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Abstract 
The speed and transformative power of human cultural evolution is evident from the 
change it has wrought on our planet. This chapter proposes a human computation 
program aimed at (1) distinguishing algorithmic from non-algorithmic components of 
cultural evolution, (2) computationally modeling the algorithmic components, and 
amassing human solutions to the non-algorithmic (generally, creative) components, 
and (3) combining them to develop human-machine hybrids with previously 
unforeseen computational power that can be used to solve real problems. Drawing on 
recent insights into the origins of evolutionary processes from biology and complexity 
theory, human minds are modeled as self-organizing, interacting, autopoietic networks 
that evolve through a Lamarckian (non-Darwinian) process of communal exchange. 
Existing computational models as well as directions for future research are discussed. 

 
 

 
Introduction 

The origin of life brought about unprecedented change to our planet; new forms emerged creating 
niches that paved the way for more complex forms, completely transforming the lands, skies, and 
oceans. But if biological evolution is effective at bringing about adaptive change, human cultural 
evolution is arguably even more effective, and faster. Cultural change doesn’t take generations; it 
works at the speed of thought, capitalizing on the strategic, intuitive creative abilities of the 
human mind.  

This chapter outlines current and potential future steps toward the development of a human 
computation program inspired by the speed and effectiveness of how culture evolves. The 
overarching goal of the kind of research program outlined in this chapter is to develop a scientific 
framework for cultural evolution by abstracting its algorithmic structure, use this algorithmic 
structure to develop human-machine hybrid structures with previously unforeseen computational 
power, and to apply it to solving real problems. The proposed approach can be thought of as a 
"repeatable method" or “design pattern” for fostering cultural emergence, defined by specific 
computational methods for modeling interactions at the conceptual level, the individual level, and 
the social level, and their application to the accumulation of adaptive, open-ended cultural 
novelty. 

 
Two Approaches to a Scientific Framework for Culture 

Cultural evolution entails the generation and transmission of novel behavior and artifacts within a 
social group, both vertically from one generation to another, and horizontally amongst members 
of a generation. Like biological evolution, it relies on mechanisms for both introducing variation 
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and preserving fit variants. Elements of culture adapt, diversify, and become more complex over 
time, and exhibit phenomena observed in biological evolution, such as niches, drift, epistasis, and 
punctuated equilibrium (Bentley, Hahn & Shennan, 2004; Durham, 1991; Gabora, 1995). 
However, we lack a precise understanding of how culture evolves.  

We begin by summarizing two approaches that have been taken to developing a formal 
understanding of the process by which culture evolves: Darwinian approaches, and Communal 
Exchange approaches.  
 
Darwinian Approaches 
Dawkins’ (1975) proposal that culture evolves through reiterated variation and selection inspired 
formal Darwinian models of cultural evolution (Boyd & Richerson, 1985, 2005; O’Brien, M.J., & 
Lyman Cavalli-Sforza & Feldman, 1981; Henrich & Boyd, 1998, 2002). It also inspired some 
archaeologists to apply methods designed for documenting the evolution of biological organisms 
to chart the historical evolution of artifacts (e.g., O’Brien, & Lyman, 2000; Shennan, 2008). 
Aside from the questionable assumptions underlying this approach (Atran, 2001; Fracchia & 
Lewontin, 1999; Gabora, 1997, 1998, 1999, 2001, 2004, 2006a, 2008, 2011; Skoyles, 2008; 
Temkin & Eldredge, 2007), it aims to model how cultural variants spread, not how they come 
into existence, strategically building on and opening up new niches for one another. 

Holland (1975) elucidated the algorithmic structure of natural selection, resulting in the 
genetic algorithm (GA), and subsequently genetic programming (GP) (Koza, 1993), optimization 
tools with diverse applications to everything from scheduling tasks (Hou, Ansari, & Ren, 1994) 
to pipeline design (Goldberg, Kuo, 1987) to music and art (Bentley & Corne, 2002; DiPaola & 
Gabora, 2009). The term cultural algorithm has referred to a GA that includes a ‘belief space’ 
used to prune the search space (Reynolds, 1994), not an algorithm inspired by how culture itself 
evolves. GAs are effective for multi-constraint problems with complex fitness landscapes, but 
would not do well on problems that require reformulating or restructuring the problem from 
another perspective. GAs are breadth-first (generate many solutions randomly, and some by 
chance may be effective), whereas cultural evolution, which relies on cognitive processes such as 
learning, is depth-first (generate few solutions making use of strategic analysis or spontaneous 
associations, either intentional or unintentional).  
 
