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Preface to the Second Edition

This is the second edition of the textbook in which most of the concepts introduced in
the first edition are extended and updated, and a significant amount of new material has
been added. While preserving the original intent of focusing on software specification,
this edition emphasizes the practice of formal methods for specification and verification
activities for different types of software systems and at different stages of developing the
software systems. This expanded view is reinforced both in the organization of the book
and in the presentation of its contents. The primary driving force for writing the second
edition came from Springer-Verlag, London, who expressed a great desire and strong in-
terest in catering to the growing needs of students and researchers in the area of Formal
Software Engineering.

Background and Motivation

Although during the initial stages of formal methods research there was only a marginal
use of formal methods in industry, new languages, techniques and tools developed dur-
ing early 1990s have spurred great interest in adapting formal methods in industries. In
fact, the 1990s witnessed an explosion of new developments in formal methods research.
NASA Langley Research Center was the first hub of formal methods research and practice.
The researchers at Langley focused on large scale commercial projects that are suitable for
injecting formal methods. They felt that the industries were reluctant to use formal meth-
ods because of inadequate tools, inadequate background, and lack of adequate examples.
However, this situation started changing gradually during 1995-2004 when new directions
of research and development of tools in the three areas Software Specification Methods,
Model Checking, and Theorem Proving provided a great spur for formal development ac-
tivity in industries. Most notably, software engineers at nuclear power stations, aerospace
and transportation industries used formal methods to formally specify and verify the prop-
erties of safety critical parts in systems. In 1998, the fully automatic driverless subway was
launched in Paris Metro and, in 2006, the fully automatic driverless shuttle servicing the
various terminals at Roissy Airport, Paris was launched. With success stories such as these
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arose a desire in academia and industries to learn formal methods more systematically. In
order to choose a method that is appropriate for a specific application that demands con-
cepts such as causality, concurrency, and conflict avoidance a certain level of expertise in
formal methods education is necessary. Getting to know that it is possible to mix different
abstractions from different languages to model heterogeneous systems is an asset for an
efficient development process. Nowadays formal methods often are bundled up with tools,
many available as open source software, to support architectural principles of generality
and orthogonality. In view of these spectrum of changes and success stories, software en-
gineers now have several case studies to learn from and choose languages and methods
with a rich repertoire of appropriate concepts for their intended applications. In keeping up
with this trend this second edition is offered. In writing this second edition, the expectation
is that formal methods will be well integrated into the teaching of software engineering
programs. In this hope, topics related to the integration of formal methods in software de-
velopment process are discussed quite early in the text and are followed by presentations
of abstraction principles, formalism definitions, notations of formalism, and a wide variety
of fairly detailed specification examples.

What is New in the Second Edition?

Old material has been updated to improve both content and presentation. Some chapters
in the first edition of the text have undergone extensive revisions. In some cases, an old
chapter has been split into two or more chapters and in each of them extensive new ma-
terial have been added. New chapters that discuss Object-Z, B-Method, and Calculus of
Communicating Systems have been added. The entire book has been structured into six
parts. The distinguishing features of this restructured and expanded second edition are as
follows.

Part I The first part of the book introduces specification fundamentals. The material is
presented in four chapters. An elaborate introduction to the role of specification is fol-
lowed by discussions on specification activities and specification qualities. The first part
concludes with a discussion on abstraction principles, illustrated with a domain abstraction
example.

Part II The second part introduces the basics of formalism, automata notations used in
formal languages, study extensions to the basic automata notation, and concludes with a
discussion on the classification of formal specification techniques. This material is pre-
sented in four chapters. The chapters that discuss automata and extended state machine no-
tations are almost self-contained. A variety of examples that arise in software construction
are taken up for formal modeling using different variations of state machines. Top-down
and bottom-up constructions of formal models, their sequential and parallel compositions
are discussed and illustrated with examples.
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Part III The third part of the book is entirely devoted to logic. Propositional logic, pred-
icate logic, and temporal logic are treated in three separate chapters. The presentation fo-
cuses on introducing the logics as formal languages, and hence introduces their syntax,
semantics, and reasoning methods in succession. The expressive power of predicate logic
is illustrated for representing knowledge, policies, as well as serving as axiomatic system
for program verification. For the latter purpose, Hoare axioms are presented and illustrated
by verifying simple sequential programs. Temporal logic chapter gives a detailed discus-
sion of the syntax, and semantics of linear temporal logic. Many examples from reactive
systems and concurrent systems are chosen to emphasize the expressivity of the logic lan-
guages in specifying such systems and their properties. A discussion of axiomatic proof
method and model checking are included.

