Skip to main content

Ant Colonies as a Model of Human Computation

  • Chapter
  • First Online:
Book cover Handbook of Human Computation

Abstract

In this chapter we describe how ant colonies are complex systems capable of computation, and we describe the manner in which ants use local information and behavior to produce robust and adaptive colonies. While there are key differences between ant colonies and collections of human agents, the nascent field of human computation can learn from the myriad strategies that ants have evolved for successful cooperation. The cooperative behaviors of ants reflect not just the particular physiology of these insects, but also more general principles for cooperative computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackley DH, Cannon DC, Williams LR (2013). A movable architecture for robust spatial computing. The Computer Journal, Advance Access, doi:10.1093/comjnl/bxs129

  • Alberts B (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Anderson C, McShea D (2001) Individual versus social complexity, with particular reference to ant colonies. Biol Rev 76(02):211–237

    Article  Google Scholar 

  • Aron S, Pasteels J, Deneubourg J (1989) Trail-laying behaviour during exploratory recruitment in the argentine ant, Iridomyrmex humilis (Mayr). Biol Behav 14(3):207–217

    Google Scholar 

  • Backen SJ, Sendova-Franks AB, Franks NR (2000) Testing the limits of social resilience in ant colonies. Behav Ecol Sociobiol 48(2):125–131

    Article  Google Scholar 

  • Banavar JR, Moses ME, Brown JH, Damuth J, Rinaldo A, Sibly RM, Maritan A (2010) A general basis for quarter-power scaling in animals. Proc Natl Acad Sci 107(36):15816–15820

    Article  Google Scholar 

  • Beckers R, Goss S, Deneubourg JL, Pasteels J (1989) Colony size, communication, and ant foraging strategy. Psyche 96(3–4):239–256

    Article  Google Scholar 

  • Bernstein RA (1975) Foraging strategies of ants in response to variable food density. Ecology 56:213–219

    Article  Google Scholar 

  • Berry G, Boudol G (1992) The chemical abstract machine. Theor Comput Sci 96(1):217–248

    Article  MathSciNet  MATH  Google Scholar 

  • Bersini H, Varela F (1991) Hints for adaptive problem solving gleaned from immune networks. In: Schwefel H., and R. Maenner, eds., Parallel Problem Solving from Nature, Lecture Notes in Computer Science, Vol. 496. (pp. 343–354), Springer, Berlin

    Google Scholar 

  • Beverly BD, McLendon H, Nacu S, Holmes S, Gordon D (2009) How site fidelity leads to individual differences in the foraging activity of harvester ants. Behav Ecol 20(3):633–638

    Article  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg J-L, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12(5):188–193

    Article  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems, vol 1. Oxford University Press, New York

    MATH  Google Scholar 

  • Bourke AF, Franks NR (1995) Social evolution in ants. Princeton University Press

    Google Scholar 

  • Brambilla M, E. Ferrante, M. Birattari (2012) Swarm Robotics: A Review from the Swarm Engineering Perspective. IRIDIA Technical Repor 2012–2014

    Google Scholar 

  • Bray D (1990) Intracellular signalling as a parallel distributed process. J Theor Biol 143(2): 215–231

    Article  Google Scholar 

  • Bray D (1995). Protein molecules as computational elements in living cells. Nature 376(6538): 307–312

    Google Scholar 

  • Camazine S, Deneubourg J, Franks N, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in complex systems. Princeton University Press, Princeton

    Google Scholar 

  • Cardelli L (2005) Brane calculi - Interactions of biological membranes. In: Proceedings of Computational Methods in Systems Biology (2004), Lecture Notes in Computer Science, Vol. 3082 (pp.257–278). Springer, Berlin

    Google Scholar 

  • Crist TO, MacMahon J (1992) Harvester ant foraging and shrub-steppe seeds: interactions of seed resources and seed use. Ecology 73(5):1768–1779

    Article  Google Scholar 

  • Czaczkes TJ, Grüter C, Jones SM, Ratnieks FL (2011) Synergy between social and private information increases foraging efficiency in ants. Biol Lett 7(4):521–524

    Article  Google Scholar 

  • Davidson DW (1977) Foraging ecology and community organization in desert seed-eating ants. Ecology 58(4):725–737