Communal Exchange 
Mounting evidence suggests that a non-Darwinian framework is appropriate for, not just cultural 
evolution, but the earliest stages of organic life itself (Gabora, 2006; Kauffman, 1993; Vetsigian, 
Woese, & Goldenfeld, 2006; Williams & Frausto da Silva, 2003), and aspects of modern 
microbial life (Woese 2002). There is widespread support for the hypothesis that the earliest 
protocells were self-organized autocatalytic networks that evolved (albeit haphazardly) through a 
non-Darwinian process involving horizontal transfer of innovation protocols, referred to as 
communal exchange (Vetsigian, Woese, & Goldenfeld, 2006). Communal exchange differs 
substantially from natural selection. Acquired change is retained, and information is transmitted 
communally, not by way of a self-assembly code from parent to offspring. Formal methods for 
modeling reaction networks can be used to investigate the feasibility of the emergence of the kind 
of self-sustaining structure that could evolve through communal exchange. 

It has been suggested that the basic unit of cultural evolution is, not an autocatalytic 
network per se, but an associative network that is (like an autocatalytic network) autopoietic, i.e., 
the whole emerges through interactions amongst the parts (Gabora, 1999, 2004). A communal 
exchange based computational model of cultural evolution has been developed (Gabora, 1995, 
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2008a,b). EVOC (for EVOlution of Culture) consists of neural network based agents that invent 
new actions and imitate actions performed by neighbors. The assemblage of ideas changes over 
time not because some replicate at the expense of others, as in natural selection, but because they 
transform through inventive and social processes. Agents can make generalizations concerning 
what kinds of actions are fittest, and use this acquired knowledge to modify ideas for actions 
between transmission events. EVOC exhibits typical evolutionary patterns, e.g., cumulative 
increase in fitness and complexity of cultural elements over time, and an increase in diversity as 
the space of possibilities is explored, followed by a decrease as agents find and converge on the 
fittest possibilities. EVOC has been used to model how the mean fitness and diversity of cultural 
elements is affected by factors such as leadership, population size and density, borders that affect 
transmission between populations, and the proportion and distribution of creators (who acquire 
new ideas primarily by inventing them) versus imitators (who acquire new ideas primarily by 
copying their neighbors) (Gabora, 1995, 2008a,b; Gabora, & Firouzi, 2012; Gabora & Leijnen, 
2009; Leijnen & Gabora, 2010).  

A communal exchange inspired method for organizing artifacts into historical lineages has 
also been developed. Worldview Evolution, or WE for short, uses both superficial (e.g., ‘beveled 
edge’) and abstract (e.g., ‘object is thrown’) attributes, as well as analogical transfer (e.g., of 
‘handle’ from knife to cup) and complementarity (e.g., bow and arrow) (Gabora, Leijnen, Veloz, 
& Lipo, 2011). It represents objects not in terms of a convenient list of discrete measurable 
attributes, but in terms of how they are actually conceptualized, as a network of interrelated 
properties, using a perspective parameter that can be weighted differently according to their 
relative importance. Preliminary analyses show that the conceptual network approach can recover 
previously unacknowledged patterns of historical relationship that are more congruent with 
geographical distribution and temporal data than is obtained with an alternative cladistic 
approach that is based on the assumption that cultural evolution, like biological evolution, is 
Darwinian.  

These two computational models, EVOC and WE, show that a communal exchange 
approach to cultural evolution is computationally tractable. However such models will not begin 
to approach the open-ended ingenuity and complexity of human cultural evolution until they 
incorporate certain features of the cognitive process by which cultural novelty is generated. 

 
The Generation of Cultural Novelty 

We said that cultural evolution is a depth-first evolution strategy. A depth-first evolution strategy 
entails processes that adaptively bias the generation of novelty. A number of key, interrelated 
processes have been identified that, in addition to learning, accomplish this in cultural evolution. 
We now look briefly at some of these processes, as well as efforts to model them.  
 
