# APPLICATIONS OF DATA MINING IN COMPUTER SECURITY

## **ADVANCES IN INFORMATION SECURITY**

#### Sushil Jajodia

Consulting editor

Center for Secure Information Systems George Mason University Fairfax, VA 22030-4444

email: jajodia@gmu.edu

Additional titles in the series:

**MOBILE COMPUTATION WITH FUNCTIONS** by Zeliha Dilsun Kırlı, ISBN: 1-4020-7024-1

**TRUSTED RECOVERY AND DEFENSIVE INFORMATION WARFARE** by Peng Liu and Sushil Jajodia, ISBN: 0-7923-7572-6

**RECENT ADVANCES IN RSA CRYPTOGRAPHY** by Stefan Katzenbeisser, ISBN: 0-7923-7438-X

**E-COMMERCE SECURITY AND PRIVACY** by Anup K. Ghosh, ISBN: 0-7923-7399-5

**INFORMATION HIDING: Steganography and Watermarking-Attacks and Countermeasures** by Neil F. Johnson, Zoran Duric, and Sushil Jajodia, ISBN: 0-7923-7204-2

Additional information about this series can be obtained from www.wkap.nl/series.htm/ADIS.

# APPLICATIONS OF DATA MINING IN COMPUTER SECURITY

edited by

Daniel Barbará Sushil Jajodia George Mason University U.S.A.



#### SPRINGER SCIENCE+BUSINESS MEDIA, LLC

ISBN 978-1-4613-5321-8 ISBN 978-1-4615-0953-0 (eBook) DOI 10.1007/978-1-4615-0953-0

#### Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

**Copyright** © 2002 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 2002 Softcover reprint of the hardcover 1st edition 2002

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without the written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Permission for books published in Europe: <u>permissions@wkap.nl</u> Permissions for books published in the United States of America: <u>permissions@wkap.com</u>

Printed on acid-free paper.

#### **Series Foreword**

### **ADVANCES IN INFORMATION SECURITY**

#### Sushil Jajodia

**Consulting Editor** 

Center for Secure Information Systems George Mason University Fairfax, VA 22030-4444

email: jajodia@gmu.edu

Welcome to the sixth volume of the Kluwer International Series on ADVANCES IN INFORMATION SECURITY. The goals of this series are, one, to establish the state of the art of, and set the course for future research in information security and, two, to serve as a central reference source for advanced and timely topics in information security research and development. The scope of this series includes all aspects of computer and network security and related areas such as fault tolerance and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive overviews of specific topics in information security, as well as works that are larger in scope or contain more detailed background information than can be accommodated in shorter survey articles. The series also serves as a forum for topics that may not have reached a level of maturity to warrant a comprehensive textbook treatment.

The success of this series depends on contributions by researchers and developers such as you. If you have an idea for a book that is appropriate for this series, I encourage you to contact me. I would be happy to discuss any potential projects with you. Additional information about this series can be obtained from www.wkap.nl/series.htm/ADIS.

#### **About This Volume**

This sixth volume of the series is entitled *APPLICATIONS OF DATA MINING IN COMPUTER SECURITY*, edited by Daniel Barbarà and Sushil Jajodia.

Computer intrusions are becoming commonplace and outpacing our capacity to detect, analyze, and counteract them. Since intrusions usually leave traces in the audit data trails, it is only natural to think about this problem in a data-centered way. Some research groups have been successfully using data mining techniques for effectively implementing tools to detect and analyze intrusions.

This volume offers nine articles from leading researchers; eight of these articles focus on the use of data mining for intrusion detection, including one that surveys the state of modern intrusion detection using data mining approaches and another that critically examines these approaches. The last article deals with the application of data mining to computer forensics. Collectively, these articles provide a comprehensive summary of current findings in this fruitful research field.

SUSHIL JAJODIA Consulting Editor

# Contents

| List of F       | ìgures                                                          | xiii     |
|-----------------|-----------------------------------------------------------------|----------|
| List of T       | Tables                                                          | xvii     |
| Preface         |                                                                 | xix      |
| 1               |                                                                 |          |
| Modern<br>Guilt | Intrusion Detection, Data Mining, and Degrees of Attack         | 1        |
|                 | Voel, Duminda Wijesekera and Charles Youman                     |          |
| 1.              | Introduction                                                    | 2        |
| 2.              | Detection Strategies                                            | 3        |
|                 | 2.1 Misuse Detection                                            | 4        |
|                 | 2.1.1 Expert Systems                                            | 4        |
|                 | 2.1.2 Signature Analysis                                        | 5        |
|                 | 2.1.3 State-Transition Analysis<br>2.1.4 Data Mining            | 6<br>7   |
|                 | 2.1.5 Other Approaches                                          | 8        |
|                 | 2.2 Anomaly Detection                                           | 8<br>8   |
|                 | 2.2.1 Statistical Methods                                       | 9        |
|                 | 2.2.2 Expert Systems                                            | 10       |
|                 | 2.2.3 Data Mining                                               | 10       |
|                 | 2.2.4 Other Approaches                                          | 12       |
| 3.              | Data Sources                                                    | 12       |
| 4.              | Degrees of Attack Guilt                                         | 14       |
|                 | 4.1 Misuse Detection<br>4.1.1 Knowledge-Based Methods           | 15<br>16 |
|                 | 4.1.1 Knowledge-Based Methods<br>4.1.2 Machine-Learning Methods | 10       |
|                 | 4.2 Anomaly Detection                                           | 18       |
|                 | 4.2.1 Knowledge-Based Methods                                   | 18       |
|                 | 4.2.2 Statistical Methods                                       | 19       |
|                 | 4.2.3 Machine-Learning Methods                                  | 20       |
| 5.              | Conclusion                                                      | 25       |
| Reference       | ces                                                             | 25       |
| 2               |                                                                 |          |

Data Mining for Intrusion Detection

33

# Klaus Julisch

| 1.       | Introduction                                                                              | 33                                    |
|----------|-------------------------------------------------------------------------------------------|---------------------------------------|
| 2.       | Data Mining Basics                                                                        | <b>34</b>                             |
|          | 2.1 Data Mining, KDD, and Related Fields                                                  | 34                                    |
|          | 2.2 Some Data Mining Techniques                                                           | $\frac{36}{37}$                       |
|          | 2.2.1 Association Rules<br>2.2.2 Frequent Episode Rules                                   | 38                                    |
|          | 2.2.3 Classification                                                                      | 39                                    |
|          | 2.2.4 Clustering                                                                          | 40                                    |
|          | 2.3 Research Challenges in Data Mining                                                    | 40                                    |
| 3.       | Data Mining Meets Intrusion Detection                                                     | 41                                    |
|          | 3.1 MADAM ID                                                                              | 43                                    |
|          | 3.2 ADAM                                                                                  | $\begin{array}{c} 45\\ 46\end{array}$ |
|          | <ul><li>3.3 Clustering of Unlabeled ID Data</li><li>3.4 Mining the Alarm Stream</li></ul> | 40                                    |
|          | 3.5 Further Reading                                                                       | 49                                    |
| 4.       | Observations on the State of the Art                                                      | 50                                    |
|          | 4.1 Data Mining, but no Knowledge Discovery                                               | 50                                    |
|          | 4.2 Disregard of Other KDD Steps                                                          | 51                                    |
|          | 4.3 Too Strong Assumptions                                                                | $\frac{52}{53}$                       |
| -        | 4.4 Narrow Scope of Research Activities<br>Future Research Directions                     | 53<br>54                              |
| 5.<br>6. | Summary                                                                                   | 56                                    |
| 0.       | Summery                                                                                   | 00                                    |
| Referen  | ces                                                                                       | 57                                    |
| 3        |                                                                                           |                                       |
|          | hitecture for Anomaly Detection                                                           | 63                                    |
|          | Barbará, Julia Couto, Sushil Jajodia and Ningning Wu                                      |                                       |
| 1.       | Introduction                                                                              | 63                                    |
| 2.       | Architecture                                                                              | 65                                    |
|          | 2.1 Filter                                                                                | 65                                    |
|          | 2.2 Profile                                                                               | 67                                    |
|          | 2.3 Profile Builder                                                                       | $67 \\ 67$                            |
| 0        | 2.4 Diagnoser                                                                             | 67                                    |
| 3.       | ADAM: an implementation of the architecture                                               | 72                                    |
| 4.       | Experiences                                                                               | 73                                    |
| 5.<br>6. | Breaking the dependency on training data<br>Future                                        | 74                                    |
| 0.       | ruture                                                                                    |                                       |
| Referen  | ces                                                                                       | 75                                    |
| 4        |                                                                                           |                                       |
|          | netric Framework for Unsupervised Anomaly Detection                                       | 77                                    |
| E leazar | Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy and Sal S                            |                                       |
| 1.       | Introduction                                                                              | 78                                    |
| 2.       | Unsupervised Anomaly Detection                                                            | 81                                    |
| 3.       | A Geometric Framework for Unsupervised Anomaly Detection                                  | 83                                    |
|          | 3.1 Feature Spaces                                                                        | 83<br>84                              |
|          | 3.2Kernel Functions3.3Convolution Kernels                                                 | $\frac{84}{85}$                       |
|          |                                                                                           |                                       |