    Article  Google Scholar 

  • Debout G, Schatz B, Elias M, McKey D (2007) Polydomy in ants: what we know, what we think we know, and what remains to be done. Biol J Linn Soc 90(2):319–348

    Article  Google Scholar 

  • Detrain C, Deneubourg J, Pasteels J (1999) Information processing in social insects. Birkhauser, Basel

    Book  Google Scholar 

  • Dorigo M (1992) Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora naturale. Politecnico di Milano, Milan (in Italian)

    Google Scholar 

  • Dorigo M, Stützle T (2010) Ant colony optimization: overview and recent advances. In: Gendreau, M., and J. Potvin, eds., Handbook of Metaheuristics 2nd ed., International Series in Operations Research and Management Science, Vol. 146 (pp. 227–263). Springer, New York

    Google Scholar 

  • Dorigo M, Gambardella LM, Birattari M, Martinoli A, Poli R, Stützle T (2006) Ant colony optimization and Swarm intelligence. In: 5th international workshop, ANTS 2006, proceedings, vol 4150. Springer, Brussels, 4–7 Sept 2006

    Google Scholar 

  • Flanagan T, Letendre K, Burnside W, Fricke GM, Moses M (2011) How ants turn information into food. In Proceedings of the 2011 IEEE Symposium on Artificial Life 158–185

    Google Scholar 

  • Flanagan T, Letendre K, Burnside W, Fricke GM, Moses M (2012) Quantifying the effect of colony size and food distribution on harvester ant foraging. PLoS One 7:e39427

    Google Scholar 

  • Flanagan TP, Pinter-Wollman N, Moses ME, Gordon DM (2013) Fast and flexible. Argentine ants recruit from nearby trails. PLoS One 8: e70888

    Google Scholar 

  • Forrest S, Perelson A (1991) Genetic algorithms and the immune system. In Schwefel H., and R. Maenner, eds., Parallel Problem Solving from Nature, Lecture Notes in Computer Science, Vol. 496 (pp. 320–325), Springer, Berlin

    Google Scholar 

  • Franks NR, Deneubourg J-L (1997) Self-organizing nest construction in ants: individual worker behaviour and the nest’s dynamics. Anim Behav 54(4):779–796

    Article  Google Scholar 

  • Franks NR, Dornhaus A, Best CS, Jones EL (2006) Decision making by small and large house-hunting ant colonies: one size fits all. Anim Behav 72(3):611–616

    Article  Google Scholar 

  • Gordon DM (1999) Ants at work: how an insect society is organized. The Free Press, New York

    Google Scholar 

  • Gordon DM (2002) The organization of work in social insect colonies. Complexity 8(1):43–46

    Article  Google Scholar 

  • Gordon DM (2010) Ant encounters: interaction networks and colony behavior. Princeton University Press

    Google Scholar 

  • Greene M and Gordon D (2003) Social Insects: Cuticular hydrocarbons inform task decisions. Nature, 423(6935):32–32

    Google Scholar 

  • Grüter C, Czaczkes TJ, Ratnieks FL (2011) Decision making in ant foragers (Lasius niger) facing conflicting private and social information. Behav Ecol Sociobiol 65(2):141–148

    Article  Google Scholar 

  • Hecker JP, Letendre K, Stolleis K, Washington D, Moses ME (2012) Formica ex machina: ant swarm foraging from physical to virtual and back again. In Swarm Intelligence, Lecture Notes in Computer Science, Vol. 7461 (pp. 252–259), Springer, Berlin

    Google Scholar 

  • Heller NE, Gordon DM (2006) Seasonal spatial dynamics and causes of nest movement in colonies of the invasive Argentine ant (Linepithema humile). Ecol Entomol 31(5):499–510

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems, vol 1. vol 97. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Holldobler B (1976) Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav Ecol Sociobiol 1(1):3–44

    Article  Google Scholar 

  • Holldobler B, Wilson E (1990) The ants. Belknap Press of Harvard University Press, Cambridge

    Book  Google Scholar 

  • Kenne M, Dejean A (1999) Spatial distribution, size and density of nests of Myrmicaria opaciventris Emery (Formicidae, Myrmicinae). Insectes Sociaux 46(2):179–185

    Article  Google Scholar 

  • Letendre K, Moses M (2013) Synergy in ant foraging strategies: memory and communication alone and in combination. In: Proceedings of the genetic and evolutionary computation conference (pp. 41–48), ACM.