Recursive Recall and Restorative Restructuring 
Recursive recall (RR) is the capacity for one thought to trigger another, enabling progressive 
modification of an idea. Donald’s (1991) hypothesis that cultural evolution was made possible by 
onset of the capacity for RR has been tested using EVOC (Gabora & Saberi, 2011; Gabora & 
DiPaola, 2012). A comparison was made of runs in which agents were limited to single-step 
actions to runs in which they could recursively operate on ideas, and chain them together, 
resulting in more complex actions. While RR and no-RR runs both converged on optimal actions, 
without RR this set was static, but with RR it was in constant flux as ever-fitter actions were 
found. In RR runs there was no ceiling on mean fitness of actions, and RR enhanced the benefits 
of learning.  
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Although these findings support Donald’s hypothesis, the novel actions generated with RR 
were predictable. They did not open up new cultural niches in the sense that, for example, the 
invention of cars created niches for the invention of things like seatbelts and stoplights. EVOC in 
its current form could not solve insight problems, which require restructuring the solution space 
(Boden, 1990; Kaplan & Simon, 1990, Ohlsson, 1992). Restructuring can be viewed as a form of 
RR that entails looking at the problem from a new context or perspective, and that this is driven 
by the mind’s self-organizing, restorative capacity.  

 
Contextual Focus (CF) and Divergent versus Associative Thought 
It has been proposed that restorative restructuring is aided by contextual focus (CF): the capacity 
to spontaneously and temporarily shift to a more divergent mode of thought (Gabora, 2003). 
Divergent thought entails an increase in activation of the associates of a given item (Runco, 
2010). Thus for example, given the item TABLE, in a convergent mode of thought you might call 
to mind accessible associates such as CHAIR, but in a divergent mode of thought you might also 
call to mind more unusual associates such as PICNIC or MULTIPLICATION TABLE. CF has 
been implemented in EVOC (the computational model of cultural evolution). Low fitness of 
ideas induces a temporary shift to a more divergent processing mode by increasing the 
‘reactivity’, α, which determines the degree to which a newly invented idea can differ from the 
idea on which it was based.  

Current research on the architecture of memory suggests that creative thought is actually 
not divergent but associative, as illustrated in Figure 1 (Gabora, 2010; Gabora & Ranjan, 2013). 
While divergent thought refers to an increase in activation of all associates, associative thought 
increases only activation of those relevant to the context. Because memory is distributed and 
content-addressable, associations are forged by way of shared structure. In associative thought, 
items come together that, though perhaps seemingly different, share properties or relations, and 
are thus more likely than chance to be relevant to one another, perhaps in a previously unnoticed 
but useful way.  

Figure 1. Convergent thought (left) activates key properties only, represented by black dots. 
Divergent thought (centre) activates not just key properties but also peripheral (less salient) 
properties, represented by both grey dots and black triangles. The grey dots represent peripheral 
properties that are relevant to the current context (goal or situation); the black triangles represent 
peripheral properties that are irrelevant to the current context. Associative thought (right) 
activates key properties and context-relevant peripheral properties. 

 
A processing mode that is not just divergent but associative could be simulated in a model 

such as EVOC capitalizing on the ability to learn generalizations (e.g., symmetrical movements 
tend to be fit) to constrain changes in α. It would also be interesting to investigate the topological 
and dynamical properties of fitness landscapes for which divergent versus associative forms of 
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CF is effective. CF is expected to be most beneficial for fitness landscapes that are rugged and 
subject to infrequent, abrupt change, with associative CF outperforming divergent CF. 
 
Concept Interaction 
Since creative processes such as restructuring involve putting concepts together in new contexts, 
a model of cultural evolution should be built upon a solid theory of concepts and how they 
interact. However, people use conjunctions and disjunctions of concepts in ways that violate the 
rules of classical logic; i.e., concepts interact in ways that are non-compositional (Osherson & 
Smith, 1981; Hampton, 1987; Aerts, 2009; Aerts, Aerts, & Gabora, 2009; Aerts, Broekaert & 
Gabora, 2010; Kitto, Ram, Sitbon, & Bruza, 2011). This is true both with respect to properties 
(e.g., although people do not rate ‘talks’ as a characteristic property of PET or BIRD, they rate it 
as characteristic of PET BIRD), and exemplar typicalities (e.g., although people do not rate 
‘guppy’ as a typical PET, nor a typical FISH, they rate it as a highly typical PET FISH). Because 
of this, concepts have been resistant to mathematical description. 