Part IV Most of the model-based specification languages are based on set theory and
first-order predicate logic. Therefore, it is essential to have a strong background in set
theory and relations. This part of the book includes one chapter on set theory and relations.
Most parts of this chapter are retained from the previous edition of the book.

Part V. Three specification methods are discussed to illustrate the property-oriented ap-
proach to specifications. Two of the chapters, Algebraic Specifications and Larch, are left
unchanged. The chapter Calculus of Communicating Systems is new and it discusses Mil-
ner’s algebraic approach to specifying communication and concurrency. Some examples
discussed in Temporal Logic chapter are drawn in here to strike a comparison between the
two approaches. An effort has been made to make the discussion in this chapter simple,
rigorous, and self-contained.

Part VI This part is devoted to model-based specification techniques. Four such tech-
niques are described in detail. These are VDM-SL, Z, Object-Z and the B-Method. Ma-
terial on VDM-SL and Z are retained from the previous edition of the book, while the
bibliographic references have been updated. Two new chapters have been introduced, one
for Object-Z and another for the B-Method. The material for new chapters are presented in
the same style as in the old chapters. Also, the two new chapters include extensive exam-
ples and case studies, and provide a detailed tutorial of the techniques introduced in those
chapters.

How to Use the Book

In the second edition of the book, we have added considerable new material and we have
also restructured the chapters into various parts. Consequently, those who have used the
first edition may see a different layout of the book. The book includes several different
specification techniques grouped into various categories. In addition, it also includes chap-
ters with necessary mathematical background for these techniques. Because of the diverse
nature of these techniques, the book can be used by different groups of people for different
purposes. Below we suggest a few streams of course offerings to fit different curriculum
needs.
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. Chapters in Part I are required for further reading of the book.
. Based on Part I, Part II, Chaps. 9, 10 of Part III, and Part [V a one-semester undergradu-

ate course within a software engineering program can be given. This course is intended
to be an Introduction to Formal Software Engineering Methods. The course can be ex-
tended into another semester by covering the material from one of the four specification
languages discussed in Chaps. 16 through 19, and choosing a project in which the stu-
dents would write a complete specification and analyze the specification. The examples
and case studies given in these chapters would help the students to achieve this goal.

. Chapters in Part II, Part III, and Chap. 15 from Part V can be offered as a one-semester

course for senior undergraduate students or first year graduate students in computer sci-
ence and computer engineering programs. This course is intended to be an Introduction
to Formal Methods.

. Parts V and VI are devoted to various formal specification techniques. Each chapter in

these parts gives a thorough tutorial of one specification technique. Together with the
mathematical fundamentals described in Part IV, each chapter in Parts V and VI can be
individually used to teach a one-semester course on a particular specification technique.
The course will introduce the formal method in some depth, choosing appropriate tools
suggested in the bibliographic notes of these chapters. It is suitable to teach this course
at senior undergraduate level or at the graduate level provided that the students are ex-
posed to some of the mathematical fundamentals described in Parts I through IV before
taking this course. Alternately, a quick overview of the fundamentals can be covered in
few weeks and the rest of the semester can be spent on the syntax and semantics of the
chosen specification technique.

. An advanced graduate-level course can be taught using any one of the techniques dis-

cussed in Parts V and VI with emphasis on developing complete specification for a fairly
large problem. This would involve refinement, proof obligation, and implementation.

. Another option would be to teach an advanced graduate-level course that requires the

students to critically compare the techniques in each group and write a report. For ex-
ample, one course could be taught on model-based specification techniques, all chapters
in Part VI. Students in this course will get an in-depth understanding of the techniques
and also would be able to choose the appropriate technique for a given problem.

. Practitioners of formal methods, especially those who use formal methods for indus-

trial applications, can use this book as a reference. In particular, the chapters in Parts V
and VI have been written in such a way that a practitioner who is familiar with one tech-
nique can quickly jump start with another technique with little time. The examples and
case studies in each chapter in these two parts provide sufficient information for a prac-
titioner to start writing the specification for a new application without much preparation
time.

Intended Audience

This book is written to serve as a text book for students in Software Engineering, Computer
Science, Computer Engineering and Information Systems Engineering. Software profes-
sionals who want to familiarize themselves with formal methods can use this book as a
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good reference. The wide coverage of various formal specification techniques and the tu-
torial nature of descriptions of each individual technique make the book as a good resource
for formal methods, all in one place. The bibliographic notes given at the end of each
chapter provokes the reader to expand their horizon beyond the materials discussed in that
chapter along with information on tool support.

Acknowledgments

Our sincere thanks go to the editorial board of Springer-Verlag, London whose persistent
persuasion gave us sufficient motivation to engage in this venture. Many people have as-
sisted us in bringing out the second edition of this book. First of all, those who have helped
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sions and additions to the second edition we received great support from Lei Feng, Pankaj
Goyal, Naseem Ibrahim, Diep Mai, Ka Lok Man, Mubarak Mohammad, Shiri Nematol-
laah, and Olga Ormandjieva. We express our sincere thanks for their dedication and timely
support.
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This is a textbook on software specification emphasizing formal methods that are rele-
vant to requirements and design stages of software development. The aim of the book is to
teach the fundamental principles of formal methods in the construction of modular and ver-
ifiable formal specifications. The book introduces several formal specification techniques
and illustrates the expressive power of each technique with a number of examples.

General Characteristics

Traditional textbooks on software engineering discuss the difficulties and challenges that
lie on the path from requirements analysis to implementation of a software product. Most
of these books describe some techniques in detail and give hints on implementation of
these techniques. Only a few among them deal with important software engineering prin-
ciples and techniques, and discuss how a particular technique may be used to implement
a given principle. There is very little exposure in these books to a rigorous approach to,
or a systematic study of, the construction of verifiable software. Those who have acquired
an understanding of the fundamental principles of software engineering from traditional
textbooks will find the following characteristics of this book quite relevant to the practice
of software engineering.

e The book deals with specification.

The principal characteristic of this book is to discuss formalisms that provide a theo-
retical foundation for the principles of software engineering, and are appropriate to the
requirements and design stages of software development. We discuss the concept of ab-
straction, the need for formalism in software development, the mathematical basis of
formal methods, components of a formal system, specification languages, different lev-
els of rigor in applying languages, and the need for tool support to use formal methods
for different stages of software development. We discuss the relationship between spec-
ifications and implementations, as well as subjecting specifications to rigorous analyses
and formal proofs.

xi
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e The book emphasizes mathematical principles.
Formal approaches to software development can be understood and practiced by study-
ing the mathematics they use. A primary objective of the book is to relate discrete math-
ematical structures to the study of abstract data types, and to bring students to the level
of mathematical maturity where they can write and reason about small specifications.
Once the students acquire the basic mathematical skills that a formalism is based on,
mastery of formal specification languages, techniques for refinements, and proofs be-
come easy to understand and apply. We believe that the use of tools and techniques
become effective when their underlying principles are properly understood.

e The book teaches formal specification languages.
Unlike many recent books that are devoted to one formal specification language, we
discuss four specification languages to emphasize their design philosophies and their
practical applicability. We also discuss formal specifications based on set theory and
logic without regard to any specification language. The purpose here is to teach the
reader that these mathematical abstractions form the formal basis of the four specifica-
tion languages. The languages discussed in the book are OBJ3, VDM, Z, and Larch. We
illustrate their expressive power for different classes of applications. We expect that our
treatment of the subject will prepare the reader to learn more sophisticated languages and
tools that may be developed in the future. It is our belief that mastery of these languages
will allow the reader to choose the language that is suitable for a given application.

