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Abstract Video imagery based crowd analysis for population profiling and density
estimation in public spaces can be a highly effective tool for establishing global sit-
uational awareness. Different strategies such as counting by detection and counting
by clustering have been proposed, and more recently counting by regression has
also gained considerable interest due to its feasibility in handling relatively more
crowded environments. However, the scenarios studied by existing regression-based
techniques are rather diverse in terms of both evaluation data and experimental set-
tings. It can be difficult to compare them in order to draw general conclusions on
their effectiveness. In addition, contributions of individual components in the pro-
cessing pipeline such as feature extraction and perspective normalisation remain
unclear and less well studied. This study describes and compares the state-of-the-art
methods for video imagery based crowd counting, and provides a systematic evalu-
ation of different methods using the same protocol. Moreover, we evaluate critically
each processing component to identify potential bottlenecks encountered by exist-
ing techniques. Extensive evaluation is conducted on three public scene datasets,
including a new shopping centre environment with labelled ground truth for valida-
tion. Our study reveals new insights into solving the problem of crowd analysis for
population profiling and density estimation, and considers open questions for future
studies.
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1 Introduction

The analysis of crowd dynamics and behaviours is a topic of great interest in soci-
ology, psychology, safety, and computer vision. In the context of computer vision,
many interesting analyses can be achieved [91], e.g.to learn the crowd flow evolve-
ment and floor fields [3], to track an individual in a crowd [65], to segment a crowd
into semantic regions [51, 93], to detect salient regions in a crowd [53], or to recog-
nise anomalous crowd patterns [41, 60]. A fundamental task in crowd analysis that
enjoys wide spectrum of applications is to automatically count the number of people
in crowd and profile their behaviours over time in a given region.

One of the key application areas of crowd counting is public safety and security.
Tragedies involving large crowds often occur, especially during religious, politi-
cal, and musical events [35]. For instance, a crowd crush at the 2010 Love Parade
music festival in Germany, caused a death of 21 people and many more injured
(see Fig. 1). And more recently a stampede happened near the Sabarimala Tem-
ple, India with death toll crosses hundred. These tragedies could be avoided, if a
safer site design took place and a more effective crowd control was enforced. Video
imagery based crowd counting can be a highly beneficial tool for early detection
of over-crowded situations to facilitate more effective crowd control. It also helps
in profiling the population movement over time and across spaces for establishing
global situational awareness, developing long-term crowd management strategies,
and designing evacuation routes of public spaces.

In retail sectors, crowd counting can be an intelligence gathering tool [76] to
provide valuable indication about the interest of customers through quantifying the
number of individuals browsing a product, the queue lengths, or the percentage of
store’s visitors at different times of the day. The information gathered can then be
used to optimise the staffing need, floor plan, and product display.

Video imagery based crowd counting for population profiling remains a non-
trivial problem in crowded scenes. Specifically, frequent occlusion between pedes-
trians and background clutter render a direct implementation of standard object
segmentation and tracking infeasible. The problem is further compounded by vi-
sual ambiguities caused by varying individual appearances and body articulations,
and group dynamics. External factors such as camera viewing angle, illumination
changes, and distance from the region of interest also pose great challenges to the
counting problem.

Fig. 1 Example of surveillance footage frames captured during the Love Parade music festival in
Germany, 2010, before the fatalities occurred. Images from www.dokumentation-loveparade.com/.
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Various approaches for crowd counting have been proposed. A popular method is
counting by detection [24], which detects instances of pedestrian through scanning
the image space using a detector trained with local image features. An alternative
approach is counting by clustering [7, 63], which assumes a crowd to be composed
of individual entities, each of which has unique yet coherent motion patterns that
can be clustered to approximate the number of people. Another method is inspired
by the capability of human beings, in determining density at a glance without nu-
merating the number of pedestrians in it. This approach is known as counting by
regression [12, 22], which counts people in crowd by learning a direct mapping
from low-level imagery features to crowd density.

In this study, we provide a comprehensive review, comparative evaluation, and
critical analysis on computer vision techniques for crowd counting, also known
as crowd density estimation, and discuss crowding counting as a tool for popula-
tion profiling. We first present a structured critical overview of different approaches
to crowd counting reported in the literature, including pedestrian detection, coher-
ent motion clustering, and regression-based learning. In particular, we focus on the
regression-based techniques that have gain considerable interest lately due to their
effectiveness in handling more crowded scenes. We then provide analysis of differ-
ent regression-based approaches to crowd counting by systematic comparative eval-
uation, which gives new insights into contributions of key constituent components
and potential bottlenecks in algorithm design. To facilitate our experiments, we also
introduce a new shopping mall dataset of over 60,000 pedestrians labelled in 2000
video frames, i.e.the largest dataset to date in terms of the number of pedestrian in-
stances captured in realistic crowded public space scenario for crowd counting and
profiling research.

2 Survey of the State of the Art

The taxonomy of crowd counting algorithms can be generally grouped into three
paradigms, namely counting by detection, clustering, and regression. In this section,
we provide an overview on each of the paradigms, with a particular focus on the
counting by regression strategy that has shown to be effective on more crowded
environments.

2.1 Counting by Detection

The following is a concise account of pedestrian detection with emphasise on count-
ing application. A more detailed treatment on this topic can be found in [24].

Monolithic detection: The most intuitive and direct approach to numerate the num-
ber of people in a scene is through detection. A typical pedestrian detection ap-
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Figure 9. Example detections of our approach on difficult crowded scenes from the test set (at the EER). Correct detections are shown in
yellow, false positives in red. (bottom row): Examples for false positives. (left) true false positive; (middle left): correct detection, but not
annotated; (middle right and right): bounding boxes estimated too small.
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(a)

adopted. A preliminary classifier is trained on the ini-
tial training set, then used to predict the class categories
of a large set of patches randomly sampled again from
the 399 head-should-free images. False alarms are col-
lected and added to the negative training set for the next
iteration of training.

4.3 Testing

Three experiments are conducted. The first two ex-
periments are designed to evaluate the performances of
the MID-based foreground segmentation module and
the HOG based head-shoulder detection module sepa-
rately. Then, the combination of the two modules is
tested in the third experiment.

In the first experiment, the MID-based foreground
segmentation algorithm is tested by a real video (dura-
tion:12min) taken from a bus station in the rush hour.
Figure 2 (a), (d) and (g) show some selected frames in
this video; (b), (e) and (h) show the segmented MBs
whose MID series satisfy temporal uniform distribu-
tion; and (c), (f) and (i) are the results of the Grid-
ing Method. It can be seen that in most cases, our
method can exactly detect the crowed areas, no matter
how crowded it is.
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Figure 2. MID based foreground segmen-
tation results in a real scene video.

The second experiment compares performances of
the HOG feature and another two popular features :
Haar feature [11] and SIFT descriptor [5] for head-
shoulder detection. All classifiers are trained on the
initial training set (No bootstrapping process) by Ad-
aBoost and evaluated on the testing set (About 331,000
random patches are sampled for the negative set). Re-
sults are shown in Figure 3 (a). Apparently, the HOG
feature performs much better than the other two fea-
tures. Dalal [1] mentioned that signed gradients (In
0o - 360o) decreases the performance of HOG feature
in pedestrian detection. But as shown in Figure 3 (a),
signed gradients performs better than unsigned gradi-
ents (In 0o - 180o) in head-shoulder detection.

Figure 3 (b) shows that the bootstrapping process can
decrease the missing rate from about 40% to about 23%
at 10−4 false positive per window. Figure 4 shows some
detection results of our final detector on some surveil-
lance images or daily-life photos.

Figure 4. Some detection results of the fi-
nal head-shoulder detector

In the third experiment, the whole proposed method
of estimating the number of people in crowded scenes
is tested by a real video taken in another bus station.
Figure 5 shows the detection results: (i)-(vi) are seg-
mented foreground maps of some selected frames, blue
squares in (a)-(f) are the corresponding head-shoulder
shapes detected (The large polygon in red is region of
interest). Though the MID-based segmentation is not
very accurate, it could decrease the search scope for the
head-shoulder detector when there are few people in the
observed area. The curve of NOP (number of people)
vs. time is shown in Figure 6. As we can see, the num-
ber of people detected approximately goes up and down
following the ground truth correctly.

5. Conclusions

In this paper, we have proposed a method to estimate
the number of people in crowded scenes. This method
consists of two modules: a MID based foreground
segmentation module to obtain the active areas in the
observed area and a head-shoulder detection module
to detect the head-shoulder shapes from the detected
foreground areas and count the number. This method
can not only count the number of people in crowded
scenes, but also locate the position of each individual,
which has great potential for applications beyond
people counting. Experimental results have shown the
effectiveness of the proposed method.

(b)

calibrated. However, we compute the camera parameters by

an interactive method [26].
The interobject occlusion in this set is also intensive.

Overall, there are 96 occlusion events in this set, 68 out of 96

are heavy occlusions, and 19 out of the 96 are almost fully

occluded (more than 90 percent of the object is occluded).