This non-compositionality can be modeled using a generalization of the formalisms of 
quantum mechanics (QM) (Aerts & Gabora, 2005; Gabora & Aerts, 2002a,b; Kitto, Ramm, 
Sitbon, & Bruza, 2011). The reason for using the quantum formalism is that it allows us to 
describe the chameleon-like way in which concepts interact, spontaneously shifting their 
meanings depending on what other concepts are nearby or activated. The following formal 
exposition, though not essential for grasping the underlying concepts, is provided for the 
mathematically inclined reader. In QM, the state÷yñ of an entity is written as a linear 
superposition of a set of basis states {÷fiñ} of a complex Hilbert space H. Hence ÷yñ = Sici÷fiñ 
where each complex number coefficient ci of the linear superposition represents the contribution 
of each component state ÷fiñ to the state ÷yñ. The square of the absolute value of each coefficient 
equals the weight of its component basis state with respect to the global state. The choice of basis 
states is determined by the observable to be measured. The basis states corresponding to this 
observable are called eigenstates. Upon measurement, the state of the entity collapses to one of 
the eigenstates. In the quantum inspired State COntext Property (SCOP) theory of concepts, the 
basis states represent states (instances or exemplars) of a concept, and the measurement is the 
context that causes a particular state to be evoked. SCOP is consistent with experimental concept 
data on concept combination (Aerts, 2009; Aerts, Aerts, & Gabora, 2009; Aerts, Broekaert, 
Gabora, & Veloz, 2012; Aerts, Gabora, & Sozzo, submitted; Hampton, 1987), and with findings 
that a compound’s constituents are not just conjointly activated but bound together in a context-
specific manner that takes relational structure into account (Gagné & Spalding, 2009). The model 
is being expanding to incorporate larger conceptual structures (Gabora & Aerts, 2009), and 
different modes of thought (Veloz, Gabora, Eyjolfson, & Aerts, 2011). This theoretical work is 
complemented by empirical studies aimed at establishing that (i) some concept combinations 
involve interference and entangled states, and (ii) creative products are external evidence of an 
internal self-organization process aimed at resolving dissonance and restoring equilibrium 
through the recursive actualization of potentiality (Gabora, 2011; Gabora, O’Connor, & Ranjan, 
2012; Gabora & Saab, 2011). 

 
Harnessing the Computational Power of Cultural Evolution 

We have looked at some of the key milestones that have been crossed in the development of a 
scientific framework for how culture evolves. These milestones include a crude but functional 
computational model of cultural evolution, research into the cognitive mechanisms underlying 
the generation of cultural novelty, and preliminary efforts to computationally model these 
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mechanisms. The rest of this chapter presents new, untested, yet-to-be-implemented ideas for 
how to go about harnessing the speed and power of cultural evolution in the development of a 
human computation research program.  
 
Computational Model of Restorative Restructuring 
A first step is to develop a model of problem restructuring using a “reaction network” inspired 
model that has as its basic unit, not catalytic molecules, but interacting concepts. There are 
various methods for going about this, for example using Concat, or Holographic Reduced 
Representations to computationally model the convolution or ‘twisting together’ of mental 
representation (Aerts, Czachor, & De Moor, 2009; Eliasmith & Thagard, 2001; Thagard & 
Stewart, 2011). Another promising route is to use a quantum-inspired theory of concepts such as 
SCOP that incorporates the notion of context-driven actualization of potential (Aerts & Gabora, 
2005a,b; Gabora & Aerts, 2002a,b). A concept is defined in terms of (1) its set of states or 
exemplars S, each of which consists of a set L of relevant properties, (2) set M of contexts in 
which it may be relevant, (3) a function n that describes the applicability or weight of a certain 
property for a specific state and context, and (4) a function µ that describes the transition 
probability from one state to another under the influence of a particular context. 