viii

| Conten   | ts                                                                                                   | ix                |
|----------|------------------------------------------------------------------------------------------------------|-------------------|
| 4.       | Detecting Outliers in Feature Spaces                                                                 | 85                |
| 5.       | Algorithm 1: Cluster-based Estimation                                                                | 86                |
| 6.       | Algorithm 2: K-nearest neighbor                                                                      | 87                |
| 7.       | Algorithm 3: One Class SVM                                                                           | 89                |
| 8.       | Feature Spaces for Intrusion Detection                                                               | 91                |
|          | 8.1 Data-dependent Normalization Kernels                                                             | 92                |
|          | 8.2 Kernels for Sequences: The Spectrum Kernel                                                       | 92                |
| 9.       | Experiments                                                                                          | 93                |
|          | 9.1 Performance measures                                                                             | 93                |
|          | 9.2Data Set Descriptions9.3Experimental Setup                                                        | 94                |
|          | 9.4 Experimental Results                                                                             | 95<br>96          |
| 10.      | Discussion                                                                                           | 98                |
| 10.      |                                                                                                      | 30                |
| Referen  | ces                                                                                                  | 99                |
| 5        |                                                                                                      |                   |
| Fusing a | a Heterogeneous Alert Stream into Scenarios                                                          | 103               |
| Oliver   | Dain and Robert K. Cunningham                                                                        |                   |
| 1.       | Introduction                                                                                         | 104               |
| 2.       | Fusion Approach                                                                                      | 105               |
| 3.       | Architecture                                                                                         | 106               |
| 4.       | Definitions                                                                                          | 107               |
| 5.       | Probability Assignment                                                                               | 108               |
|          | 5.1 Data Sources and Use                                                                             | 108               |
|          | 5.2 Naïve Technique                                                                                  | 111               |
|          | 5.3 Heuristic Technique<br>5.4 Data Mining Techniques                                                | 112               |
| 6.       | 0 1                                                                                                  | 114               |
| 0.       | Experimental Results<br>6.1 Naïve Technique                                                          | $\frac{115}{116}$ |
|          | 6.2 Heuristic Technique                                                                              | 110               |
|          | 6.3 Data Mining Techniques                                                                           | 117               |
| 7.       | System Benefits                                                                                      | 119               |
| 8.       | Discussion and Summary                                                                               | 120               |
| Referen  | ces                                                                                                  | 120               |
| 6        |                                                                                                      |                   |
|          | AIB II Variables for Network Intrusion Detectionu Qin, Wenke Lee, Lundy Lewis and João B. D. Cabrera | 123               |
| 1.       | Introduction                                                                                         | 194               |
| 2.       | Background                                                                                           | $\frac{124}{125}$ |
| 4.       | 2.1 MIB II                                                                                           | $125 \\ 125$      |
|          | 2.2 Entropy and Conditional Entropy                                                                  | 126               |
| 3.       | Model Construction                                                                                   | 127               |
|          | 3.1 Model Architecture                                                                               | 127               |
|          | 3.2 Anomaly Detection Module                                                                         | 129               |
|          | 3.2.1 Anomaly Detection Model Design Overview                                                        | 129               |
| A        | 3.2.2 Anomaly Detection Module Construction                                                          | 129               |
| 4.       | Experiments and Performance Evaluation                                                               | 134               |