Many interactions between humans, such as talking and

handshaking, make this set very difficult for tracking. For

MCMC sampling, we use 500 iterations per frame again. For

such a big data set, it is infeasible to enumerate the errors as
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Fig. 7. Selected frames of the tracking results from “Campus Plaza.” The numbers on the heads show identities. (Please note that the two people

who are sitting on two sides are in the background model and, therefore, not detected.)

(c)

Fig. 2 Pedestrian detection results obtained using (a) monolithic detection, (b) part-based detec-
tion, and (c) shape matching. Images from [43, 47, 92].

proach is based on monolithic detection [21, 43, 78], which trains a classifier us-
ing the full-body appearance of a set of pedestrian training images (see Fig. 2(a)).
Common features to represent the full-body appearance include Haar wavelets [80],
gradient-based features such as histogram of oriented gradient (HOG) feature [21],
edgelet [85], and shapelets [68]. The choice of classifier imposes significant impact
on the speed and quality of detection, often requiring a trade-off between these two.
Non-linear classifiers such as RBF Support Vector Machines (SVMs) offer good
quality but suffer from low detection speed. Consequently, linear classifiers such as
boosting [81], linear SVMs, or Random/Hough Forests [28] are more commonly
used. A trained classifier is then applied in a sliding window fashion across the
whole image space to detect pedestrian candidates. Less confident candidates are
normally discarded using non-maximum suppression, which leads to final detec-
tions that suggest the total number of people in a given scene. Whole body mono-
lithic detector can generates reasonable detections in sparse scenes. However, it suf-
fers in crowded scenes where occlusion and scene clutter are inevitable [24].

Part-based detection: A plausible way to get around the partial occlusion problem
to some extent is by adopting a part-based detection method [26, 48, 86]. For in-
stance, one can construct boosted classifiers for specific body parts such as the head
and shoulder to estimate the people counts in a monitored area [47] (see Fig. 2(b)).
It is found that head region alone is not sufficient for reliable detection due to its
shape and appearance variations. Including the shoulder region to form an omega-
like shape pattern tends to give better performance in real-world scenarios [47]. The
detection performance can be further improved by tracking validation, i.e. associ-
ating detections over time and rejecting spurious detections that exhibit coherent
motion with the head candidates [62]. In comparison to monolithic detection, part-
based detection relaxes the stringent assumption about the visibility of the whole
body, it is thus more robust in crowded scenes.

Shape matching: Zhao et al. [92] define a set of parameterised body shapes com-
posed of ellipses, and employ a stochastic process to estimate the number and
shape configuration that best explains a given foreground mask in a scene. Ge and
Collins [29] extend the idea by allowing more flexible and realistic shape proto-
types than just simple geometric shapes proposed in [92]. In particular, they learn
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a mixture model of Bernoulli shapes from a set of training images, which is then
employed to search for maximum a posteriori shape configuration of foreground
objects, revealing not only the count and location, but also the pose of each person
in a scene.

Multi-sensor detection: If multiple cameras are available, one can further incor-
porate multi-view information to resolve visual ambiguities caused by inter-object
occlusion. For example, Yang et al. [88] extracted the foreground human silhou-
ettes from a network of cameras to establish bounds on the number and possible
locations of people. In the same vein, Ge and Collins [30] estimate the number of
people and their spatial locations by leveraging multi-view geometric constraints.
The aforementioned methods [30,88] are restricted since a multi-camera setup with
overlapping views is not always available in many cases. Apart from detection accu-
racy improvement, the speed of detection can benefit from the use of multi-sensors,
e.g.the exploitation of geometric context extracted from stereo images [5].

Transfer learning: Applying a generic pedestrian detector to a new scene can-
not guarantee satisfactory cross-dataset generalisation [24], whilst training a scene-
specific detector for counting is often laborious. Recent studies have been exploring
the transfer of generic pedestrian detectors to a new scene without human supervi-
sion. The key challenges include the variations of viewpoints, resolutions, illumina-
tions, and backgrounds in the new environment. A solution to the problem is pro-
posed in [82, 83] to exploit multiple cues such as scene structures, spatio-temporal
occurrences, and object sizes to select confident positive and negative examples
from the target scene to adapt a generic detector iteratively.

2.2 Counting by Clustering

The counting by clustering approach relies on the assumption that individual motion
field or visual features are relatively uniform, hence coherent feature trajectories can
be grouped together to represent independently moving entities. Studies that follow
this paradigm include [63], which uses a Kanade-Lucas-Tomasi (KLT) tracker to
obtain a rich set of low-level tracked features, and clusters the trajectory to infer the
number of people in the scene (see Fig. 3(a)); and [7], which tracks local features
and groups them into clusters using Bayesian clustering (see Fig. 3(b)). Another
closely related method is [77], which incorporates the idea of feature constancy
into a counting by detection framework. The method first generates a set of person
hypotheses of a crowd based on head detections. The hypotheses are then refined
iteratively by assigning small patches of the crowd to the hypotheses based on the
constancy of motion fields and intra-garment colour (see Fig. 3(c)).

The aforementioned methods [7, 63] avoid supervised learning or explicit mod-
elling of appearance features as in the counting by detection paradigm. Nevertheless,
the paradigm assumes motion coherency, hence false estimation may arise when
people remaining static in a scene, exhibiting sustained articulations, or two objects
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(a) (b) (c)

Figure 5. Number of objects through time estimated by our algorithm (solid blue) compared to ground
truth (dashed red). Error bars indicate one standard deviation of the ground truth labels determined
by several human operators. (a) USC (b) LIBRARY (c) CELLS.

(a) (b) (c) (d)

Figure 6. Results of clustering on the USC dataset: (a) and (b) show good performances on several
persons while sometimes persons are merged as shown in (c) and (d).

(a) (b) (c)

Figure 7. Results of clustering on the LIBRARY dataset shown in (a) and (b). (c) shows a close-up
with good clustering except for two persons on the left that were standing up and not exhibiting any
motion.

(a) (b) (c)

Figure 8. Additional examples of clustering results on the LIBRARY (a,b) and CELLS dataset (c).

(a)
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Fig. 1. This figure depicts the di↵erent steps of the proposed algorithm. a) An ini-
tial set of person hypotheses, b) a partitioning of the scene into a grid of patches, c)
an example of the direct association a�nity between the green patch and all the hy-
potheses where the width of the arrow is commensurate with the assignment a�nity,
d) shows two patches with strong pairwise a�nity (pink) and two patches with weak
pairwise a�nity (blue), e) depicts the soft assign process where patches are assigned
to hypotheses, f) shows the assignment of patches to hypotheses after the first E-step,
g) shows the result of the M-step consistency analysis where red patch assignments are
deemed to be inconsistent based on occlusion reasoning, h) the final segmentation after
multiple iterations of the EM algorithm.

Given an initial set of hypotheses, a patch partitioning and the direct/pairwise
a�nity measures, a global segmentation can be generated based on an estimate
of the optimal set of patch to hypothesis assignments. To achieve this, an EM
approach similar to [4] is used. The patch to hypothesis assignments is defined
by an assignment vector V = {vi} of length N with vi 2 [1, . . . ,K], where
vi = k implies that patch zi is assigned to hypothesis ck. The focus of the EM
approach is to model the joint probability of an assignment vector V and the set
of patches Z i.e. p(V,Z;X) under the parametrization of a consistency model
X (see section 2.1). To this end the log likelihood of the patch assignment is

(c)

Fig. 3 (a) and (b) show the results of clustering coherent motions using methods proposed in [63]
and [7] respectively. (c) shows the pairwise affinity of patches (strong affinity = magenta, weak
affinity = blue) in terms of motion and colour constancy; the affinity is used to determine the
assignment of patches to person hypotheses [77]. Images from [7, 63, 77].

sharing common feature trajectories over time. Note that counting by clustering
only works with continuous image frames, not static images whilst the counting by
detection and regression do not have this restriction.

2.3 Counting by Regression

Despite the substantial progress being made in object detection [24] and track-
ing [90] in recent years, performing either in isolation or both reliably in a crowded
environment remains a non-trivial problem. Counting by regression deliberately
avoids actual segregation of individual or tracking of features but estimate the crowd
density based on holistic and collective description of crowd patterns. Since neither
explicit segmentation nor tracking of individual are involved, counting by regression
becomes a feasible method for crowded environments where detection and tracking
are severely limited intrinsically.

