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Preface

This textbook on the differential geometric approach to nonlinear control grew out of

a set of lecture notes, which were prepared for a course on nonlinear system theory,

given by us for the first time during the fall semester of 1988. The audience consisted

mostly of graduate students, taking part in the Dutch national Graduate Program on

Systems and Control. The aim of this course is to give a general introduction to

modern nonlinear control theory (with an emphasis on the differential geometric

approach), as well as to provide students specializing in nonlinear control theory

with a firm starting point for doing research in this area.

One of our primary objectives was to give a self-contained treatment of all the

topics to be included. Since the literature on nonlinear geometric control theory is

rapidly expanding this forced us to limit ourselves in the choice of topics. The task

of selecting topics was further aggravated by the continual shift in emphasis in the

nonlinear control literature over the last years. Therefore, we decided to concentrate

on some rather solid and clear-cut achievements of modern nonlinear control, which

can be expected to be of remaining interest in the near future. Needless to say,

there is also a personal bias in the topics we have finally selected. Furthermore,

it was impossible not to be influenced by the trendsetting book “Nonlinear Control

Systems: an Introduction”, written by A. Isidori in 1985 (Lecture Notes in Control

and Information Sciences, 72, Springer).

A second main goal was to illustrate the theory presented with examples stem-

ming from various fields of application. As a result, Chapter 1 starts with a discus-

sion of some characteristic examples of nonlinear control systems, which will serve

as illustration throughout the subsequent chapters, besides several other examples.

Thirdly, we decided to include a rather extensive and self-contained treatment

of the necessary mathematical background on differential geometry. Especially the

required theory on Lie brackets, (co-)distributions and Frobenius’ Theorem is cov-

ered in detail. However, some rudimentary knowledge about the fundamentals of

differential geometry (manifolds, tangent space, vectorfields) will greatly facilitate

the reading of the book. Furthermore, the reader is supposed to be familiar with the

basic concepts of linear system theory; especially some acquaintance with linear

geometric control theory will be very helpful.

v
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Modern nonlinear control theory, in particular the differential geometric ap-

proach, has emerged during the seventies in a rather successful attempt to deal with

basic questions in the state space formulation of nonlinear control systems, including

the problems of controllability and observability, and (minimal) realization theory. It

was also motivated by optimal control theory, in particular the Maximum Principle

and its relation with controllability issues. The theory gained strong impetus at the

end of the seventies and beginning of the eighties by the introduction of several new

concepts, most of them having as their crucial part nonlinear feedback. Let us illus-

trate this with two papers, which can be seen as benchmarks in this development.

First, there is the paper by Brockett on “Feedback invariants for nonlinear systems”

(Proc. VIIth IFAC World Congress, Helsinki, pp. 1115-1120, 1978), which deals

with the basic question to what extent the structure of a nonlinear control system

can be changed by (static state) feedback. A direct outgrowth of this paper has been

the theory on feedback linearization of nonlinear control systems. Secondly, in the

paper “Nonlinear decoupling via feedback: a differential geometric approach” by

Isidori, Krener, Gori-Giorgi & Monaco (IEEE Trans. Automat. Control, AC-26, pp.

341-345, 1981) the concept of a controlled invariant distribution is used for vari-

ous sorts of decoupling problems (independently, a similar approach was taken by

Hirschorn (“(A,B)-invariant distributions and disturbance decoupling of nonlinear

systems”, SIAM J. Contr. Optimiz. 19, pp. 1-19, 1981)). It is worth mentioning that

the concept of a controlled invariant distribution is a nonlinear generalization of the

concept of a controlled invariant subspace, which is the cornerstone in what is usu-

ally called linear geometric control theory (see the trendsetting book of Wonham,

“Linear Multivariable Control”, Springer, first edition 1974, third edition 1985). In

fact, a substantial part of the research on nonlinear control theory in the eighties has

been involved with the “translation” to the nonlinear domain of solutions of various

feedback synthesis problems obtained in linear geometric control theory. Connected

with the concept of (controlled) invariant distributions, the above mentioned IEEE

paper also stressed the usefulness of special choices of state space coordinates, in

which the system structure becomes more transparent. The search for various kinds

of nonlinear normal forms, usually connected to some algorithm such as the nonlin-

ear D∗-algorithm, the Hirschorn algorithm or the dynamic extension algorithm, has

been another major trend in the eighties.

At this moment it is difficult to say what will be the prevailing trends in nonlinear

control theory in the near future. Without doubt the feedback stabilization problem,

which has recently obtained a strong renewed interest, will be a fruitful area. Also

adaptive control of nonlinear systems, or, more modestly, the search for adaptive

versions of current nonlinear control schemes is likely going to be very important,

as well as digital implementation (discretization) of (continuous-time based) con-

trol strategies. Moreover, it seems that nonlinear control theory is at a point in its

development where more attention should be paid to the special (physical) structure

of some classes of nonlinear control systems, notably in connection with classical

notions of passivity, stability and symmetry, and notions stemming from bifurcation

theory and dynamical systems.
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The contents of the book are organized as follows:

Chapter 1 starts with an exposition of four examples of nonlinear control systems,

which will be used as illustration for the theory through the rest of the book. A few

generalities concerning the definition of nonlinear control systems in state space

form are briefly discussed, and some typical phenomena occurring in nonlinear dif-

ferential (or difference) equations are touched upon, in order to put the study of

nonlinear control systems also into the perspective of nonlinear dynamics. Chapter

2 provides the necessary differential geometric background for the rest of the book.

Section 2.1 deals with some fundamentals of differential geometry, while in Section

2.2 vectorfields, Lie brackets, (co-)distributions and Frobenius’ Theorem are treated

in some detail. For the reader’s convenience we have included a quick survey of

Section 2.1, as well as a short summary of Section 2.2 containing a list of useful

properties and identities. In Chapter 3 some aspects of controllability and observ-

ability are treated with an emphasis on nonlinear rank conditions that generalize the

well-known Kalman rank conditions for controllability and observability of linear

systems, and on the role of invariant distributions in obtaining local decompositions

similar to the linear Kalman decompositions. Chapter 4 is concerned with various

input-output representations of nonlinear control systems, and thus provides a link

with a more input-output oriented approach to nonlinear control systems, without

actually going into this. Conditions for invariance of an output under a particular

input, which will be crucial for the theory of decoupling in later chapters, are de-

rived in the analytic as well as in the smooth case. In Chapter 5 we discuss some

problems concerning the transformation of nonlinear systems into simpler forms,

using state-space and feedback transformations, while Chapter 6 contains the full

solution of the local feedback linearization problem (using static state feedback).

In Chapter 7 the fundamental notion of a controlled invariant distribution is intro-

duced, and applied to the local disturbance decoupling problem. Chapters 8 and

9 are concerned with the input-output decoupling problem; using an analytic, re-

spectively a geometric approach. In Chapter 10 some aspects of the local feedback

stabilization problem are treated. Chapter 11 deals with the notion of a controlled

invariant submanifold and its applications to stabilization, interconnected systems

and inverse systems. In Chapter 12 a specific class of nonlinear control systems,

roughly speaking mechanical control systems, is treated in some detail. Finally, in

Chapters 13 and 14 a part of the theory developed in the preceding chapters is gen-

eralized to general continuous-time systems ẋ = f (x,u), y = h(x,u), respectively to

discrete-time systems.

At the end of every chapter we have added bibliographical notes about the main

sources we have used, as well as some (very partial) historical information. Further-

more we have occasionally added some references to related work and further devel-

opments. We like to stress that the references are by no means meant to be complete,

or are even carefully selected, and we sincerely apologize to those authors whose

important contributions were inadvertently not included in the references.

As already mentioned before, many topics of interest could not be included in

the present book. Notable omissions are in particular realization theory, conditions

for local controllability, observer design, left- and right-invertibility, global issues
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in decoupling and linearization by feedback, global stabilization, singular pertur-

bation methods and high-gain feedback, sliding mode techniques, differential alge-

braic methods, and, last but not least, nonlinear optimal control theory. (We also like

to refer to the very recent second edition of Isidori’s “Nonlinear Control Systems”

(Springer, 1989) for a coverage of some additional topics.)
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