|           | $4.1 \\ 4.2$                              | Normal Data Sets<br>Evaluation under Attacks     | 134                                       |
|-----------|-------------------------------------------|--------------------------------------------------|-------------------------------------------|
|           | 4.2.1                                     | Misuse Detection                                 | $135\\135$                                |
|           | 4.2.2                                     | Anomaly Detection                                | 140                                       |
| 5.        | Discus                                    | sion                                             | 146                                       |
| 6.        | Relate                                    | d Work                                           | 148                                       |
| 7.        | Conclu                                    | isions and Future Work                           | 149                                       |
| Reference | es                                        |                                                  | 149                                       |
| 7         |                                           |                                                  |                                           |
| -         |                                           | Generation                                       | 153                                       |
|           |                                           | Indrew Howard, Eleazar Eskin and Sal Stolfo      |                                           |
| 1.        | Introd                                    |                                                  | 154                                       |
| 2.        |                                           | onents of Adaptive Model Generation              | 157                                       |
|           | $\begin{array}{c} 2.1 \\ 2.2 \end{array}$ | Real Time Components<br>Data Warehouse           | 159                                       |
|           | 2.2<br>2.3                                | Detection Model Management                       | $\begin{array}{c} 163 \\ 165 \end{array}$ |
|           | 2.4                                       | Data Analysis Engines                            | 167                                       |
|           | 2.5                                       | Efficiency consideration                         | 174                                       |
| 3.        | Capab                                     | ilities of Adaptive Model Generation             | 175                                       |
|           | 3.1                                       | Real Time Detection Capabilities                 | 175                                       |
|           | 3.2                                       | Automatic Data Collection and Data Warehousing   | 175                                       |
|           | 3.3                                       | Model Generation and Management                  | 176                                       |
|           | 3.4 $3.5$                                 | Data Analysis Capabilities                       | 176                                       |
| 4         |                                           | Correlation of Multiple Sensors                  | 178                                       |
| 4.        | 4.1                                       | Generation Algorithms<br>Misuse Detection        | 179                                       |
|           | 4.2                                       | Anomaly Detection                                | $\frac{179}{179}$                         |
|           | 4.3                                       | Unsupervised Anomaly Detection                   | 180                                       |
| 5.        | Model                                     | Generation Example: SVM                          | 180                                       |
|           | 5.1                                       | SVM Algorithm                                    | 181                                       |
|           | 5.2                                       | SVM for Misuse Detection in AMG                  | 182                                       |
|           | 5.3                                       | Unsupervised SVM Algorithm                       | 183                                       |
|           | 5.4                                       | Unsupervised SVM for Unsupervised Anomaly Detec- | 104                                       |
| C         | <b>a</b> ,                                | tion                                             | 184                                       |
| 6.        | System                                    | Example 1: Registry Anomaly Detection            | 185                                       |
|           | $\begin{array}{c} 6.1 \\ 6.2 \end{array}$ | The RAD Data Model<br>The RAD Sensor             | 185                                       |
|           | 6.2                                       | The RAD Classification Algorithm                 | 185<br>186                                |
|           | 6.4                                       | The RAD Detector                                 | 187                                       |
| 7.        | System                                    | Example 2: HAUNT                                 | 187                                       |
|           | 7.1                                       | HAUNT Sensor                                     | 188                                       |
|           | 7.2                                       | HAUNT Classification Algorithm                   | 188                                       |
|           | 7.3                                       | HAUNT Detector                                   | 188                                       |
| 0         | 7.4                                       | HAUNT Feature Extraction                         | 189                                       |
| 8.        | Conclu                                    | sion                                             | 190                                       |
| Reference | s                                         |                                                  | 191                                       |

8 Proactive Intrusion Detection

João B. D. Cabrera, Lundy Lewis, Xinzhou Qin, Wenke Lee and Raman K. Mehra

| 1.        | Introduction                                                                                                        | 196                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 2.        | Information Assurance, Data Mining, and Proactive Intrusion                                                         |                                           |
|           | Detection<br>2.1 Intrusion Detection Systems                                                                        | 198                                       |
|           | <ul> <li>2.1 Intrusion Detection Systems</li> <li>2.2 A Thought Experiment</li> </ul>                               | 198<br>198                                |
|           | 2.3 Proactive Intrusion Detection                                                                                   | 204                                       |
| 3.        | A methodology for discovering precursors - Assumptions, Ob-                                                         | 204                                       |
| 0.        | jectives, Procedure and Analysis                                                                                    | 206                                       |
|           | 3.1 Notation and Definitions                                                                                        | 206                                       |
|           | 3.1.1 Time Series, Multivariate Time Series and Collections                                                         | 206                                       |
|           | 3.1.2 Events, Event Sequences, Causal Rules and Precursor<br>Rules                                                  | 207                                       |
|           | 3.2 Assumptions, Problem Set-Up, Objectives and Proce-                                                              | 207                                       |
|           | dure                                                                                                                | 208                                       |
|           | 3.3 Analysis - Detection and Gradation of Causality in Time                                                         |                                           |
|           | Series<br>3.3.1 Notation and Definitions                                                                            | 211                                       |
|           | <ul><li>3.3.1 Notation and Definitions</li><li>3.3.2 The Granger Causality Test as an Exploratory Tool</li></ul>    | $211 \\ 212$                              |
|           | 3.3.3 GCT and the Extraction of Precursor Rules - Modeling                                                          | 212                                       |
|           | and Theoretical Developments                                                                                        | 213                                       |
| 4.        | A Case Study - Precursor Rules for Distributed Denial of Ser-                                                       |                                           |
|           | vice Attacks                                                                                                        | 217                                       |
|           | <ul> <li>4.1 DDoS Attacks and the experiments</li> <li>4.2 TFN2K Ping Flood - Extracting Precursor Rules</li> </ul> | $\begin{array}{c} 217 \\ 219 \end{array}$ |
| 5.        | Conclusions                                                                                                         |                                           |
| 5.        | Conclusions                                                                                                         | 222                                       |
| Reference | S                                                                                                                   | 223                                       |
| 9         |                                                                                                                     |                                           |
| E-mail A  | uthorship Attribution for Computer Forensics                                                                        | 229                                       |
|           | e Vel, Alison Anderson, Mal Corney and George Mohay                                                                 |                                           |
| 1.        | Introduction and Motivation                                                                                         | 230                                       |
|           | 1.1 Computer Forensics                                                                                              | 230                                       |
|           | 1.2 E-mail Forensics                                                                                                | 232                                       |
| 2.        | Authorship Attribution                                                                                              | 234                                       |
| 3.        | E-mail Authorship Attribution                                                                                       | 238                                       |
| 4.        | Support Vector Machine Classifier                                                                                   | 239                                       |
| 5.        | E-mail Corpus and Methodology                                                                                       | 240                                       |
| 6.        | Results and Discussion                                                                                              | 244                                       |
| 7.        | Conclusions                                                                                                         | 246                                       |
|           |                                                                                                                     |                                           |

References

xi

247

# List of Figures

| 1.1        | General Degrees of Attack Guilt                                                                                                                                                                                                                                            | 15  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.2        | Degrees of Attack Guilt for Knowledge-based Mis-<br>use Detection                                                                                                                                                                                                          | 16  |
| 1.3        | Degrees of Attack Guilt for Machine-learning Mis-<br>use Detection                                                                                                                                                                                                         | 17  |
| 1.4        | Degrees of Attack Guilt for Knowledge-based Anomaly<br>Detection                                                                                                                                                                                                           | 18  |
| 1.5        | Degrees of Attack Guilt for Statistical Anomaly Detection                                                                                                                                                                                                                  | 19  |
| 1.6        | Combining data mining and classification for anomaly detection                                                                                                                                                                                                             | 21  |
| 1.7        | Degrees of Guilt for the Training Phase                                                                                                                                                                                                                                    | 22  |
| 1.8        | Degrees of Guilt for Connection Mining during Detection                                                                                                                                                                                                                    | 23  |
| 1.9        | Degrees of Guilt for Attack Classification during Detection                                                                                                                                                                                                                | 23  |
| 1.10       | Degrees of Guilt with respect to Attack Classifica-<br>tion Confidence                                                                                                                                                                                                     | 0.4 |
| 1 1 1      |                                                                                                                                                                                                                                                                            | 24  |
| 1.11       | Degrees of Guilt for Overall Machine-learning Approach                                                                                                                                                                                                                     | 24  |
| 2.1        | Data mining process of building misuse detection systems.                                                                                                                                                                                                                  | 44  |
| 3.4        | Results of using ADAM in the 1999 Lincoln Labs competition data.                                                                                                                                                                                                           | 73  |
| 5.1        | (a) Possible scenario assignments for a new alert,<br>C, given 2 existing alerts, A, and B. (b) Possible<br>scenario assignments for a new alert, D, given 3 ex-                                                                                                           |     |
| <b>-</b> - | isting alerts, A, B, and C.                                                                                                                                                                                                                                                | 106 |
| 5.2        | Alert occurrence times in the DEF CON data. Each<br>horizontal line depicts a single scenario. The points<br>on the line indicate when an alert occurred. The<br>symbol indicates the class of the alert. Depicted<br>are the twenty five scenarios containing the largest |     |
|            | number of alerts.                                                                                                                                                                                                                                                          | 109 |

| 5.3  | Decision surface for a single transition type. The             |     |
|------|----------------------------------------------------------------|-----|
|      | height of the curve is the probability that two alerts         |     |
|      | in the given time span with the given r value be-              |     |
|      | long in the same scenario. The black plane is the              |     |
|      | threshold below which the new alert would not join             | 110 |
|      | the scenario and would start a new scenario.                   | 113 |
| 6.1  | MIB II-based ID Architecture                                   | 128 |
| 6.2  | MIB II-based Anomaly ID Model                                  | 130 |
| 6.3  | Conditional Entropy of MIB II object <i>ipInReceives</i>       | 132 |
| 6.4  | Misclassification rate of MIB II object <i>ipInReceives</i>    | 132 |
| 6.5  | Accuracy over Cost of MIB II object <i>ipInReceives</i>        | 133 |
| 6.6  | icmpInEchos under normal condition                             | 136 |
| 6.7  | <i>icmpInEchos</i> under Ping Flood attack                     | 136 |
| 6.8  | udpInDatagrams under normal condition                          | 138 |
| 6.9  | udpInDatagrams under UDP Flood attack                          | 138 |
| 6.10 | udpInErrors under normal condition                             | 139 |
| 6.11 | udpInErrors under UDP Flood attack                             | 139 |
| 6.12 | ICMP_In ID sub-module under normal condition                   | 142 |
| 6.13 | ICMP_In ID sub-module under Mix Flood attack                   | 142 |
| 6.14 | ICMP_Out ID sub-module under normal condition                  | 143 |
| 6.15 | ICMP_Out ID sub-module under Mix Flood attack                  | 143 |
| 6.16 | UDP_In_Error ID sub-module under normal condition              | 144 |
| 6.17 | UDP_In_Error ID sub-module under Mix Flood attack              | 144 |
| 6.18 | $TCP_In$ ID sub-module under normal condition                  | 145 |
| 6.19 | $TCP\_In$ ID sub-module under Mix Flood attack                 | 145 |
| 7.1  | The AMG System Architecture                                    | 158 |
| 7.2  | Visualization of Data in Database                              | 168 |
| 7.3  | Visualization of SQL Query                                     | 169 |
| 8.1  | Authentication, Passive Intrusion Detection and Proac-         |     |
|      | tive Intrusion Detection. Alarm $A0$ is connected to           |     |
|      | an Authenticator. Alarm $A1$ enables Passive In-               |     |
|      | trusion Detection, while alarms $A2$ and $A3$ enable           | 100 |
| ~ ~  | Proactive Intrusion Detection.                                 | 199 |
| 8.2  | Timeline of the outputs of the alarms. It is assumed           |     |
|      | that the time elapsed between the entry of a mali-             |     |
|      | cious agent in the house and malicious activity is negligible. | 202 |
| 8.3  | Proactive Intrusion Detection - Extracting Tempo-              | 202 |
| 0.0  | ral Rules.                                                     | 205 |
|      |                                                                |     |

xiv

#### List of Figures

| 8.4 | The idealized inputs and output signals. $p$ is the                        |     |
|-----|----------------------------------------------------------------------------|-----|
|     | length of the window used for parameter estima-                            |     |
|     | tion when applying GCT. If $p \ge r$ , the represen-                       |     |
|     | tation $(8.1)$ captures model $(8.4)$ exactly, and the                     |     |
|     | <b>Precursor</b> $\Rightarrow$ <b>Phenomenon</b> rule is "visible" through |     |
|     | the model. When $H(q^{-1}) = 1$ , the response in y col-                   |     |
|     | lapses into a blip.                                                        | 215 |
| 8.5 | DDoS Attacks - A simplified Timeline.                                      | 218 |
| 8.6 | TFN2K Ping Flood: Selected MIB variables at the                            |     |

| Attacker and at the Target. 219 | 0                   |           |     |
|---------------------------------|---------------------|-----------|-----|
|                                 | Attacker and at the | e Target. | 219 |

# List of Tables

| 2.1 | Sample database table.                                                                                                                                                                                                                                                                                                                                 | 37  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.1 | Lincoln Labs Data Summary                                                                                                                                                                                                                                                                                                                              | 95  |
| 4.2 | Selected points from the ROC curves of the perfor-<br>mance of each algorithm over the KDD Cup 1999<br>Data.                                                                                                                                                                                                                                           | 98  |
| 5.1 | r value calculation for addresses $172.16.112.20$ and $172.16.112.40$                                                                                                                                                                                                                                                                                  | 107 |
| 5.2 | Confusion matrices from Naïve approach on test<br>data set. Two hundred forty six of the 4,041 pat-<br>terns that should have produced a "join" decision<br>(6.09%) incorrectly produced a "don't join" deci-<br>sion, and ten of the 246,320 patterns that should<br>have produced a "don't join" decision incorrectly<br>produced a "join" decision. | 116 |
| 5.3 | Confusion matrices from heuristic approach on test<br>data set. The algorithm tries to match the human<br>decision. For example, 4,041 test examples should<br>have produced a "join" decision. The algorithm<br>correctly produced the "join" decision 3,589 times<br>(88.81% of the time).                                                           | 117 |
| 5.4 | Confusion matrices from a decision tree on the test<br>data set. The decision tree tries to match the human<br>decision. For example, 4,041 examples should have<br>produced a "join" decision. The decision tree pro-<br>duced the correct decision on 4,037 of these (99.90%<br>of the time)                                                         | 110 |
| C 1 | of the time).                                                                                                                                                                                                                                                                                                                                          | 118 |
| 6.1 | Misuse Detections by MIB II-based ID Model                                                                                                                                                                                                                                                                                                             | 140 |
| 6.2 | Anomaly Detections by MIB II-based ID Model                                                                                                                                                                                                                                                                                                            | 147 |
| 8.1 | Key Variables at the Attacker for TFN2K - Ground<br>Truth.                                                                                                                                                                                                                                                                                             | 221 |
|     | 11 (1011).                                                                                                                                                                                                                                                                                                                                             | 221 |

| 8.2 | TFN2K Ping Flood Run 1: Top MIBs at the At-                                     |           |
|-----|---------------------------------------------------------------------------------|-----------|
|     | tacker according to the $g$ statistic.                                          | 221       |
| 8.3 | Results of Step 2: Detection Rates and FA Rates                                 |           |
|     | for MIB variables that contain precursors to DDoS                               |           |
|     | Attacks.                                                                        | 222       |
| 8.4 | Final Results: Detection Rates and FA Rates for                                 |           |
|     | Events at MIB variables for TFN2K Ping Flood.                                   | 222       |
| 9.1 | Summary statistics of the e-mail newsgroup and au-                              |           |
|     | thor corpus used in the experiment.                                             | 241       |
| 9.2 | E-mail document body style marker attributes. To-                               |           |
|     | tal of 170 features are used in the experiment. See                             |           |
|     | text for clarification.                                                         | 242       |
| 9.3 | E-mail document body structural attributes. Total                               |           |
|     | of 21 attributes/features are used in the experiment.                           |           |
|     | See text for clarification.                                                     | 243       |
| 9.4 | Per-author-category $P_{AC_i}$ , $R_{AC_i}$ and $F_{1,AC_i}$ cate-              |           |
|     | gorisation performance results (in $\%$ ) for the four                          |           |
|     | different author categories $(i = 1,, 4)$ . The news-                           |           |
|     | group <b>aus.tv</b> is used as the training set (see text). <sup><i>a</i></sup> | 245       |
|     | group <b>aus.tv</b> is used as the training set (see text). <sup><i>a</i></sup> | $2 \cdot$ |

### Preface

Data mining is becoming a pervasive technology in activities as diverse as using historical data to predict the success of a marketing campaign, looking for patterns in financial transactions to discover illegal activities, or analyzing genome sequences. From this perspective, it was just a matter of time for the discipline to reach the important area of computer security. This book presents a collection of research efforts on the use of data mining in computer security.

Data mining has been loosely defined as the process of extracting information from large amounts of data. In the context of security, the information we are seeking is the knowledge of whether a security breach has been experienced, and, if the answer is yes, who is the perpetrator. This information could be collected in the context of discovering intrusions that aim to breach the privacy of services, or data in a computer system or, alternatively, in the context of discovering evidence left in a computer system as part of a criminal activity.

This collection concentrates heavily on the use of data mining in the area of intrusion detection. The reason for this is twofold. First, the volume of data dealing with both network and host activity is so large that it makes it an ideal candidate for using data mining techniques. Second, intrusion detection is an extremely critical activity. To understand this it is enough to look at the current statistics. Ten major government agencies accounting for 99% of the federal budget have been compromised in the recent past. In the year 2000, a massive, coordinated attack successfully brought down some of the major e-commerce web sites in the United States. Moreover, it is estimated that less than 4% of the attacks are actually detected or reported. As a society, we have become extremely dependent of the use of information systems, so much so that the danger of serious disruption of crucial operations is frightening. As a result, it is no surprise that researchers have produced a relatively large volume of work in the area of data mining in support of intrusion detection.

The rest of the work presented in this volume addresses the application of data mining to an equally pressing area: computer forensics. This area has widened recently to address activities such as law enforcement using digital evidence. Although the amount of work is not as large as in intrusion detection, computer forensics proves to be a fruitful arena for research in data mining techniques.

Data mining holds the promise of being an effective tool to help security activities and, in some sense, the proof of its applicability can be found in the pages of this book. However, there is still a long road to travel and we hope that this volume will inspire researchers and practitioners to undertake some steps in this direction.

#### Acknowledgments

We are extremely grateful to authors for their contributions and to Jia-Ling Lin who assisted with every aspect of this book, ranging from collecting of manuscripts to dealing with all matters related to Kluwer style files. It is also a pleasure to acknowledge Joe Giordano, Brian Spink, and Leonard Popyack of the Air Force Research Laboratory/Rome for their support of our research in the application of data mining to intrusion detection.

DANIEL BARBARÁ

SUSHIL JAJODIA

FAIRFAX, VA