One of the earliest attempts in exploring the use of regression method for crowd
density estimation is by Davies et al.[22]. They first extract low-level features such
as foreground pixels and edge features from each video frame. Holistic properties
such as foreground area and total edge count are then derived from the raw fea-
tures. Consequently, a linear regression model is used to establish a direct mapping
between the holistic patterns and the actual people counts. Specifically, a function
is used to model how the input variable (i.e. the crowd density) changes when the
target variables (i.e.holistic patterns) are varied. Given an unseen video frame, con-
ditional expectation of the crowd density can then be predicted given the extracted
features from that particular frame. Since the work of Davies et al. [22], various
methods have been proposed following the same idea with improved feature sets or
more sophisticated regression models, but still sharing a similar processing pipeline
as in [22] (see Fig. 4). A summary of some of the notable methods is given in Ta-
ble 1. In the following subsections, we are going to have detailed discussion on the
main components that constitute the counting by regression pipeline, namely feature
representation, geometric correction, and regression modelling.
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Figure 3. Crowd counting system: the scene is segmented into
crowds with different motions. Normalized features that account
for perspective are extracted from each segment, and the crowd
count for each segment is estimated with a Gaussian process.

scene. Finally, the number of people per segment is esti-
mated with Gaussian process regression. The remainder of
this section describes each of these system components.

3.1. Crowd segmentation
We adopt the mixture of dynamic textures [18] to seg-

ment the crowds moving in different directions. The video
is represented as collection of spatio-temporal patches (7 ×
7 × 20 patches in all experiments reported in the paper),
which are modeled as independent samples from a mix-
ture of dynamic texture models [19]. The mixture model is
learned with the expectation-maximization (EM) algorithm
[18]. Video locations are then scanned sequentially, a patch
is extracted at each location, and assigned to the mixture
component of largest posterior probability. The location is
declared to belong to the segmentation region associated
with that component. For long sequences, where charac-
teristic motions are not expected to change significantly, the
computational cost of the segmentation can be reduced by
learning the mixture model from a subset of the video (e.g.
a representative clip). The remaining video can then be seg-
mented by computing the posterior assignments as before.
This procedure tends to work well in practice, and was used
in this paper to segment a full hour of video. The resulting
segmentations are illustrated in Figures 9 and 11.

3.2. Perspective normalization
Before extracting features from the video segments, it is

important to consider the effects of perspective. Because
objects closer to the camera appear larger, any feature ex-
tracted from a foreground object will account for a smaller
portion of the object than one extracted from an object far-
ther away. This makes it important to normalize the fea-
tures for perspective. One possibility is to weight each pixel
according to a perspective normalization map. The pixel
weight is based on the expected depth of the object which
generated the pixel, with larger weights given to far objects.
In this work, we approximate the perspective map by lin-

a)

a b

cd

h1

b)

a b

cd h2

c)

1

2

3
4
5

a b

cd

h1

h2

Figure 4. Perspective map: a) reference person at the front of walk-
way, and b) at the end; c) the perspective map, which scales pixels
by their relative size in the true 3d scene.

early interpolating between the two extremes of the scene.
A ground plane is first marked, as in Figure 4a, and the dis-
tances |ab| and |cd| are measured1. Next, a reference pedes-
trian is selected, and the heights h1 and h2 are measured
when the center of the person is on ab and cd (see Figures
4a and 4b). The pixels on ab are given a weight of 1, and
the pixels on cd a weight of h1|ab|

h2|cd| . Finally, the remain-
ing pixel weights are computed by interpolating linearly be-
tween the two lines. Figure 4c shows the perspective map
of the scene using the above procedure. In this case, ob-
jects on the front-line ab are approximately 2.4 times big-
ger than objects on the back-line cd. Finally, for features
based on area (e.g. segmentation area), the weights are ap-
plied to each pixel. For features based on edges (e.g. edge
histogram), the square-roots of the weights are used.

3.3. Feature extraction
Ideally, features such as segmentation area or number of

edges should vary linearly with the number of people in the
scene [14, 11]. Figure 2 plots the segmentation area ver-
sus the crowd size. While the overall trend is indeed lin-
ear, there exist local non-linearities that arise from a vari-
ety of factors, including occlusion, segmentation errors, and
pedestrian configuration (e.g. spacing within a segment). To
model these non-linearities, we extract an additional 28 fea-
tures from each crowd segment.

Segment features: These features capture segment shape
and size.

• Area – total number of pixels in the segment.
• Perimeter – total number of pixels on the segment
perimeter, computed with morphological operators.

• Perimeter edge orientation – orientation histogram of
the segment perimeter. The orientations are quantized

1Here we assume that the horizontal ground plane is parallel to the
horizontal axis of the image, but the procedure can be generalized if not.
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Fig. 4 A typical pipeline of counting by regression: first defining the region of interest and find-
ing the perspective normalisation map of a scene, then extracting holistic features and training a
regressor using the perspective normalised features.

2.3.1 Feature Representation

The question of crowd representation or abstraction must be addressed before a re-
gression function can be established. Feature representation concerns the extrac-
tion, selection, and transformation of low-level visual properties in an image or
video to construct intermediate input to a regression model. A popular approach
is to combine several features with complementary nature to form a large bank of
features [13].

Foreground segment features: The most common or arguably the most descrip-
tive representation for crowd density estimation is foreground segment, which can
be obtained through background subtraction, such as mixture of Gaussians-based
technique [73] or mixture of dynamic textures-based method [10]. Various holistic
features can be derived from the extracted foreground segment, for example:

• Area – total number of pixels in the segment.
• Perimeter – total number of pixels on the segment perimeter.
• Perimeter-area ratio – ratio between the segment perimeter and area, which mea-

sures the complexity of the segment shape.
• Perimeter edge orientation – orientation histogram of the segment perimeter.
• Blob count – the number of connected components with area larger than a pre-

defined threshold, e.g.20 pixels in size.

Various studies [13, 22, 54] have demonstrated encouraging results using the
segment-based features despite its simplicity. Several considerations, however, has
to be taken into account during the implementation. Firstly, to reduce spurious fore-
ground segments from other regions, one can confine the analysis within a region of
interest (ROI), which can be determined manually or following a foreground accu-
mulation approach [54]. Secondly, different scenarios may demand different back-
ground extraction strategies. Specifically, dynamic background subtraction [73] can
cope with gradual illumination change but have difficulty in isolating people that
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Year Features Learning Datasets

se
gm

en
t

ed
ge

te
xt

ur
e

sh
ap

e

in
te

ns
ity

gr
ad

ie
nt

s

m
ot

io
n

ot
he

rs

regression method level
Davies et al.[22] 1995 X X – – – – – – Linear regression global –
Marana et al.[59] 1997 – – X – – – – – Self-organising map

neural network
global –

Cho et al.[16] 1997 X X – – – – – – Feedforward neural
network

global –

Kong et al.[38, 39] 2005
2006

X X – – – – – – Feedforward neural
network

global –

Dong et al.[25] 2007 – – – X – – – – Shape matching +
locally-weighted re-
gression

segment USC Campus Plaza

Chan et al.[12–14] 2008
2009

X X X – – – – – Gaussian processes global UCSD Pedestrian,
PETS 2009

Chan et al.[11] 2009 X X X – – – – – Bayesian Poisson
regression

global UCSD Pedestrian

Ryan et al.[67] 2009 X X – – – – – – Feedforward neural
network

segment UCSD Pedestrian

Cong et al.[18] 2009 X X – – – – – – Polynomial regres-
sion

segment –

Lempitsky et al.[44] 2010 X – – – X X – – Density function
minimisation based
on Maximum Ex-
cess over Subarrays
distance

pixel UCSD Pedestrian

Conte et al.[19] 2010 – – – – – – – number
of SURF
points

Support vector re-
gression

segment PETS 2009

Benabbas et al.[4] 2010 X – – – – – X – Linear regression segment PETS 2009
Li et al.[46] 2011 X X – – – – – – Pedestrian detector

+ Linear regression
segment CASIA Pedes-

trian [45]
Lin et al.[49] 2011 X X – – – X – – Gaussian processes segment UCSD Pedestrian,

PETS 2009
Ke et al.[15] 2012 X X X – – – – – Kernel ridge regres-

sion
segment UCSD Pedestrian,

PETS 2009, Mall

Table 1 A table summarising existing counting by regression methods. Note that only publicly
available datasets are listed in the datasets column.

are stagnant for a long period of time; static background subtraction [51, 66] is able
to segment static objects from the background but is susceptible to lighting change.
Finally, poor estimation is expected if one employs only foreground area due to
inter-object occlusion, as it is possible to insert another person into the mixture and
end up with the same foreground area. Enriching the representation with other de-
scriptors may solve this problem to certain extent.

Edge features: While foreground features capture the global properties of the seg-
ment, edge features inside the segment carries complementary information about
the local and internal patterns [13, 22, 38]. Intuitively, low-density crowds tend to
present coarse edges, while segments with dense crowds tend to present complex
edges. Edges can be detected using an edge detector such as the Canny edge detec-
tor [8]. Note that an edge image is often masked using the foreground segment to
discard irrelevant edges. Some common edge-based features are listed as follows

• Total edge pixels – total number of edge pixels.
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• Edge orientation – histogram of the edge orientations in the segment.
• Minkowski dimension – the Minkowski fractal dimension or box-counting di-

mension of the edges [58], which counts how many pre-defined structuring ele-
ments are required to fill the edges.