The procedure is best explained using an example, such as the idea of using a tire to make a 
swing, i.e., the invention of a tire swing (from Gabora, Scott, & Kauffman, in press). The concept 
TIRE consists of the set S of states of TIRE, and in the context ‘winter’, TIRE might collapse to 
SNOW TIRE. Suppose that the network’s initial conception of TIRE, represented by vector |pñ 
of length equal to 1, is a superposition of only two possibilities (Fig. 2). The possibility that the 
tire has sufficient tread to be useful is denote by unit vector |uñ. The possibility that it should be 
discarded as waste is denoted by unit vector, |wñ. Their relationship is given by the equation |pñ = 
a0|uñ + a1|wñ, where a0 and a1 are the amplitudes of |uñ and |wñ respectively. If a tire us useful 
only for transportation, denoted |tñ then, |uñ = |tñ. States are represented by unit vectors and all 
vectors of a decomposition such as |uñ and |wñ have unit length, are mutually orthogonal and 
generate the whole vector space, thus |a0|2 + |a1|2 = 1. 

 
Figure 2. Graphical depiction of a vector |pñ representing particular state of TIRE, specifically, a state in which the 
tread is worn away. In the default context, the state of tire is more likely to collapse to the projection vector |wñ 
which represents wasteful than to its orthogonal projection vector |uñ which represents useful. This can be seen by 
the fact that subspace a0 is smaller than subspace a1. Under the influence of the context playground equipment, the 
opposite is the case, as shown by the fact that b0 is larger than b1. Also shown is the projection vector after 
renormalization. 

 
The conception of TIRE changes when activation of the set L of properties of TIRE, e.g. 
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‘weather resistant’, spreads to other concepts in the network for which these properties are 
relevant. Contexts such as playground equipment that share properties with TIRE become 
candidate members of the set M of relevant contexts for TIRE. The context playground 
equipment, denoted e, consists of the concepts SWING, denoted |señ, and SLIDE, denoted |leñ. 
The restructured conception of TIRE in the context of playground equipment, denoted |peñ, is 
given by b0|ueñ + b1|weñ, where ueñ = b2|teñ + b3|teseñ + b4|teleñ, and where |teseñ stands for the 
possibility that a tire functions as a swing, and |teleñ stands for the possibility that a tire functions 
as a slide. The amplitude of |weñ, |b1|, is less than |a1|, the amplitude of |wñ. This is because |b0| > 
|a0|, since |b0| consists of the possibility of a tire being used not just as a tire, but as a swing or 
slide. Because certain strongly weighted properties of SLIDE, such as ‘long’ and ‘flat’, are not 
properties of TIRE, |b4| is small. That is not the case for SWING, so |b3| is large. Therefore, in the 
context playground equipment, the concept TIRE has a high probability of collapsing to TIRE 
SWING, an entangled state of the concepts TIRE and SWING. Entanglement introduces 
interference of a quantum nature, and hence the amplitudes are complex numbers (Aerts, 2009). 
If this collapse takes place, TIRE SWING is thereafter a new state of both concepts TIRE and 
SWING. 

This example shows that a formal approach to concept interactions that is consistent with 
human data (Aerts, 2009; Aerts, Aerts, & Gabora, 2009; Aerts, Broekaert, Gabora, & Veloz, 
2012; Aerts, Gabora, & Sozzo, submitted; Hampton, 1987) can model the restructuring of 
information (e.g., TIRE) under a new context (e.g., playground equipment). Note how in the 
quantum representation, probability is treated as arising not from a lack of information per se, but 
from the limitations of any particular context (even a ‘default’ context). 