e The book presents proofs.
Informal arguments conducted in conjunction with a formal specification often lead to
a proof construction, which can be presented in a justifiable manner. Proofs ensure a
measure of certainty on claims that can be made of specified system properties. We
present proofs in rigorous as well as in formal styles. We avoid lengthy proofs, and put
more emphasis on modeling, specification, and rigorous reasoning of the specifications.

e The book presents engineering principles.
This book discusses the general principles for data refinement, operation refinement, and
interface specification, and illustrates how these are constructed for particular specifica-
tion languages. The presentation in the book aims to enable the reader to understand why
a particular technique is important and how to apply the technique.

Audience

This book is designed to be used as a textbook by students of computer science, software
engineering, and information engineering. Software professionals who want to learn formal
specification languages and use formal methods in their work will find the material in
the book useful for serious self-study. The sections on bibliographic notes give a broad
account of work related to the topic discussed in each chapter; this should help software
professionals to identify industrial applications and learn from the experience reported on
the use of tools.
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Background Knowledge

The book is designed for undergraduates, and beginning graduate-level students in com-
puter science, computer engineering, software engineering, and information engineering.
We assume that the reader has completed an undergraduate course in discrete mathematics.
The reader must be fluent in programming and must have completed or must be doing a
course in software engineering. An exposure to undergraduate-level theoretical computer
science course, or attainment of a certain level of mathematical maturity which enables the
reader to abstract, conceptualize, and analytically reason about abstracted concepts will be
an asset.

Organization and Content

Several specification languages, formal methods, and tools based on them have been de-
veloped by different research groups. Some of these methods are practiced by industries
and government organizations such as NASA. Books devoted to one particular specifica-
tion language or method have been published recently. Organizing the essential material to
explore four specification languages in one textbook poses a challenge. We have organized
this textbook based on the view that a reader should learn the following:

e where and how to integrate formalism in the development process,
e a mathematical basis, and
o the formal specification methods.

These are organized as follows:

e The first three chapters debate the questions: Why do we study formal specification?
How do we integrate formal methods in a development process? What are the attributes
for a formal specification language?

e Chapters 4 and 5 introduce the concept of abstraction and formalism, and discuss exten-
sions to BNF and finite state machines, the two formal notations that the reader might
have used in earlier courses.

e Chapters 6 and 7 discuss specifications based on logic, set theory and relations, and
include material on proofs. Although the examples subjected to proofs are small, the
structure of formal proofs is brought out clearly. These two chapters must be read care-
fully by those readers who want to review their mathematical knowledge.

e Chapters 8-11 describe the specification languages OBJ3, VDM, Z and Larch. We dis-
cuss the algebraic-specification methodology in Chap. 8, and include a tutorial on OBJ3.
In Chap. 9, we introduce VDM, a model-based specification language. Chapter 10 deals
with Z, another leading model-based notation built around set theoretical foundation.
In Chap. 11, we discuss Larch and Larch/C++ specification languages. Our goal is to
treat specification languages from abstract to concrete levels. Whereas representational
details are ignored in an algebraic-specification language, VDM and Z specification
languages use abstract data types as models for representing information of software
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systems. The Larch family of languages are geared toward interface specification, and
clearly separate the shareable abstraction from the programming language details. In
our opinion, these four languages are representatives of several specification languages
used for specifying sequential systems, and their features can be utilized in different
application areas.

While the material in the first seven chapters should withstand the passage of time, it is
likely that some of the material in Chaps. 8—11 may become outdated because of changes
to the specification languages. The language OBJ3 has been around for a number of years,
and its design principles are sound. The reader is expected to learn these principles; the
syntax of the language or how OBJ3 system interprets a specification are secondary. We
have used the ISO standardized notation for VDM in this book. The Z notation is also being
standardized by ISO; however, the standardization process is not yet complete. Therefore,
we have adopted an earlier version of Z. The Larch Shared Language (LSL), in which
abstractions are developed, resembles an algebraic-specification language. However, the
semantics of LSL is based on first-order logic. Given the impressive LSL library con-
structed by Guttag and Horning, we do not expect the syntax and the semantics of traits in
the library to change much. However, the Larch/C++ interface specification language may
undergo changes. The reader is advised to refer to the web page for Larch/C++ maintained
by Gary Leavens for any update on the language. Since interface specification must be
related to programming, and C++ is widely used in industry, we hope that the choice of
Larch/C++ bridges the gap between design and implementation issues to be resolved by
software professionals.