Texture and gradient features: Crowd texture and gradient patterns carry strong
cues about the number of people in a scene. In particular, high-density crowd region
tends to exhibit stronger texture response [54] with distinctive local structure in
comparison to low-density region; whilst local intensity gradient map could reveal
local object appearance and shape such as human shoulder and head, which are in-
formative for density estimation. Example of texture and gradient features employed
for crowd counting include gray-level co-occurrence matrix (GLCM) [34], local bi-
nary pattern (LBP) [61], HOG feature [56], and gradient orientation co-occurrence
matrix (GOCM) [56]. A comparative studies among the aforementioned texture and
gradient features can be found in [56]. Here we provide a brief description on GLCM
and LBP, which are used in our evaluation.

Gray-level co-occurrence matrix (GLCM) [34] is widely used in various crowd
counting studies [13, 56, 57, 87]. For instance, Marana et al. [57] uses GLCM to
distinguish five different density levels (very low, low, moderate, high, and very
high), and Chan and Vasconcelos [12] employ it as holistic property for Bayesian
density regression. To obtain GLCM, a typical process is to first quantise the image
into 8 gray-levels and masked by the foreground segment. The joint probability or
co-occurrence of neighbouring pixel values, p(i, j | θ) is then estimated for four
orientations, θ ∈ {0◦,45◦,90◦,135◦}. After extracting the co-occurrence matrix, a
set of features such as homogeneity, energy, and entropy can be derived for each θ

• Homogeneity – texture smoothness, gθ = ∑i, j
p(i, j | θ)
1+|i− j|

• Energy – total sum-squared energy, eθ = ∑i, j p(i, j | θ)2

• Entropy – texture randomness, hθ = ∑i, j p(i, j | θ) log p(i, j | θ)
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Fig. 5 Gray-level co-occurrence matrix, with θ = 0◦ of a 4-by-6 image. Element (7,2) in the
GLCM contains the value 1 because there is only one instance in the image where two, horizontally
adjacent pixels have the values 7 and 2. Element (4,5) in the GLCM contains the value 2 because
there are two instances in the image where two, horizontally adjacent pixels have the values 4 and
5. The value of θ specifies the angle between the pixel of interest and its neighbour.
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Fig. 6 A basic local binary pattern operator [61] and a circular (8,1) neighbourhood.

An alternative texture descriptor for crowd density estimation [55] is the local
binary pattern (LBP) [61]. Local binary pattern has been widely adopted in vari-
ous applications such as face recognition [2] and expression analysis [70], due to
its high discriminative power, invariance to monotonic gray-level changes, and its
computational efficiency.

An illustration of a basic LBP operator is depicted in Fig. 6. The LBP operation
is governed by a definition of local neighbourhood, i.e.the number of sampling point
and radius centering the pixel of interest. An example of a circular (8,1) neighbour-
hood is shown in Fig. 6. Following the definition of neighbourhood, we sample 8
points at a distance of radius 1 from the pixel of interest and threshold them using
the value of the centering pixel. The results are concatenated to form a binary code
as the label of the pixel of interest. These steps are repeated over the whole image
space and a histogram of labels is constructed as a texture descriptor.

In this study, we employed an extension of the original LBP operator known as
uniform patterns [61], which frequently correspond to primitive micro-features such
as edges and corners. A uniform LBP pattern is binary code with at most two bitwise
transitions, e.g. 11110000 (1 transition) and 11100111 (2 transitions) are uniform,
whilst 11001001 (4 transitions) is not. In the construction of LBP histogram, we
assign a separate bin for every uniform pattern and keep all nonuniform patterns in
a single bin, so we have a 58+1-dimension texture descriptor.

2.3.2 Geometric Correction

A problem commonly encountered in counting by regression framework is perspec-
tive distortion, in which far objects appear smaller than those closer to the camera
view. As a consequence, features (e.g.segment area) extracted from the same object
at different depths of the scene would have huge difference in values. The influ-
ence is less critical if one divides the image space into different cells, each of which
modelled by a regression function; erroneous results are expected if one only uses a
single regression function for the whole image space.

To address this problem geometric correction or perspective normalisation is per-
formed to bring perceived size of objects at different depths to the same scale. Ma et
al. [54] investigate the influence of perspective distortion to people counting and
propose a principled way to integrate geometric correction in pixel counting, i.e. to
scale each pixel by a weight, with larger weights given to further objects.
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Fig. 7 (a) and (b) show a reference person at two extremes of a predefined quadrilateral; (c) a
perspective map to scale pixels by their relative size in the three-dimensional scene.

A simple and widely adopted perspective normalisation method [44, 49, 67] is
described in [13]. The method first determines four points in a scene to form a
quadrilateral that corresponds to a rectangle (see Fig. 7). The lengths of the two hor-
izontal lines of the quadrilateral, ab and cd, are measured as w1 and w2 respectively.
When a reference pedestrian passes the two extremes, i.e. its bounding box’s centre
touches the ab and cd, its heights are recorded as h1 and h2. The weights at ab and
cd are then assigned as 1 and h1w1

h2w2
respectively. To determine the remaining weights

of the scene, linear interpolation is first performed on the width of the rectangle,
and the height of the reference person. A weight at arbitrary image coordinate can
then be calculated as h1w1

h′w′ , where h′ and w′ representing the interpolants. Here we
make an assumption that the horizontal vanishing line to be parallel to the image
horizontal scan lines.

When applying the weights to features, it is assumed that the size of foreground
segment changes quadratically, whilst the total edge pixels changes linearly with
respect to the perspective. Consequently, each foreground segment pixel is weighted
using the original weight and the edge features are weighted by square-roots of the
weights. Features based on the GLCM are normalised by weighting the occurrence
of each pixel pair when accumulating the co-occurrence matrix shown in Fig. 5. To
obtain perspective-normalised LBP-based features, we multiply the weights to the
occurrence of individual LBP labels in the image space prior to the construction of
the LBP label histogram.

The aforementioned method [13] requires manual measurement which could be
error-prone. There exist approaches to compute camera calibration parameters based
on accumulative visual evidence in a scene. For example, a method is proposed
in [40] to find the camera parameters by exploiting foot and head location measure-
ments of people trajectories over time. Another more recent method [50] relaxes the
requirement of accurate detection and tracking. This method takes noisy foreground
segments as input to obtain the calibration data by leveraging the prior knowledge of
the height distribution. With a calibrated 3D model, one can also obtain the perspec-
tive map as in [14], which moves a virtual person within the 3D world and measures
the number of pixels projected onto the 2D image space.
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2.3.3 Regression Models

After feature extraction and perspective normalisation, a regression model is trained
to predict the count given the normalised features. A regression model may have a
broad class of functional forms. In this section we discuss a few popular regression
models for crowd density estimation.

Linear regression: Given a training data comprising N observations {xn}, where
n = 1, . . . ,N together with corresponding continuous target values {yn}, the goal
of regression is to predict the value of y given a new value of x [6]. The simplest
approach is to form of linear regression function f (x,w) that involves a linear com-
bination of the input variables, i.e.

f (x,w) = w0 +w1x1 + · · ·+wDxD, (1)

where D is the dimension of features, x = (x1, . . . ,xD)
T, and w = (w0, . . . ,wD)

T are
the parameters of the model. This model is often known as linear regression (LR),
which is a linear function of the parameters w. In addition it is also linear with
respect to the input variables x.

In a sparse scene where smaller crowd size and fewer inter-object occlusions
are observed, the aforementioned linear regressor [4, 22, 46] may suffice since the
mapping between the observations and people count typically presents a linear rela-
tionship. Nevertheless, given a more crowded environment with severe inter-object
occlusion, one may have to employ a nonlinear regressor to adequately capture the
nonlinear trend in the feature space [9].

To relax the linearity assumption, one can take a linear combination of a fixed set
of nonlinear functions of the input variables, also known as basis functions φ(x), to
obtain a more expressive class of function. It has the form of

f (x,w) =
M−1

∑
j=0

w jφ j(x) = wT
φφφ(x), (2)

where M is the total number of parameters in this model, w = (w0, . . . ,wM−1)
T, and

φφφ = (φ0, . . . ,φM−1)
T. The functional form in (2) is still known as linear model since

it is linear in w, despite the function f (x,w) is nonlinear with respect to input vector
x. A polynomial regression function considered in [18] (see Table 1) is a specific
example of this model, with the basis functions taking a form of powers of x, that is
φ j(x) = x j. Gaussian basis function and sigmoidal basis function are other possible
choices of basis functions.

Parameters in the aforementioned linear model is typically obtained by minimis-
ing the sum of squared errors

E(w) =
1
2

N

∑
n=1

{
yn−wT

φφφ(xn)
}2

. (3)
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One of the key limitation of linear model is that the model can get unnecessarily
complex give high-dimensional observed data x. Particularly in counting by regres-
sion, it is a common practice to exploit high-dimensional features [13]. Some of
the elements are not useful for predicting the count. In addition, some of them may
be highly co-linear, unstable estimate of parameters may occurs [6], leading to very
large magnitude in the parameters and therefore a clear danger of severe over-fitting.

Partial least squares regression: A way of addressing the multicollinearity prob-
lem is by partial least squares regression (PLSR) [31], which projects both input
X = {xn} and target variables Y = {yn} to a latent space, with a constraint such that
the lower-dimensional latent variables explain as much as possible the covariance
between X and Y. Formally, the PLSR decomposes the input and target variables as

X = TPT+ εx (4)
Y = UQT+ εy, (5)

where T and U are known as score matrices, with the column of T being the latent
variables; P and Q are known as loading matrices [1]; and ε are the error terms. The
decomposition are made so to maximise the covariance of T and U. There are two
typical ways in estimating the score matrices and loading matrices, namely NIPALS
and SIMPLS algorithms [1, 89].

Kernel ridge regression: Another method of mitigating the multicollinearity prob-
lem is through adding a regularisation term to the error function in Equation (3). A
simple regularisation term is given by the sum-of-squares of the parameter vector
elements, 1

2 wTw. The error function becomes

ER(w) =
1
2

N

∑
n=1

{
yn−wT

φφφ(xn)
}2

+
λ

2
wTw, (6)

with λ to control the trade-off between the penalty and the fit. A common way of
determining λ is via cross-validation. Using this particular choice of regularisation
term with φ(xn) = xn, we will have error function of ridge regression [36].

A non-linear version of the ridge regression, known as kernel ridge regression
(KRR) [69], can be achieved via kernel trick [71], whereby a linear ridge regres-
sion model is constructed in higher dimensional feature space induced by a kernel
function defining the inner product

k(x,x′) = φ(x)Tφ(x′). (7)

For the kernel function, one has typical choices of linear, polynomial, and radial
basis function (RBF) kernels. The regression function of KRR is given by

f (x,ααα) =
N

∑
n=1

αnk(x,xn), (8)
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where ααα = {α1, . . . ,αn}T are Lagrange multipliers. This solution is not sparse in
the variables α , that is αn 6= 0, ∀n ∈ {1, . . .N}.
Support vector regression: Support vector regression (SVR) [42,72] has been used
for crowd counting in [87]. In contrast to KRR, the SVR achieves sparseness in α

(see Equation (8)) by using the concept of support vectors to determine the solution,
which can result in faster testing speed than KRR that sums over the entire training-
set [84]. Specifically, the regression function of SVR can be written as

f (x,ααα) = ∑
SVs

(αn−α
∗
n )k(x,xn)+b, (9)

where αn and α∗n represents the Lagrange multipliers, k(x,xn) denotes the kernel,
and b ∈ R. A popular error function for SVR training is ε-insensitive error func-
tion [79], which assigns zero error if the absolute difference between the prediction
f (x,ααα) and the target y is less than ε > 0. Least-squares support vector regression
(LSSVR) [74] is least squares version of SVR. In LSSVR one finds the solution by
solving a set of linear equations instead of a convex quadratic error function as in
conventional SVR.

Gaussian processes regression: One of the most popular nonlinear methods for
crowd counting is Gaussian processes regression (GPR) [64]. It has a number of
pivotal properties – it allows possibly infinite number of basis functions driven by
the data complexity, and it models uncertainty in regression problems elegantly1.
Formally, we write the regression function as

f (x)∼ GP(m(x),k(x,x′)), (10)

where Gaussian processes, GP(m(x),k(x,x′)) is specified by its mean function m(x)
and covariance function or kernel k(x,x′)

m(x) = E[ f (x)], (11)
k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))], (12)

where E denotes the expectation value.
Apart from the conventional GPR, various extensions of it have been proposed.

For instance, Chan et al. [9] propose a generalised Gaussian process model, which
allows different parameterisation of the likelihood function, including a Poisson
distribution for predicting discrete counting numbers [11]. Lin et al. [49] employ
two GPR in their framework, one for learning the observation-to-count mapping,
and another one for reasoning the mismatch between predicted count and actual
count due to occlusion.

The key weakness of GPR is its poor tractability to large training sets. Various
approximation paradigms have been developed to improve its scalability [64].

1 One can also estimate the predictive interval in other kernel methods such as KRR [23].
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It is worth pointing out that one of the attractive properties of kernel methods
such as KRR, SVR, and GPR is the flexibility of encoding different assumptions
about the function we wish to learn. For instance, by combining different covariance
functions k(x,x′), such as linear, Matérn, rational quadratic, and neural network, one
has the flexibility to encode different assumptions on the continuity and smoothness
of the GP function f (x). This property is exploited in [13], in which linear and a
squared-exponential (RBF) covariance functions are combined to capture both the
linear trend and local non-linearities in the crowd feature space.

Random forest regression: Scalable nonlinear regression modelling can be achieved
using random forest regression (RFR). A random forest comprises of a collection
of randomly trained regression trees, which can achieve better generalisation than a
single over-trained tree [20]. Each tree in a forest splits a complex nonlinear regres-
sion problem into a set of subproblems, which can be more easily handled by weak
learners such as a linear model2. To train a forest, one optimises an energy over a
given training set and associated values of target variable. Specifically, parameters
θθθ j of the weak learner at each split node j are optimised via

θθθ
∗
j = argmax

θθθ j∈T j

I j, (13)

where T j ⊂ T is a subset of parameters made available to the j-th node, and I is
an objective function that often takes the form of information gain. Given a new
observation x, the predictive function is computed by averaging individual posterior
distributions of all the trees, i.e.

f (x) =
1
T ∑ pt(y|x), (14)

where T is the total number of trees in the forest, pt(y|x) is the posterior of t-th tree.
The hallmark of random forest is its good performance comparable to state-of-

the-art kernel methods (e.g.GPR) but with the advantage of being scalable to large
dataset and less sensitive to parameters. In addition, it has the ability of generating
variable importance and information about outliers automatically. It is also reported
in [20] that forest can yield a more realistic uncertainty in the ambiguous feature
region, in comparison to GPR that tends to return largely over-confident prediction.

The weakness of RFR is that it is poor in extrapolating points beyond the value
range of target variable within the training data, as we shall explain in more detail
in Section 4.1.

2 There are other weak learners that define the split functions, such as general oriented hyperplane
or quadratic function. A more complex splitting function would lead to higher computational com-
plexity.
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2.3.4 Additional Considerations

We have discussed various linear and nonlinear functions for performing crowd den-
sity regression. Note that the functional form becomes more critical when one does
not have sufficient training set that encompasses all the anticipated densities in a
scene. If that is the case, extrapolation outside the training range has to be per-
formed, with increasing room of failure when the extrapolation goes further beyond
the existing data range, due to the mismatch between the regression assumption and
the actual feature to count mapping.

A closely related consideration is at what level the learning should be performed.
Most existing methods (see the ‘level’ column in Table 1) take a global approach by
applying a single regression function over the whole image space with input vari-
ables being the holistic features of a frame (e.g. total area of foreground segment),
and target variable being the total people count in that frame. An obvious limitation
of this global approach is that it applies a global regression function over the whole
image space, ignoring specific crowd structure in different regions. This can be re-
solved by dividing the image space up into regions and fitting separate function in
each region [56,87]. The regions can be cells having regular size, or having different
resolutions driven by the scene perspective to compensate the distortion [56].

One can also approximate the people count at blob-level [46], i.e. estimates the
number of people in each foreground blob and obtains the total people count by
summing the blob-level counts. Lempitsky et al. [44] go one step further to model
the density at each pixel, casting the problem as that of estimating an image density
whose integral over any image region gives the count of objects within that region.
The aforementioned segment-and-model strategies facilitate counting at arbitrary
locations, which is impossible using a holistic approach. In addition, a potential
gain in estimation accuracy may be obtained [44]. This however comes at a price of
increased annotation effort. e.g. requiring a large amount of dotted annotations on
head or pedestrian positions in all training images [44].

3 Evaluation Settings

Previous work [12, 44, 54, 56] have independently performed analyses on different
components in the crowd counting pipeline such as feature extraction, perspective
normalisation, and regression modelling. The scenarios studied, however, are rather
diverse in terms of both evaluation data and experimental settings. It can be hard
to compare them in order to draw general conclusions on their effectiveness. In
this study we aim to provide a more exhaustive comparative evaluation to factor
out the contributions of different components and identify potential bottlenecks in
algorithm design for crowd counting and profile analysis.
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3.1 Datasets

Two benchmark datasets were used for comparative algorithm evaluation, namely
UCSD pedestrian dataset (ucsd) and PETS 2009 dataset (pets). Example frames are
shown in Fig. 8. Apart from the two established benchmark datasets, a new and more
realistic shopping mall dataset is also introduced in this study. This mall dataset was
collected from a publicly accessible webcam in the course of two months from Feb
2011 to Apr 2011. A portion of 2000 frames recorded during peak hours were se-
lected for the comparative algorithm evaluation. As can be seen from the sample im-
ages in Fig. 9, this new dataset is challenging in that it covers crowd densities from
sparse to crowded, as well as diverse activity patterns (static and moving crowds),
under large range of illumination conditions at different time of the day. Also note
that the perspective distortion is more severe than the ucsd and pets datasets, thus
individual objects may experience larger change in size and appearance at different
depths of the scene. The details of the three datasets are given in Table 2.