    Google Scholar 

  • MacGregor EC (1947) Odour as a basis for oriented movement in ants. Behaviour 1:267–297

    Article  Google Scholar 

  • Mailleux A-C, Deneubourg J-L, Detrain C (2003) Regulation of ants’ foraging to resource productivity. Proc R Soc Lond Ser B Biol Sci 270(1524):1609–1616

    Article  Google Scholar 

  • Marshall JA, Bogacz R, Dornhaus A, Planqué R, Kovacs T, Franks NR (2009) On optimal decision-making in brains and social insect colonies. J R Soc Interface 6(40):1065–1074

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 5(4):115–133

    MathSciNet  MATH  Google Scholar 

  • Mitchell M (2006) Coevolutionary learning with spatially distributed populations. In: Yen G., and D. Fogel. eds., Computational intelligence: principles and practice (pp. 137–154), IEEE Computational Intelligence Society, New York

    Google Scholar 

  • Moses ME (2005) Metabolic scaling, from insects to societies. Ph.D. dissertation, University of New Mexico

    Google Scholar 

  • Moses M, Banerjee S (2011) Biologically inspired design principles for Scalable, Robust, Adaptive, Decentralized search and automated response (RADAR). In: Artificial Life (ALIFE), 2011 IEEE symposium on, IEEE, pp 30–37

    Google Scholar 

  • Pacala SW, Gordon DM, Godfray H (1996) Effects of social group size on information transfer and task allocation. Evol Ecol 10(2):127–165

    Article  Google Scholar 

  • Pinter-Wollman N, Wollman R, Guetz A, Holmes S, Gordon DM (2011) The effect of individual variation on the structure and function of interaction networks in harvester ants. J R Soc Interface 8(64):1562–1573

    Article  Google Scholar 

  • Prabhakar B, Dektar KN, Gordon DM (2012) The regulation of ant colony foraging activity without spatial information. PLoS Comput Biol 8(8):e1002670

    Article  MathSciNet  Google Scholar 

  • Rossi, D., & Zlotnik, A. (2000). The biology of chemokines and their receptors. Annual review of immunology 18(1): 217–242

    Google Scholar 

  • Schafer RJ, Holmes S, Gordon DM (2006) Forager activation and food availability in harvester ants. Anim Behav 71(4):815–822

    Article  Google Scholar 

  • Schwefel H-P (1965) Kybernetische Evolution als Strategie der experimentellen Forschung in der Stromungstechnik (in German). Technical University of Berlin, Berlin

    Google Scholar 

  • Von Boehmer H, & Kisielow P (1990) Self-nonself discrimination by T cells. Science 248 (4961):1369–1373

    Google Scholar 

  • Von Neumann J, AW Burks (1966). Theory of self-reproducing automata. University of Illinois Press, Urbana.

    Google Scholar 

  • Whitford WG, Bryant M (1979) Behavior of a predator and its prey: the horned lizard (Phrynosoma cornutum) and harvester ants (Pogonomyrmex spp.). Ecology 686–694

    Google Scholar 

  • Whitford WG, Ettershank G (1975) Factors affecting foraging activity in Chihuahuan desert harvester ants. Environ Entomol 4(5):689–696

    Google Scholar 

  • Wilson EO (1962) Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith) 2. An information analysis of the odour trail. Anim Behav 10(1–2):148–158

    Article  Google Scholar 

  • Wilson EO (1965) Chemical communication in the social insects. Science 149(3688):1064–1071

    Article  Google Scholar 

  • Wilson EO, Osborne E (1971) The insect societies. Belknap Press, Cambridge

    Google Scholar 

  • Woolley A, Chabris CF, Pentland A, Hashmi N, Malone TW (2010) Evidence for a collective intelligence factor in the performance of human groups. Science 330(6004):686–688

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Moses .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moses, M., Flanagan, T., Letendre, K., Fricke, M. (2013). Ant Colonies as a Model of Human Computation. In: Michelucci, P. (eds) Handbook of Human Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8806-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8806-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8805-7

  • Online ISBN: 978-1-4614-8806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics