
MOBILE 
COMPUTATION 

WITH FUNCTIONS 



Advances in Information Security 

Sushil Jajodia 
Consulting editor 

Center for Secure Information Systems 
George Mason University, Fairfax, VA 22030-4444 

email: jajodia@gmu.edu 

The goals of Kluwer International Series on ADVANCES IN INFORMATION 
SECURITY are, one, to establish the state of the art of, and set the course for future 
research in information security and, two, to serve as a central reference source for 
advanced and timely topics in information security research and development. The 
scope of this series includes all aspects of computer and network security and related 
areas such as fault tolerance and software assurance. 

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive 
overviews of specific topics in information security, as well as works that are larger in 
scope or that contain more detailed background information than can be accommodated 
in shorter survey articles. The series also serves as a forum for topics that may not have 
reached a level of maturity to warrant a comprehensive textbook treatment. 

Researchers as well as developers are encouraged to contact Professor Sushil Jajodia 
with ideas for books under this series. 

Additional titles in the series: 

TRUSTED RECOVERY AND DEFENSIVE INFORMATION WARFARE by 
Peng Liu and Sushil Jajodia, ISBN: 0-7923-7572-6 
RECENT ADVANCES IN RSA CRYPTOGRAPHYby Stefan Katzenbeisser, 
ISBN: 0-7923-7438-X 
E-COMMERCE SECURITY AND PRIVACY by Anup K. Ghosh, ISBN: 0-7923-
7399-5 
INFORMATION HIDING: Steganography and Watermarking-Attacks and 
Countermeasures by Neil F. Johnson, Zoran Duric, and Sushil Jajodia 
ISBN: 0-7923-7204-2 

Additional information about this series can be obtained from 
www.wkap.nllseries.htmlADIS 



MOBILE 
COMPUTATION 

WITH FUNCTIONS 

by 

ZELÎHA niLSUN KlRLI 
MIT Laboratory for Computer Science, U.S.A. 

SPRINGER SCIENCE+BUSINESS MEDIA, LLC 



ISBN 978-1-4613-5348-5 ISBN 978-1-4615-1007-9 (eBook) 
DOI 10.1007/978-1-4615-1007-9 

Library of Congress Cataloging-in-Publication Data 

A C.I.P. Catalogue record for this book is available 
from the Library of Congress. 

Copyright ~ 2002 by Springer Science+Business Media New York 

Originally published by Kluwer Academic Publishers in 2002 
Softcover reprint ofthe hardcover lst edition 2002 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means, mechanical, photo-copying, recording, or 
otherwise, without the prior written permission of the publisher, Springer Science+ 
Business Media, LLC. 

Printed on acid-free paper. 



Contents 

Preface ix 

Acknowledgments xiii 

Introduction xv 

1 Mobile computation with functions xv 

2 Type and effect based static analysis xvi 

3 Overview of the book xvii 

1. TOWARDS MOBll.E FUNCTIONS 1 
1 Concurrent and distributed computation 2 

1.1 Concurrency 2 
1.2 Distribution and mobility 3 
1.3 Safety and security 7 

2 ML with concurrency and distribution 10 
2.1 Concurrent ML 10 
2.2 Facile 13 
2.3 Packet Language for Active Networks 16 
2.4 Conclusions 20 

3 A Core language for mobile code 21 
3.1 Aims and approach 21 
3.2 The Core Language 21 
3.3 Evaluation rules 22 
3.4 Type system 24 

2. ESTIMATING MOBll.E VALUES 27 
1 Application areas 28 

1.1 Compiler optimizations 28 
1.2 Cost profiling 28 



vi MOBILE COMPUTATION WITH FUNCTIONS 

2 Potential mobility 29 
2.1 Mobile functions 30 
2.2 Mobile channels 31 
2.3 Related work 31 

3 Mobile-'\ 32 
3.1 Abstract syntax 32 
3.2 Dynamic semantics 33 

4 Type system 37 
4.1 Semantic objects 38 
4.2 Typing rules 41 
4.3 Examples 43 

5 Formal properties of the type· system 44 
5.1 Types for intermediate expressions 45 
5.2 Type soundness 46 
5.3 Principal typing 49 

6 Static estimation 49 
6.1 Extracting labels 49 
6.2 Soundness 50 

7 Concluding Remarks 51 

3. DISTRlliUTED CALL-TRACKING 53 
1 Security through language restrictions 54 

1.1 Termination and resource bounds 54 
1.2 Isolation and strong typing 55 
1.3 Exploiting static analysis 55 

2 rEval-'\ 56 
2.1 Abstract syntax 56 
2.2 Dynamic semantics 56 
2.3 Examples 59 

3 A Monomorphic type system 61 
3.1 Semantic objects 61 
3.2 Typing rules 62 
3.3 Examples 64 
3.4 Formal properties 65 

4 A Polymorphic type system 67 
4.1 Semantic objects 67 
4.2 Typing rules 68 
4.3 Examples 69 



Contents vii 

4.4 Formal properties 71 

5 Concluding remarks 72 

4. CONFINED MOBILE FUNCTIONS 75 
1 Why restrict mobility? 75 
2 Computing with mobility regions 76 

2.1 System model 76 
2.2 Mobility regions 77 

3 Confined-A 78 
3.1 Abstract syntax 78 
3.2 Dynamic semantics 78 
3.3 Examples 79 
3.4 Semantic objects 82 
3.5 Typing rules 83 

4 Formal properties 85 
4.1 Confinement in a mobility region 85 
4.2 Strong confinement 86 

5 Related work 87 
6 Concluding remarks 90 

5. NONINTERFERENCE AND MOBILE FUNCTIONS 93 
1 Noninterference 93 

1.1 A general characterization 94 
1.2 A restriction on the input/output relation 94 
1.3 Closer look at Mobile-A 95 
1.4 Conditional expressions 95 
1.5 Example 96 

2 Secure Mobile-A 97 
2.1 Abstract syntax 97 
2.2 Dynamic semantics 97 

3 Type system 101 
3.1 Semantic objects 101 
3.2 Typing rules 101 

4 Formal properties 104 
4.1 Consistency 104 
4.2 Noninterference 107 

5 Concluding remarks 110 



Vlll MOBILE COMPUTATION WITH FUNCTIONS 

6. CONCLUSIONS 

1 Natural support for code mobility 

2 Type systems and security 

3 Further work 

Appendices 
Selected Proof Cases 

1 

2 

3 

Selected proof cases from Chapter 3 

Selected proof cases from Chapter 4 

Selected proof cases from Chapter 5 

113 
113 

114 
114 

117 
117 
117 
119 
120 



Preface 

The practice of computing has reached a stage where computers are seen as 
parts of a global computing platform. The possibility of exploiting resources 
on a global scale has given rise to a new paradigm - the mobile computation 
paradigm - for computation in large-scale distributed networks. Languages 
which enable the mobility of code over the network are becoming widely used 
for building distributed applications. 

This work explores distributed computation with languages which adopt 
functions as the main programming abstraction and support code mobility 
through the mobility of functions between remote sites. It aims to highlight 
the benefits of using languages of this family in dealing with the challenges 
of mobile computation. The possibility of exploiting existing static analysis 
techniques suggests that having functions at the core of a mobile code language 
is a particularly apt choice. 

A range of problems which have impact on the safety, security and perfor
mance of systems are discussed here. It is shown that types extended with 
effects and other annotations can capture a significant amount of information 
about the dynamic behaviour of mobile functions and offer solutions to the 
problems under investigation. 

The book presents a survey of the languages Concurrent ML, Facile and 
PLAN which remain loyal to the principles of the functional language ML and 
hence inherit its strengths in the context of concurrent and distributed compu
tation. The languages which are defined in the subsequent chapters have their 
roots in these languages. 

Two chapters focus on using types to statically predict whether functions 
are used locally or may become mobile at runtime. Types are exploited for 
distributed call-tracking to estimate which functions are invoked at which sites 
in the system. Compilers for mobile code languages would benefit from such 
estimates in dealing with the heterogeneity of the network nodes, in providing 
static profiling tools and in estimating the resource-consumption of programs. 



x MOBILE COMPUTATION WITH FUNCTIONS 

Two chapters are devoted to the use of types in controlling the flow of values in a 
system where users have different trust levels. The confinement of values within 
a specified mobility region is the subject of one of these. The other focuses on 
systems where values are classified with respect to their confidentiality level. 
The sources of undesirable flows of information are identified and a solution 
based on noninterference is proposed. 

ZELtHA DiLSUN KIRLI 



To my parents 
inciser and Orhan KIT11 



Acknowledgments 

This book is based on the work I did towards my PhD degree at the University 
of Edinburgh, within the Laboratory for Foundations of Computer Science. I 
owe the most special thanks to Stephen Gilmore who supervised me throughout 
my postgraduate studies. He not only introduced me to interesting research 
topics and guided me in an inspiring way but also encouraged me to publish 
my work in this form. I am indebted to him for reading every piece I wrote 
with scrutiny. His insightful c9mments led to significant improvements both 
in the content and style of my work. It is a rare chance to work with someone 
whose advice is always so helpful and so thoughtfully communicated; I am 
very fortunate. 

Jane Hillston made herself available whenever I needed additional feedback. 
Her ideas and criticisms were very useful in organizing the material presented 
in this book. I also would like to thank both Jane Hillston and Stephen Gilmore 
for their invaluable moral support. Thanks to their excellent academic guidance 
and friendliness, I felt that I was in safe hands since my arrival in Edinburgh. 

I would like to thank all members of the Laboratory for Foundations of 
Computer Science for creating a research environment of highest quality. I 
would like to acknowledge Martin Hofmann and David Aspinall in particular 
for making it possible for me to collaborate with them on an interesting project. 
It was always a pleasure to talk to Don Sannella, Ian Stark and Chris Walton. 
Their interest in my work was a great source of motivation. I appreciate the 
time Bonnie Webber spared for me as my mentor. I also would like to thank 
Matias Menni and Sibylle Froschle for their nice company. 

Gordon Plotkin and Peter Sewell reviewed a full draft of my PhD thesis 
which forms the core of this book. I am grateful to them for the thoroughness 
of their review and the many helpful comments they offered. 

It was Lance Wobus who drove me into the project of publishing this book 
upon the suggestion of Stephen Gilmore. He was enthusiastic and support
ive. Susan Lagerstrom-Fife and Sharon Palleschi followed the progress of the 



xiv MOBILE COMPUTATION WITH FUNCTIONS 

manuscript through to the final production. I thank them all for their patience 
and help. 

At various stages in my PhD research, The British Council, Turk Egitim 
Vakii, the University of Edinburgh and EPSRC provided financial support for 
which I feel indebted. The very final corrections to the manuscript was com
pleted during my position as a postdoctoral research associate at the Laboratory 
for Computer Science, MIT. I am grateful to Nancy Lynch for making this pos
sible. 

I would like to thank all of my friends for their warm support. They did not 
allow me to feel lonely although I was a long away from home. Murat Kaynar 
was wonderful; he made sure that I could work with peace of mind and that 
I remained optimistic and cheerful. It is a privilege to have big-hearted and 
understanding parents like mine. I have always drawn a lot of strength from 
their love and support. They deserve a very, very big thank you. 



Introduction 

1. Mobile computation with functions 
The recent developments in telecommunications technology have made it 

possible to envisage a global computing platform in which computers interact 
easily and share a wide range of resources. Computers are no longer viewed 
as largely self-contained computing devices which use local resources and oc
casionally communicate with each other. The traditional assumptions about 
computation in distributed systems and desirable features for programming 
languages are being revised to allow for better use of the global infrastruc
ture. A consequence of this has been the emergence of the mobile computation 
paradigm along with its supporting technologies. The key characteristic of this 
paradigm is to give programmers control over the mobility of code or active 
computations across the network by providing appropriate language features. 
Therefore, a typical mobile computation language is expected to facilitate the 
expression and execution of mobile code-containing entities. The dynamism 
and flexibility offered by this form of computation, however, brings about a set 
of problems, the most challenging of which are relevant to safety and security. 

Opinions are diverse as to the primary concerns of languages for mobile 
computation. We argue that a sound formal foundation is of the greatest sig
nificance. By a formal foundation we mean a collective body of work which 
describes the computational model of the language at a suitable level of ab
straction and enables rigorous or even formal reasoning about programs. Such 
a foundation would preclude ambiguities about the meaning of programs while 
also. enabling the formulation and proof of certain properties including safety 
and security related ones. 

Functional languages are known for their well-understood computational 
models and their amenability to formal reasoning. They also have strong ex
pressive power due to higher-order features. Functions can flow from one 
program point to another as first-class values. These facts suggest that the kind 



xvi MOBILE COMPUTATION WITH FUNCTIONS 

of mobile computation language we put forward can be obtained by adopting 
a functional core and extending it with features which are in keeping with the 
principles of functional computation. In such a language functions can repre
sent mobile code-containing entities and formal systems for reasoning about 
functional programs can be further exploited to reason about the behaviour of 
mobile code. 

In general, this book contributes simple but inspiring ideas to the research 
in formal models of mobile computation and program analysis . In particular, 
novel applications of type and effect based analysis and suggestions for future 
directions are presented. 

2. Type and effect based static analysis 
Conventionally type systems for functional languages have been used to 

ensure that programs cannot corrupt the runtime representation of data values so 
that further execution of the program is not faithful to the language semantics. 
This property is known as type safety in the literature. Effect systems were 
initially proposed as a solution to the problems encountered in preserving type 
safety and polymorphism while integrating functional and imperative features. 
The basic idea was to enhance the type systems so that the expressions were 
associated with their observable side-effects as well as types and to use this 
information in making judgements with respect to safety. Some authors have 
further explored the use of type and effect systems for memory management 
and safe integration of concurrent and functional features. 

The exploitation of type and effect systems need not be confined to the 
enforcement of type safety. Annotated with effects and other kinds of infor
mation, types can capture a significant amount of static information about a 
program's potential dynamic behaviour. The general methodology of type and 
effect systems then consists of devising a semantics for the language, express
ing a program analysis by means of types and effects and showing the semantic 
correctness of this analysis. In other words, the type system extracts the overall 
behaviour of the program as a first step and as a later step one can devise various 
analyses to reason about it in a sound way. These analyses may be put to use 
in various areas such as compiler optimizations, cost profiling and safety and 
security. The literature includes examples of such analyses devised prior to the 
emergence of the mobile computation paradigm. This work introduces new 
analyses motivated by the characteristics of mobile computation. 

A slightly different approach to exploiting type and effect systems can be to 
determine the properties which are desirable for all programs and design the 
type and effect system so that those programs which violate these properties 
are rejected by the system. This is closer in spirit to the earlier exploitations 
of type and effect systems for enforcing type safety. In the context of mobile 
computation, enforcing type safety alone is not sufficient to address many of the 



INTRODUCTION xvii 

safety and security concerns. Just as the languages are revisited to examine their 
position with respect to the new paradigm of mobile computation, type and effect 
systems need to be revisited to adapt their methodology to the requirements of 
the context of mobile computation. The work presented in this book can be 
considered as a step in this direction. 

Enforcing safety and security properties by type systems is an active research 
area where the significance of secure flow of information is emphasized. Most 
of the existing work is in the framework of computational models different to 
the one considered here. In this respect, we contribute to the area of type-based 
approaches to security by presenting type and effect systems which incorporate 
a machinery for tracing the flow of values in a distributed setting where functions 
are the essential elements of computation. 

3. Overview of the book 
Introduction describes the characteristics of mobile computation and func

tional computation. It argues that integrating these two paradigms can offer 
solutions to the problems which have proved to be challenging in the context 
of mobile computation. The useful role which can be played by type and effect 
systems is discussed. 

Chapter 1 gives an overview of the process calculi which provide formal 
models of distributed and mobile computation. This is followed by a closer look 
at the programming languages Concurrent ML, Facile and PLAN (Programming 
Lan~age for Active Networks). These languages point to a consistent effort to 
benefit from the fundamental ideas behind ML in designing and implementing 
languages for concurrent and distributed computation. 

Chapter 2 focuses on a language similar to Facile where values of all types, 
including functions and communication channels, can be transmitted between 
remote sites. The problem investigated in this chapter is the static estimation of 
functions and channels which may become mobile at run-time. A static analysis 
such as the one considered in this chapter would be a useful asset for compilers 
in dealing with the heterogeneity of the network nodes, detecting the locality 
of certain values and providing static profiling tools. 

Chapter 3 focuses on the language PLAN. The form of support for code 
mobility in PLAN is different from that of Facile. It is based on a remote 
evaluation facility for functions. The design of PLAN has been influenced by 
the need to meet the strong safety and security requirements of active networks; 
especially by the need to protect against denial of service. The subject of this 
chapter is distributed call-tracking by means of a type and effect system in 
the framework of a PLAN-like language. It is argued that for an applicative 
language distributed call-tracking can provide the basis for static estimation of 
resource consumption. 



xviii MOBILE COMPUTATION WITH FUNCTIONS 

Chapter 4 shifts the focus back to a language which resembles Facile. Some 
distributed systems are characterized by their heterogeneity in terms of the na
ture of the computing devices, security requirements of the information flowing 
in the system and the trust level of the users. Programmers who provide code for 
such systems would find it useful to have a language mechanism which enables 
them to confine the flow of certain values to a particular part of the system - a 
mobility region. This chapter discusses how a static type system can be used 
to enforce confinement in a specified mobility region. 

Chapter 5 revisits the language of Chapter 2 and introduces a variant of it 
where the values of the language are classified with respect to their confiden
tiality level. As in Chapter 4, it is assumed that users which interact with the 
system may not be equally trustworthy. The sources of undesirable information 
flows are identified and a secure information flow property based on noninter
ference is introduced. Programs which are accepted by the proposed type and 
effect system for the language are shown to enjoy this property. 

Chapter 6 includes a summary of the book which clarifies contributions made 
to the research areas of functional and mobile code languages, annotated type 
and effect systems and the language-based approach to security. 


	FM