For evaluation purpose, we resized the images from the pets dataset to 384 ×
288, and the images from the mall dataset to 320 × 240. All colour images were
converted to grayscale images prior to feature extraction. We annotated the data
exhaustively by labelling the head position of every pedestrian in all frames. An ex-
ample of annotated frame is shown in Fig. 9. The ground truth, together with the raw
video sequence, extracted features, and the train/test partitions can be downloaded
at http://www.eecs.qmul.ac.uk/∼ccloy/.

(a) (b)

Fig. 8 (a) UCSD Pedestrian Dataset (ucsd), (b) PETS 2009 Benchmark Dataset (pets).

Data Nf R FPS D Tp
ucsd [13] 2000 238 × 158 10 11–46 49885
pets [27] 1076 384 × 288 7 0–43 18289
mall 2000 320 × 240 <2 13–53 62325

Table 2 Dataset properties: N f = number of frames, R = Resolution, FPS = frame per second,
D = Density (minimum and maximum number of people in the ROI), and T p = total number of
pedestrian instances.
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Fig. 9 The new shopping mall dataset. The top-left figure shows an example of annotated frame.

3.2 Features and Regression Models

We selected features and regression methods that are both representative and promis-
ing in terms of originally reported performance. While we could not evaluate all the
available features or methods exhaustively due to unavailability of original codes
and practical time and space constraints, we consider that these evaluations giving
an accurate portrait of the state-of-the-art.

We extracted segment, edge, GLCM, and LBP features following the methods
described in Section 2.3.1. For both ucsd and pets datasets, scene lighting were
stable so we employed a static background subtraction method based on minimum
cuts [17]3 to extract the foreground segments. For the mall dataset, gradual illumina-
tion change was observed, we therefore adopted a dynamic background modelling
method [95].

All features were perspective normalised (see Section 2.3.2) and a feature vector
was formed by concatenating the features, into x ∈RD, which was used as the input
for the regression models. Prior to feeding the features into the regression models,
all features were scaled to the [0 1] interval. A list of the regression models and their
associated settings is given below

• Linear regression (LR)
• Partial least-squares regression (PLSR) – 10 latent components
• Kernel ridge regression (KRR) – linear kernel with four-fold cross-validation for

parameter optimisation

3 Codes available at http://www.eecs.qmul.ac.uk/∼ccloy/.
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• Least-squares support vector regression (LSSVR) – linear kernel with four-fold
cross-validation for parameter optimisation

• Gaussian processes regression (GPR) – linear kernel + RBF kernel as in [13]4.
The parameters are first initialised to random values and optimised using conju-
gate gradient optimiser.

• Random forest regression (RFR) – 500 trees, the number of parameters made
available for node splitting was fixed to square-root of the feature dimension,
and the minimum size of terminal nodes was set to 5.

3.3 Evaluation Metrics

We employed three metrics in performance evaluation. Two of the metrics are
widely used as performance indicators for crowd counting, namely mean absolute
error and mean squared error. Mean absolute error is defined as

εabs =
1
N

N

∑
n=1
|yn− ŷn|. (15)

Mean squared error is given as

εsqr =
1
N

N

∑
n=1

(yn− ŷn)
2, (16)

where N is the total number of test frames, yn is the actual count, and ŷn is the
estimated count of nth frame. Note that as a result of the squaring of each differ-
ence, εsqr effectively penalises large errors more heavily than small ones. The above
two metrics are indicative in quantifying the error of estimation of the crowd count.
However, as pointed out by [19], these metrics contain no information about the
crowdedness of the region of interest. To that end, [19] proposed another perfor-
mance metric to take the crowdedness into account – we name it as mean deviation
error, which is essentially a normalised εabs

εdev =
1
N

N

∑
n=1

|yn− ŷn|
yn

. (17)

4 Performance Comparison

In the following we report comparative evaluation results on three aspects, i.e.model
choices, feature robustness, and model sensitivity to perspective.

4 An interesting aspect not examined in our study is the effect of different kernels and their relations
with different kernel methods for crowd regression.
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4.1 Model Choices

The goals of this experiment are to (1) compare the performance of different regres-
sion models under different crowdedness levels, and (2) evaluate their generalisation
capability to unseen density. These two aspects are somewhat less explicitly studied
in existing work. However, they are essential since a regressor may behave differ-
ently under different crowdedness levels, and often, it needs to extrapolate outside
the anticipated density range in real-world scenarios.

We employed the same segment+edge+LBP features across all regression mod-
els. To simulate different crowdedness levels, we divided a dataset into two parti-
tions: one for sparse scenario and another one for crowded scenario, of which the
details are provided in Table 3.

Data Sparse scenario (no. frames) Crowded scenario (no. frames)
ucsd 1058 (≤23 people, train=400, test=658) 942 (>23 people, train=400, test=542)
pets 800 (≤10 people, train=400, test=400) 276 (>10 train=100, test=176)
mall 972 (≤30 people, train=400, test=572) 1028 (>30 people, train=400, test=628)

Table 3 Number of frames allocated for the sparse and crowded seenarios. Information inside the
brackets contain the definition of crowdedness, together with the training and test set proportions.

Model performance under different crowdedness levels: To evaluate a regressor
under the sparse scenario, we trained and tested the model using the sparse partition
of a dataset. Similar procedures were applied using the crowded partition of a dataset
to test a model under crowded scenario. Figure 10 shows the performance of the
six regression models under the sparse and crowded scenarios. Note that we only
presented the mean deviation error since other metrics exhibited similar trends in
this experiment.
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Fig. 10 Comparison of mean deviation error (lower is better) between regression models in sparse
and crowd scenarios.
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Fig. 11 Labelled ground truth vs. estimated count by Gaussian processes regression on sparse
and crowded scenarios of ucsd dataset. The estimated count is accompanied by ± two standard
deviations corresponding to a 95% confidence interval.

It is evident that models which can effectively deal with multicollinearity issue,
such as LSSVR, PLSR, and KRR, consistently performed better than other mod-
els in both the sparse and crowded partitions, as shown in Fig. 10. Specifically,
over-fitting were less an issue to the aforementioned models, which either add a
regularisation term5 into the error function or by projecting the input variables onto
a lower-dimensional space.

In contrast, LR was ill-conditioned due to highly-correlated features, thus yield-
ing poorer performance as compared to LSSVR, PLSR, and KRR. The performance
of GPR was mixed. The error rate of RFR was extremely high in the pets crowded
partition as the forest structure was too complex given the limited amount of train-
ing data. As a result, its generalisation capability was compromised due to the over-
fitting. In other datasets, RFR showed comparable results to other regression meth-
ods.

We found that existing performance metrics including the mean deviation er-
ror [19], which is normalised by the actual count (see Section 3.3), are not appropri-
ate for comparing scenarios with enormous difference in densities. Specifically, our
findings were rather counter intuitive in that all regressors performed better in the
crowded scenario than the sparse scenario. We note that the lower mean deviation
errors in a crowded scene are largely biased by the much larger actual count serv-
ing as the denominator in Equation (17). To vindicate our observation, we plotted
the performance of GPR on the ucsd dataset in Fig. 11 and found that the regressor
performance did not differ much across sparse and crowded scenarios.

5 [64] provides detailed discussion on the regularisation approach with the Gaussian process view-
point.
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Generalisation to unseen density: To evaluate the generalisation capability of a re-
gression model to unseen density, we tested it against two scenarios: (1) generalising
from crowded to sparse environment, and (2) generalising from sparse to crowded
environment. In the first scenario, we trained a regressor with the crowded partition
and tested it on the sparse partition. We switched the crowded and sparse partitions
in the second scenario. The same data partitions in Table 3 were used.

 	

 Train:Crowded - Test:Sparse	

 Train:Sparse - Test:Crowded	


 	

 Mean Abs. Error	

 Mean Sq. Error	

Mean Dev. Error	

 Mean Abs. Error	

 Mean Sq. Error	

Mean Dev. Error	


LR	

 1.7448	

 4.8034	

 0.1013	

 2.8811	

 13.0382	

 0.0860	


PLSR	

 2.0208	

 6.2892	

 0.1170	

 4.0934	

 25.4034	

 0.1184	


KRR	

 2.0284	

 6.3176	

 0.1172	

 4.1805	

 26.4459	

 0.1210	


LSSVR	

 2.0123	

 6.2202	

 0.1163	

 4.2304	

 27.2070	

 0.1225	


GPR	

 2.3081	

 7.6730	

 0.1330	

 3.8089	

 20.6921	

 0.1119	


RFR	

 6.0851	

 50.5539	

 0.3882	

 9.4671	

 134.2994	

 0.2681	



(a) ucsd	



 	

 Train:Crowded - Test:Sparse	

 Train:Sparse - Test:Crowded	


 	

 Mean Abs. Error	

 Mean Sq. Error	

Mean Dev. Error	

 Mean Abs. Error	

 Mean Sq. Error	

Mean Dev. Error	


LR	

 1.3137	

 3.1612	

 0.2765	

 2.5833	

 11.0978	

 0.1263	


PLSR	

 1.4087	

 3.6263	

 0.2835	

 2.7428	

 12.3732	

 0.1337	


KRR	

 1.2612	

 2.8237	

 0.2643	

 2.5507	

 10.7971	

 0.1248	


LSSVR	

 1.4737	

 3.8763	

 0.3083	

 2.6051	

 11.2500	

 0.1272	


GPR	

 1.4238	

 3.5463	

 0.2849	

 3.3986	

 20.1159	

 0.1631	


RFR	

 6.7138	

 56.4937	

 1.7037	

 9.3877	

 156.5036	

 0.4279	



(b) pets	



 	

 Train:Crowded - Test:Sparse	

 Train:Sparse - Test:Crowded	


 	

 Mean Abs. Error	

 Mean Sq. Error	

Mean Dev. Error	

 Mean Abs. Error	

 Mean Sq. Error	

Mean Dev. Error	


LR	

 5.4959	

 45.9012	

 0.2414	

 4.5360	

 29.5379	

 0.1225	


PLSR	

 4.9877	

 35.0432	

 0.2171	

 5.6625	

 42.8628	

 0.1499	


KRR	

 5.1070	

 36.1893	

 0.2225	

 5.8006	

 44.0924	

 0.1534	


LSSVR	

 5.0216	

 35.2623	

 0.2189	

 5.7704	

 43.6109	

 0.1526	


GPR	

 5.4969	

 39.4660	

 0.2389	

 6.9426	

 59.8687	

 0.1835	


RFR	

 7.1080	

 64.0175	

 0.3127	

 8.6994	

 95.4601	

 0.2276	



(c) mall	



Table 4 Comparison of generalisation capability of different regression models to unseen density.
Best performance is highlighted in bold.

Regression models that worked well within known crowd density may not per-
form as good given unseen density. In particular, as shown in Table 4, simple linear
regression models such as LR and PLSR returned surprisingly good performance in
both the ucsd and mall datasets, outperforming their non-linear counterparts. The
results suggest that the regression assumption of linear regression models, though
simple, could be less susceptible to unseen density and matched closer with the
feature-to-density trend in the considered scenarios. The performance of RFR was
poorest among the regression models. The results agree with our expectation about
its weakness in generalisation as discussed in Section 2.3.3.

It was observed that the generalisation performance reported in Table 4, were
much poorer than those obtained when we trained and tested a regressor using the
same density range. In particular, the regressors tend to overestimate or underesti-
mate depending on the extrapolation direction, as shown in Fig. 12. In addition, the
further the extrapolation goes outside the training range, the larger the error in the
estimation due to difference between the learned model and the actual feature-to-
density trend. Note that there was no concrete evidence to show that generalising
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from crowded to sparse environment was easier than generalising from sparse to
crowded scene.
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Fig. 12 Generalisation to unseen density: Labelled ground truth vs. estimated count by Gaussian
processes regression on mall dataset. (a) Training on crowded partition and testing on sparse parti-
tion results in over-estimation, and (b) doing the other way round results in under-estimation. The
estimated count is accompanied by ± two standard deviations corresponding to a 95% confidence
interval.

4.2 Feature Robustness

The objective of this experiment is to compare the performance on using different
types of features, e.g. segment-based features, edge-based features, texture-based
features (in particular GLCM and LBP), as well as their combination, given different
crowdedness levels in a scene. As in Section 4.1, we conducted the evaluation using
sparse and crowded partitions. The results are depicted in Fig. 13 and Fig. 14.

Robustness of individual features: It is observed that different features can be
more important given different crowdedness levels. In general, the averaged per-
formance suggests that the segment-based features were superior to other features.
This is not surprising since the foreground segment carries useful information about
the area occupied by objects of interest and it thus intrinsically correlate to the num-
ber of pedestrians in a scene. However in the ucsd and mall datasets, a decrease
in performance gap was observed between the edge or texture-based features and
the segment-based features when we switched from sparse partition to crowded par-
tition. This observation is intuitive since given a more crowded environment with
frequent inter-object occlusion, segment-based features would suffer, whilst edge
and texture that inherently encoded the inter-object boundary and internal patterns
would carry more discriminative visual cues for density mapping.
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Fig. 13 Sparse partition: the mean deviation error (lower is better) vs. different features.

Does combining features help?: From the averaged performance, it is observed
that combining different features together could lead to a better performance in gen-
eral. For instance, when the LBP-based features were used in combination with the
segment and edge-based features, the mean deviation error was reduced by 2%-
14%. This finding supports the practice of employing a combination of features (see
Table 1).

Nevertheless, when we examined the performance of individual regression mod-
els, it was found that combining all the features did not necessarily produce better
performance. For example, using the segment-based features alone in the crowded
mall partition one would get higher performance; or using the edge features alone
with RFR gained more accurate counts in the sparse ucsd partition. The results sug-
gests the need for feature selection to discover the suitable set of features given
different crowd densities and different regression models.
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Fig. 14 Crowded partition: the mean deviation error (lower is better) vs. different features.

4.3 Geometric Correction

Geometry correction is critical in crowd counting since objects at different depths
of the scene would lead to huge variation in the extracted features. To minimise the
influence of perspective distortion, correction is often conducted in existing stud-
ies but often without explicit analysis on how its sensitivity would affect the final
counting performance. In this experiment, we investigated the sensitivity of crowd
counting performance to a widely adopted perspective normalisation method de-
scribed in [13] (see Section 2.3.2). Evaluation was carried out on the ucsd dataset,
with 800 frames for training and the remaining 1200 frames held out for testing
following the partitioning scheme suggested in [13].

Effectiveness of geometric correction: It is evident from Table 5 that perspec-
tive correction is essential in achieving accurate crowd density estimation. Specif-
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ically, depending on different regression models, an improvement of around 20%
was gained in the mean absolute error by applying perspective correction.

 	

 With Perspective Normalisation	

 Without Perspective Normalisation	


 	

 Mean Abs. Error	

 Mean Sq. Error	

 Mean Dev. Error	

 Mean Abs. Error	

 Mean Sq. Error	

 Mean Dev. Error	


LR	

 2.1608	

 7.1608	

 0.1020	

 2.6308	

 10.2558	

 0.1288	


PLSR	

 2.0267	

 6.6717	

 0.1007	

 2.5792	

 10.0025	

 0.1271	


KRR	

 2.3433	

 8.4800	

 0.1166	

 2.9167	

 11.6133	

 0.1392	


LSSVR	

 2.1100	

 6.6383	

 0.1014	

 2.5825	

 9.6925	

 0.1262	


GPR	

 2.1425	

 7.1358	

 0.1055	

 2.7833	

 10.5200	

 0.1328	


RFR	

 2.3392	

 7.9708	

 0.1129	

 2.8492	

 10.8492	

 0.1332	


Average	

 2.1871	

 7.3429	

 0.1065	

 2.7236	

 10.4889	

 0.1312	



Table 5 Comparison of mean absolute error (lower is better) on ucsd dataset when crowd density
was estimated with and without perspective correction.

Sensitivity to errors in geometric correction: It is interesting to examine how a
minor error introduced by manual measurement will propagate through the counting
by regression pipeline. We manually measure the heights, denoted as h1 and h2, of
a reference pedestrian at two extremes of the ground plane rectangle of the ucsd
dataset (see Fig. 15). We varied h2, the height at the further extreme at +/− 5
pixels with a step size of 1 pixel. Given a frame with resolution of 238 × 158, this
is a reasonable error range that is likely to occur during the manual measurement.
Perspective maps within this pixel deviation range were generated, and the crowd
counting performances of different models were subsequently recorded.

A minor measurement error in h2 could result in a great change in perspective
map, as shown in Fig. 4.3. Specifically, when h2 had a smaller value, e.g.h2−5 pix-
els, a steeper slope in the perspective normalisation weight vector was observed. On
the contrary, given h2 +5 pixels, the object size at cd was larger so the perspective
normalisation weight vector had a lower slope. Using these different perspective
maps we evaluated performances of different regression models.

It is clear from the results depicted in Fig. 16 that different perspective maps
will lead to drastic difference in estimation performance, e.g. as much as 10% of
difference from that obtained using initial measurement. The results suggest that
the initial measurement h2 may not be accurate, since more accurate counts were
obtained at h2−5 pixels. A subsequent validation through averaging multiple mea-
surements confirmed that the initial measurement indeed deviated from the accurate
value. Hence one should not rely on a single round of measurement, but to seek
for more reliable perspective statistics by averaging measurements obtained across
multiple attempts. Note that deviation from the ‘exact’ perspective map may not
necessarily lead to a bad consequence sometimes as the steeper weight slope will
counteract the problems of poor segmentation and inter-object occlusion at the back
of the scene.
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video 

motion segmentation 

feature extraction GP model count estimate 

Figure 3. Crowd counting system: the scene is segmented into
crowds with different motions. Normalized features that account
for perspective are extracted from each segment, and the crowd
count for each segment is estimated with a Gaussian process.

scene. Finally, the number of people per segment is esti-
mated with Gaussian process regression. The remainder of
this section describes each of these system components.

3.1. Crowd segmentation
We adopt the mixture of dynamic textures [18] to seg-

ment the crowds moving in different directions. The video
is represented as collection of spatio-temporal patches (7 ×
7 × 20 patches in all experiments reported in the paper),
which are modeled as independent samples from a mix-
ture of dynamic texture models [19]. The mixture model is
learned with the expectation-maximization (EM) algorithm
[18]. Video locations are then scanned sequentially, a patch
is extracted at each location, and assigned to the mixture
component of largest posterior probability. The location is
declared to belong to the segmentation region associated
with that component. For long sequences, where charac-
teristic motions are not expected to change significantly, the
computational cost of the segmentation can be reduced by
learning the mixture model from a subset of the video (e.g.
a representative clip). The remaining video can then be seg-
mented by computing the posterior assignments as before.
This procedure tends to work well in practice, and was used
in this paper to segment a full hour of video. The resulting
segmentations are illustrated in Figures 9 and 11.

3.2. Perspective normalization
Before extracting features from the video segments, it is

important to consider the effects of perspective. Because
objects closer to the camera appear larger, any feature ex-
tracted from a foreground object will account for a smaller
portion of the object than one extracted from an object far-
ther away. This makes it important to normalize the fea-
tures for perspective. One possibility is to weight each pixel
according to a perspective normalization map. The pixel
weight is based on the expected depth of the object which
generated the pixel, with larger weights given to far objects.
In this work, we approximate the perspective map by lin-
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Figure 4. Perspective map: a) reference person at the front of walk-
way, and b) at the end; c) the perspective map, which scales pixels
by their relative size in the true 3d scene.

early interpolating between the two extremes of the scene.
A ground plane is first marked, as in Figure 4a, and the dis-
tances |ab| and |cd| are measured1. Next, a reference pedes-
trian is selected, and the heights h1 and h2 are measured
when the center of the person is on ab and cd (see Figures
4a and 4b). The pixels on ab are given a weight of 1, and
the pixels on cd a weight of h1|ab|

h2|cd| . Finally, the remain-
ing pixel weights are computed by interpolating linearly be-
tween the two lines. Figure 4c shows the perspective map
of the scene using the above procedure. In this case, ob-
jects on the front-line ab are approximately 2.4 times big-
ger than objects on the back-line cd. Finally, for features
based on area (e.g. segmentation area), the weights are ap-
plied to each pixel. For features based on edges (e.g. edge
histogram), the square-roots of the weights are used.

3.3. Feature extraction
Ideally, features such as segmentation area or number of

edges should vary linearly with the number of people in the
scene [14, 11]. Figure 2 plots the segmentation area ver-
sus the crowd size. While the overall trend is indeed lin-
ear, there exist local non-linearities that arise from a vari-
ety of factors, including occlusion, segmentation errors, and
pedestrian configuration (e.g. spacing within a segment). To
model these non-linearities, we extract an additional 28 fea-
tures from each crowd segment.

Segment features: These features capture segment shape
and size.

• Area – total number of pixels in the segment.
• Perimeter – total number of pixels on the segment
perimeter, computed with morphological operators.

• Perimeter edge orientation – orientation histogram of
the segment perimeter. The orientations are quantized

1Here we assume that the horizontal ground plane is parallel to the
horizontal axis of the image, but the procedure can be generalized if not.
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Fig. 15 (Top) Perspective normalisation map of ucsd dataset. (Bottom) Each line in the chart
corresponds to a weight vector along the y-axis (e.g. the dotted blue line) of each perspective map
produced as a result of varying measurement errors in h2, ranging from -5 pixels to +5 pixels with
a step size of 1 pixel.
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Fig. 16 Mean absolute error on ucsd dataset as a result of varying measurement errors in h2: most
regression methods experienced drastic performance change as much as over 10% given just a
minor deviation in the manual measurement.

5 Crowd Profiling

One of the ultimate goals of crowd counting is to profile the crowd behaviours and
density patterns spatially and temporally, e.g.how many people in a region of interest
at what time and predicting the trend. The profiling statistic can serve as useful
hints for controlling crowd movements, designing evacuation routes, and improving
product display strategy to attract more crowds to a shop. An example of such a
crowd profiling application is depicted in Fig. 17, of which the local density map
was generated through learning cell-level counts using separate regressors. A more
scalable way based on a single regression model with multiple outputs can also be
employed [15].

The top row of Fig. 17 shows the footage frames of a shopping mall view overlaid
with heat maps, of which the colour codes representing the crowd density, with
larger crowd represented by red squares and smaller crowd with blue squares. An
interesting usage of the crowd density map is to study the crowd movement profile
in front of a shop, e.g.the two selected regions (blue and red) in Fig. 17. The number
of people appear in these areas over time can be profiled as shown in the two plots
at the bottom of Fig. 17. In addition, activity correlation between these two regions
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Fig. 17 One of the goals of crowd counting is to profile the crowd behaviours and density patterns
spatially and temporally, e.g. how many people in a region of interest at what time (see text for
details).

can be computed to examine their crowd flow dependency, as shown in the last plot.
Analysing these local crowd patterns over time and their correlations globally can
reveal useful information about the shop visitors, such as their interests towards
the product display, walking pace, and intention of buying, without the need for
registering individual’s identities therefore minimising privacy violation.

The crowd counting application can benefit from extensions such as functional
learning of regions [75] (e.g. sitting area, entrance of shops) to better reflect the
activity modes at different regions; or combination with cooperative multi-camera
network surveillance [32, 52] to model the density and activity correlation in the
camera network [94].
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6 Findings and Analysis

We shall summarise our main findings as follows:

Regression model choices: Our evaluation reveals that regression models that are
capable of dealing with multicollinearity among features, e.g.KRR, PLSR, LSSVR
generally give better performance than other regression models such as LR and
RFR. The aforementioned models, i.e.KRR, PLSR, and LSSVR have not been sig-
nificantly explored in existing counting by regression literature.

In general, linear model is expected to give poorer performance as its linear prop-
erty imposes a limitation on the model in capturing only the linear relationship be-
tween the people count and low-level features [4,22,46]. In most cases especially in
crowded environments, the visual observations and people count will not be linearly
related. Nonlinear methods in principle allow one to model arbitrary nonlineari-
ties between the mapping from input variables to target people count. In addition,
employing a nonlinear method would help in remedying the dimensionality prob-
lem since observations typically exhibit strong correlation in a nonlinear manifold,
whose intrinsic dimensionality is smaller than the input space [6].

However, our study suggests that the actual performance of a regression model
can be quite different from what one may anticipate, subject to the nature of data,
especially when it is applied to unseen density. Despite all the evaluated regression
techniques suffer poor extrapolation beyond the training data range, simple linear
regression models such as LR, is found to be more resistant towards the introduction
of unseen density. Its performance can be better than other nonlinear models such
as GPR and LSSVR.

We have emphasised that it is impractical to assume the access to all full den-
sity range during the training stage, thus the capability of generalising to unseen
density is critical. An unexplored approach of resolving the problem is to transfer
the knowledge from other well-annotated datasets that cover wider range of crowd
density. This is an open and challenging problem in crowd counting task given dif-
ferent environmental factors of source and target scenes, e.g. variations in lighting
conditions and camera orientations.

Features selection: Our results suggest that different features can be more use-
ful given different crowd configurations and densities. In sparse scenes, foreground
segment-based features alone can provide sufficient information required for crowd
density estimation. However, when a scene becomes crowded with frequent inter-
object occlusions, the role of edge-based features and texture-based features be-
comes increasingly critical. We also found that combining all features do not always
help, depending on the dataset and regression model of choice. These findings sug-
gest the importance of feature selection, i.e.selecting optimal feature combinations
given different crowd structures and densities, through discarding redundant and ir-
relevant features. The feature selection problem has been largely ignored in existing
crowd counting research.
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Perspective correction: The performance of counting by regression can be severely
influenced by the accuracy of perspective weight estimation. Perspective map gener-
ation based on manual measurement is simple but could be error-prone. We suggest
that multiple measurements are necessary to ensure conciseness of the estimation
normalisation weights. Robust auto-calibration methods such as [40, 50] are also
recommended as an alternative to the manual approach.

7 Further Reading

Interested readers are referred to the following further readings:

• [32] for a general discussion on applications and advances in automated analysis
of human activities for security and surveillance

• [33] for a comprehensive treatment of visual analysis of behaviour from algorithm-
design perspectives

• [37] for a survey on crowd analysis
• [12] for a detailed discussion on using Bayesian techniques for regression-based

counting
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