Skip to main content

Pedestrian Interaction in Tracking: The Social Force Model and Global Optimization Methods

  • Chapter
  • First Online:
Book cover Modeling, Simulation and Visual Analysis of Crowds

Part of the book series: The International Series in Video Computing ((VICO,volume 11))

Abstract

Multiple people tracking consists in detecting the subjects at each frame and matching these detections to obtain full trajectories. In semi-crowded environments, pedestrians often occlude each other, making tracking a challenging task. Tracking methods mostly work with the assumption that each pedestrian moves independently unaware of the objects or the other pedestrians around it. In the real world though, it is clear that when walking in a crowd, pedestrians try to avoid collisions, keep a close distance to a group of friends or avoid static obstacles in the scene. In this chapter, we present an overview of methods that include pedestrian interaction in a tracking framework. This interaction can be expressed in two ways: first, including social and grouping behavior as a physical model within the tracking system, and second, using a global optimization scheme which takes into account all trajectories and all frames to solve the data association problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Ali, S., Shah, M.: Floor fields for tracking in high density crowded scenes. In: ECCV, Marseille, France (2008)

    Google Scholar 

  3. Andriyenko, A., Schindler, K.: Globally optimal multi-target tracking on an hexagonal lattice. In: ECCV, Crete, Greece (2010)

    Google Scholar 

  4. Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: CVPR, Colorado Springs, USA (2011)

    Google Scholar 

  5. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: CVPR, Colorado Springs, USA (2011)

    Google Scholar 

  6. Berclaz, J., Fleuret, F., Fua, P.: Robust people tracking with global trajectory optimization. In: CVPR, New York, USA (2006)

    Google Scholar 

  7. Berclaz, J., Fleuret, F., Türetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. In: TPAMI (2011)

    Google Scholar 

  8. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  9. Breitenstein, M., Reichlin, F., Leibe, B., Koller-Meier, E., van Gool, L.: Robust tracking-by-detection using a detector confidence particle filter. In: ICCV, Kyoto, Japan (2009)

    Google Scholar 

  10. Choi, W., Savarese, S.: Multiple target tracking in world coordinate with single, minimally calibrated camera. In: ECCV (2010)

    Google Scholar 

  11. Dantzig, G.: Linear Programming and Extensions. Princeton University Press, Princenton (1963)

    MATH  Google Scholar 

  12. Ferryman, J.: Pets 2009 dataset: Proc. 11th IEEE Int’l Workshop performance and evaluation of tracking and surveillance, http:/pets2009.net (2011)

  13. Gall, J., Yao, A., Razavi, N., van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. In: TPAMI (2011)

    Google Scholar 

  14. Ge, W., Collins, R., Ruback, B.: Automatically detecting the small group structure of a crowd. In: WACV, Snowbird, Utah (2009)

    Google Scholar 

  15. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282 (1995)

    Article  Google Scholar 

  16. Jiang, H., Fels, S., Little, J.: A linear programming approach for multiple object tracking. In: CVPR, Minneapolis, Minnesota (2007)

    Google Scholar 

  17. Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation for face, text and vehicle detection and tracking in video: data, metrics, and protocol. TPAMI (2009)

    Google Scholar 

  18. Kaucic, R., Perera, A., Brooksby, G., Kaufhold, J., Hoogs, A.: A unified framework for tracking through occlusions and across sensor gaps. In: CVPR, San Diego, USA (2005)

    Google Scholar 

  19. Khan, Z., Balch, T., Dellaert, F.: Mcmc-based particle filtering for tracking a variable number of interacting targets. In: TPAMI (2005)

    Google Scholar 

  20. Leal-Taixé, L., Heydt, M., Rosenhahn, A., Rosenhahn, B.: Automatic tracking of swimming microorganisms in 4d digital in-line holography data. In: IEEE Workshop on Motion and Video Computing (WMVC), Snowbird, Utah (2009)

    Google Scholar 

  21. Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.: Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker. In: ICCV Workshops. 1st Workshop on Modeling, Simulation and Visual Analysis of Large Crowds, Barcelona, Spain (2011)

    Google Scholar 

  22. Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.: Branch-and-price global optimization for multi-view multi-object tracking. In: CVPR, Providence, USA (2012)

    Google Scholar 

  23. Leibe, B., Schindler, K., Cornelis, N., van Gool, L.: Coupled detection and tracking from static cameras and moving vehicles. TPAMI (2008)

    Google Scholar 

  24. Luber, M., Stork, J., Tipaldi, G., Arras, K.: People tracking with human motion predictions from social forces. In: ICRA, Anchorage, USA (2010)

    Google Scholar 

  25. Makhorin, A.: Gnu linear programming kit (glpk). http://www.gnu.org/software/glpk/ (2010)

  26. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR, Miami, USA (2009)

    Google Scholar 

  27. Nillius, P., Sullivan, J., Carlsson, S.: Multi-target tracking – linking identities using bayesian network inference. In: CVPR (2006)

    Google Scholar 

  28. Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density crowd simulation. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Prague, Czech Republic (2007)

    Google Scholar 

  29. Pellegrini, S., Ess, A., van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: ECCV (2010)

    Google Scholar 

  30. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: ICCV (2009)

    Google Scholar 

  31. Pirsiavash, H., Ramanan, D., Fowlkes, C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR (2011)

    Google Scholar 

  32. Rodriguez, M., Sivic, J., Laptev, I., Audibert, J.: Data-driven crowd analysis in videos. In: ICCV (2011)

    Google Scholar 

  33. Scovanner, P., Tappen, M.: Learning pedestrian dynamics from the real world. In: ICCV (2009)

    Google Scholar 

  34. Shu, G., Dehghan, A., Oreifej, O., Hand, E., Shah, M.: Part-based multiple-person tracking with partial occlusion handling. In: CVPR (2012)

    Google Scholar 

  35. Suurballe, J.: Disjoint paths in a network. Networks 4, 125–145 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet part detectors. In: IJCV 75(2) (2007)

    Google Scholar 

  37. Wu, Z., Kunz, T., Betke, M.: Efficient track linking methods for track graphs using network-flow and set-cover techniques. In: CVPR (2011)

    Google Scholar 

  38. Yamaguchi, K., Berg, A., Ortiz, L., Berg, T.: Who are you with and where are you going? In: CVPR (2011)

    Google Scholar 

  39. Yang, M., Yu, T., Wu, Y.: Game-theoretic multiple target tracking. In: ICCV (2007)

    Google Scholar 

  40. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the German Research Foundation, DFG projects RO 2497/7-1 and RO 2524/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Leal-Taixé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leal-Taixé, L., Rosenhahn, B. (2013). Pedestrian Interaction in Tracking: The Social Force Model and Global Optimization Methods. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds) Modeling, Simulation and Visual Analysis of Crowds. The International Series in Video Computing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8483-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8483-7_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8482-0

  • Online ISBN: 978-1-4614-8483-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics