. 7–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Breunig .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Breunig, M. (2018). Three-Dimensional GIS and Geological Applications. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_426

Download citation

Publish with us

Policies and ethics