Exercises

All chapters include a section on exercises. There are three types:

e Exercises based on the basic concepts and aimed at extending the basic knowledge; these
exercises include specifications and simple proofs.

e Extensions to examples discussed in the chapter; these require integration of the material
discussed in the chapter.

e Project-oriented exercises that require complete specifications and proofs.

Case Studies

Case studies are used in Chaps. 8§11 to illustrate the features of OBJ3, VDM, Z, and
Larch specification approaches. Each case study is chosen to demonstrate the integration
of different concepts and features from a particular specification language. For example,
the Window specification discussed in Chap. 8 demonstrates the integrated use of modular
development and parametric specification concepts in OBJ3. This specification can be in-
crementally extended with additional operations, views, and theories toward reusing it in
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the design of another window management system. The Network example given in Chap. 9
is a simple version of a communication network. We have given a rigorous proof that the
specification supports safe communication of messages between any two nodes in the net-
work. The Automated billing system example presented in Chap. 10 is an instance of a
real-life commercial application, which can be extended to suit a more complex situation.
The case study in Chap. 11 presents Larch/C++ interface specifications for the two Rogue
Wave library classes RWZone, and RWFile. These two examples are chosen to illustrate
the applicability of Larch/C++ specification language to software products in commercial
class libraries. The case studies may be read at different times and may be adapted or
reused for different purposes.

Lab Components

The material in Chaps. 8—11 may be taught with tool-supported laboratory projects. In
order to ensure that the students use the tool effectively, the instructors must (1) provide
a solid foundation on theoretical issues, and (2) give assignments on simple specifications
which can be done by pencil and paper. This will give students sufficient familiarity with
the subject matter before they start learning to use the tools. The differences in syntactic
conventions, and even minor differences in semantics between the specification language
and the language employed by the tool must be overcome by the student. This implies that
laboratory projects may only be introduced closer to the end of teaching the language; only
then can the students’ knowledge be expected to grow.

How to Use the Book

This book has evolved from the lecture notes prepared by the first author eight years ago.
The notes were revised every year both for content and style. From the experience gained
by both of us from the same notes in teaching different courses at different universities, we
made extensive revisions to the notes in the last two years. However, the overall structure
of the notes has not changed. Since the structure has withstood changes to the specification
language details, such as syntax, we are confident that the different sequences as suggested
below would fit different curriculum needs:

1. Chapters 1 through 3 are required for further reading of the book.

2. Chapters 4 and 5 may be read partially as well as simultaneously.

3. Based on the first seven chapters, a one-semester (13—14 weeks) undergraduate course
within a software engineering program or computer science program or computer engi-
neering program can be given.

4. Depending on the mathematical background of students in an information engineering
program, material from Chaps. 1 through 7 may be selected and supplemented with
basic mathematics to offer a one-semester course.
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5. A two-semester course for graduates or senior undergraduates in software engineering,
computer engineering, computer science, and information engineering programs can be
given as follows:

(a) Chapters 1 through 7 may be covered in semester I. One of the following sequences
for semester II may be followed:

e Chapters 8, 9
e Chapters 8, 10
e Chapters 9, 11
e Chapters 10, 11

6. An advanced graduate-level course can be given by choosing the material from Chaps. 8
through 11 and supplementing it with intensive laboratory sessions requiring the veri-
fied development of a large project. This type of course requires tool support; for exam-
ple, LP can be used with Larch, a theorem prover such as EVES or PVS may be used
with Z or VDM. The material in the book may be supplemented with published papers
in the area.
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