The limitations of this approach are as interesting as its strengths. It is not possible to list, 
or even develop an algorithm that will list, all possible uses or contexts for any item such as a tire 
or screwdriver (Longo, Montevil, & Kaufman, 2012). This is what has been referred to as the 
frame problem. As a consequence, human input is particularly welcome at this juncture to define 
the relevant contexts, e.g., the possible uses of a tire. Studies would be run using data collected 
from real humans to determine the extent to which the model matches typicality ratings and 
generation frequencies of exemplars of concepts in particular contexts by human participants, as 
per (Veloz, Gabora, Eyjolfson, & Aerts, 2011). SCOP models of individual concepts can be 
embedded into an associative “reaction network”. Concept interactions are then modeled as 
reactions that generate products. Chemical Organization Theory (Dittrich & Speroni di Fenizio, 
2008; Dittrich & Winter, 2007; Dittrich, Ziegler, & Banzhaf, 2001), which provides an algebraic 
means of solving nonlinear, coupled differential equations in reaction networks, or some other 
such theory, can be used to model the associative structure of interrelated sets of concepts a 
whole, and study the conditions under which it restores equilibrium in response to the 
introduction of new states of concepts that results from placing them in new contexts.  

Using this SCOP-based cognitive “reaction network” it would be possible to test the 
hypothesis that contextual focus (the ability to shift between different modes of thought 
depending on the context− increases cognitive efficiency. If the amplitude associated with |wñ for 
any concept becomes high—such as for TIRE if the weight of the property ‘tread’ is low—this 
signals that the potentiality to re-conceptualize the concept is high. This causes a shift to a more 
associative mode by increasing α, causing activation of other concepts that share properties with 
this concept, as described previously.  
 
Enhanced Computational Model of Cultural Evolution 
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Let us now examine how a model of restorative restructuring such as the SCOP-based one we 
just looked at could be used to develop a cognitively sophisticated computational model of 
cultural evolution. We will refer to this ‘new and improved’ model as EVOC2.  

So that the EVOC2 agents have something to make artifacts from, their world would 
contain resource bases from which objects are extracted and wastes are generated. Extracted 
objects can be joined (lego-style) to construct other objects. Agents have mental representations 
of resources and objects made from resources. Objects derived from the same resource are 
modeled in their conceptual networks as states of a concept. Newly extracted or constructed 
objects have a fitness that defines how useful or wasteful they are with respect to the other 
objects an agent has encountered. Thus existing objects provide contexts that affect the utility of 
new objects, and an agent’s knowledge of existing objects defines its perspective.  

The artificial culture can now evolve as follows: 
Invent. Agents invent as in EVOC, except that they invent not actions but objects, using 

resources in adjacent cells. Extracting an object from a resource creates waste objects. 
Detect and Actualize Potential for Adaptive Change. If a waste object p is accumulating 

adjacent to A1, A1 recursively modifies p by considering it from A1’s perspective. This continues 
until p is in a new less wasteful state pA1* which is an eigenstate with respect to A1’s perspective. 
This process may modify not just p, but A1’s perspective. Perspectives change in response to the 
ideas and objects an agent interacts with; thus a perspective can encompass more than one 
context. 

Contextual focus. The previous step may involve temporarily assuming a more associative 
processing mode in response to the magnitude of potential for adaptive change. 

Transmission. Modified object, pA1*, becomes input to the associative networks of adjacent 
agents. 

Context-dependent Restructuring. If p A1* is wasteful (has potential to change) with respect 
to the perspective of another agent, A2, then A2 recursively modifies pA1* until it is an eigenstate 
with respect to A2’s perspective, at which point it is referred to as pA1*A2*. Since A1’s perspective 
is reflected in pA1*, assimilation of pA1* modifies A2’s perspective in a way that reflects exposure 
to (though not necessarily incorporation of or agreement with) A1’s perspective. This continues 
until p settles on stable or cyclic attractor, or we terminate after a set number of iterations (since a 
chaotic attractor or limit cycle may be hard to distinguish from a non-stable transient). 

Evaluate. The user assesses the usefulness of the culturally evolved objects for the agents, 
as well as object diversity, and wastefulness.  

EVOC2 will be deemed a success if it not only evolves cultural novelty that is cumulative, 
adaptive, and open-ended (as in EVOC with RR), but also (a) restructures conceptions of objects 
by viewing them from different perspectives (new contexts), (b) generates inventions that open 
up niches for other inventions, and (c) exhibits contextual focus, i.e., shifts to an associative 
mode to restructure and shifts back to fine-tune. It is hypothesized that these features will 
increase the complexity of economic webs of objects and recycled wastes. 
 
Elucidating the Algorithmic Structure of Biological versus Cultural Evolution 
The design features that made EVOC2 specific to the problem of waste recycling can eventually 
be replaced by general-purpose counterparts, resulting in a cultural algorithm (CAL1). It will be 
interesting to compare the performance of a CAL with a GA on standard problems (e.g., the 
Rosenbrock function) as well as on insight tasks such as real-world waste recycling webs that 
                                                
1 Cultural algorithm is abbreviated CAL because CA customarily refers to cellular automaton. 
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require restructuring. Waste recycling is a particularly appropriate application because it 
explicitly requires considering how the same item offers a different set of constraints and 
affordances when considered with respect to a different goal, a different demographic, or a 
different aesthetic sensibility (one person’s trash is another person’s treasure). In general the CAL 
is expected to outperform the GA on problems that involve not just multiple constraints but 
multiple perspectives, e.g., economic and environmental.  

A long-term objective is to develop an integrated framework for evolutionary processes 
that encompasses natural selection, cultural evolution, and communal exchange theories of early 
life. Finally, it can advance knowledge of how systems evolve. Early efforts toward a general 
cross-disciplinary framework for evolution Processes were modeled as context-dependent 
actualization of potential: an entity has potential to change various ways, and how it does change 
depends on the contexts it interacts with (Gabora & Aerts, 2005, 2007). These efforts focused on 
distinguishing processes according to the degree of non-determinism they entail, and the extent to 
which they are sensitive to, internalize, and depend upon a particular context. With the sorts of 
tools outlined here, it will be possible to compare the effectiveness of communal exchange, 
Darwinian, and mixed strategies in different environments (simple versus complex, static versus 
fluctuating, and so forth. This will result in a more precise understanding of the similarities and 
differences between biological and cultural evolution, and help us recognize other evolutionary 
processes that we may discover as science penetrates ever deeper into the mysteries of our 
universe. 
 

Summary and Conclusions 
Culture evolves with breathtaking speed and efficiency. We are crossing the threshold to an 
exciting frontier: a scientific understanding of the process by which cultural change occurs, as 
well as the means to capitalize on this understanding. The cultural evolution inspired human 
computation program of research described in this chapter is ambitious and interdisciplinary, but 
it builds solidly on previous accomplishments.  

We examined evidence that culture evolves through a non-Darwinian communal exchange 
process, and discussed a plan for modeling the autopoietic structures that evolve through 
biological and cultural processes—i.e., metabolic reaction networks and associative networks. 
This will make it possible to undertake a comparative investigation of the dynamics of 
communally exchanging groups of these two kinds of networks. This research is necessary to 
achieve a unification of the social and behavioral sciences comparable to Darwin’s unification of 
the life sciences.  

Efforts are underway toward the development of a computational model of cultural 
evolution that incorporates the kind of sophisticated cognitive machinery by which cultural 
novelty evolves. These include the combining of concepts to give rise to new concepts sometimes 
with emergent properties, and the capacity to shift between different modes of thought depending 
on the situation. An important step is to embed formal models of concepts in a modified “reaction 
network” architecture, in order to computationally model how clusters of interrelated concepts 
modify one another to achieve a more stable lower energy state, through a process we referred to 
as context-driven restorative restructuring. Efforts are also underway toward the development of 
a computer program for identifying patterns of historical relationship amongst sets of artifacts. 
Human input is used to define contexts—perspectives or situations that define which features or 
attributes are potentially relevant. One long-term objective of this kind of research program is to 
develop a cultural algorithm: an optimization and problem-solving tool inspired by cultural 
evolution. This will allow us to investigate how strategies for recursively re-processing and 
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restructuring information, or shifting between different processing modes, affect the capacity to 
evolve cumulative, adaptive, open-ended novelty. 

The ideas presented in this chapter are speculative, ambitious, and innovative both 
conceptually and methodologically, but they have far-reaching implications and potentially 
diverse applications. The human computation program proposed here could promote a scientific 
understanding of the current accelerated pace of cultural change and its transformative effects on 
humans and our planet. It may foster cultural developments that are healthy and productive in the 
long term as well as the short term, and help us find solutions to complex crises we now face. 
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