Texts in Computer Science

Editors
David Gries
Fred B. Schneider

For other titles published in this series, go to
www.springer.com/series/3191


http://www.springer.com/series/3191

V.S. Alagar « K. Periyasamy

Specification
of Software
Systems

2nd edition

@ Springer



Prof. V.S. Alagar

Dept. Computer Science and Software Eng.
Concordia University

St. Catherine Street West 1515

H3G 1M8 Montreal, Québec

Canada

alagar@cs.concordia.ca

Series Editors

David Gries

Department of Computer Science
Upson Hall

Cornell University

Ithaca, NY 14853-7501, USA

Prof. K. Periyasamy

Computer Science Department
University of Wisconsin-La Crosse
State Street 1725

54601 La Crosse, WI

USA

kasi@cs.uwlax.edu

Fred B. Schneider

Department of Computer Science
Upson Hall

Cornell University

Ithaca, NY 14853-7501, USA

ISSN 1868-0941
ISBN 978-0-85729-276-6

DOI 10.1007/978-0-85729-277-3
Springer London Dordrecht Heidelberg New York

e-ISSN 1868-095X
e-ISBN 978-0-85729-277-3

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011922494

© Springer-Verlag London Limited 1998, 2011

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: deblik
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


mailto:alagar@cs.concordia.ca
mailto:kasi@cs.uwlax.edu
http://www.springer.com
http://www.springer.com/mycopy

Preface to the Second Edition

This is the second edition of the textbook in which most of the concepts introduced in
the first edition are extended and updated, and a significant amount of new material has
been added. While preserving the original intent of focusing on software specification,
this edition emphasizes the practice of formal methods for specification and verification
activities for different types of software systems and at different stages of developing the
software systems. This expanded view is reinforced both in the organization of the book
and in the presentation of its contents. The primary driving force for writing the second
edition came from Springer-Verlag, London, who expressed a great desire and strong in-
terest in catering to the growing needs of students and researchers in the area of Formal
Software Engineering.

Background and Motivation

Although during the initial stages of formal methods research there was only a marginal
use of formal methods in industry, new languages, techniques and tools developed dur-
ing early 1990s have spurred great interest in adapting formal methods in industries. In
fact, the 1990s witnessed an explosion of new developments in formal methods research.
NASA Langley Research Center was the first hub of formal methods research and practice.
The researchers at Langley focused on large scale commercial projects that are suitable for
injecting formal methods. They felt that the industries were reluctant to use formal meth-
ods because of inadequate tools, inadequate background, and lack of adequate examples.
However, this situation started changing gradually during 1995-2004 when new directions
of research and development of tools in the three areas Software Specification Methods,
Model Checking, and Theorem Proving provided a great spur for formal development ac-
tivity in industries. Most notably, software engineers at nuclear power stations, aerospace
and transportation industries used formal methods to formally specify and verify the prop-
erties of safety critical parts in systems. In 1998, the fully automatic driverless subway was
launched in Paris Metro and, in 2006, the fully automatic driverless shuttle servicing the
various terminals at Roissy Airport, Paris was launched. With success stories such as these



vi Preface to the Second Edition

arose a desire in academia and industries to learn formal methods more systematically. In
order to choose a method that is appropriate for a specific application that demands con-
cepts such as causality, concurrency, and conflict avoidance a certain level of expertise in
formal methods education is necessary. Getting to know that it is possible to mix different
abstractions from different languages to model heterogeneous systems is an asset for an
efficient development process. Nowadays formal methods often are bundled up with tools,
many available as open source software, to support architectural principles of generality
and orthogonality. In view of these spectrum of changes and success stories, software en-
gineers now have several case studies to learn from and choose languages and methods
with a rich repertoire of appropriate concepts for their intended applications. In keeping up
with this trend this second edition is offered. In writing this second edition, the expectation
is that formal methods will be well integrated into the teaching of software engineering
programs. In this hope, topics related to the integration of formal methods in software de-
velopment process are discussed quite early in the text and are followed by presentations
of abstraction principles, formalism definitions, notations of formalism, and a wide variety
of fairly detailed specification examples.

What is New in the Second Edition?

Old material has been updated to improve both content and presentation. Some chapters
in the first edition of the text have undergone extensive revisions. In some cases, an old
chapter has been split into two or more chapters and in each of them extensive new ma-
terial have been added. New chapters that discuss Object-Z, B-Method, and Calculus of
Communicating Systems have been added. The entire book has been structured into six
parts. The distinguishing features of this restructured and expanded second edition are as
follows.

Part I The first part of the book introduces specification fundamentals. The material is
presented in four chapters. An elaborate introduction to the role of specification is fol-
lowed by discussions on specification activities and specification qualities. The first part
concludes with a discussion on abstraction principles, illustrated with a domain abstraction
example.

Part II The second part introduces the basics of formalism, automata notations used in
formal languages, study extensions to the basic automata notation, and concludes with a
discussion on the classification of formal specification techniques. This material is pre-
sented in four chapters. The chapters that discuss automata and extended state machine no-
tations are almost self-contained. A variety of examples that arise in software construction
are taken up for formal modeling using different variations of state machines. Top-down
and bottom-up constructions of formal models, their sequential and parallel compositions
are discussed and illustrated with examples.



Preface to the Second Edition vii

Part III The third part of the book is entirely devoted to logic. Propositional logic, pred-
icate logic, and temporal logic are treated in three separate chapters. The presentation fo-
cuses on introducing the logics as formal languages, and hence introduces their syntax,
semantics, and reasoning methods in succession. The expressive power of predicate logic
is illustrated for representing knowledge, policies, as well as serving as axiomatic system
for program verification. For the latter purpose, Hoare axioms are presented and illustrated
by verifying simple sequential programs. Temporal logic chapter gives a detailed discus-
sion of the syntax, and semantics of linear temporal logic. Many examples from reactive
systems and concurrent systems are chosen to emphasize the expressivity of the logic lan-
guages in specifying such systems and their properties. A discussion of axiomatic proof
method and model checking are included.

Part IV Most of the model-based specification languages are based on set theory and
first-order predicate logic. Therefore, it is essential to have a strong background in set
theory and relations. This part of the book includes one chapter on set theory and relations.
Most parts of this chapter are retained from the previous edition of the book.

Part V. Three specification methods are discussed to illustrate the property-oriented ap-
proach to specifications. Two of the chapters, Algebraic Specifications and Larch, are left
unchanged. The chapter Calculus of Communicating Systems is new and it discusses Mil-
ner’s algebraic approach to specifying communication and concurrency. Some examples
discussed in Temporal Logic chapter are drawn in here to strike a comparison between the
two approaches. An effort has been made to make the discussion in this chapter simple,
rigorous, and self-contained.

Part VI This part is devoted to model-based specification techniques. Four such tech-
niques are described in detail. These are VDM-SL, Z, Object-Z and the B-Method. Ma-
terial on VDM-SL and Z are retained from the previous edition of the book, while the
bibliographic references have been updated. Two new chapters have been introduced, one
for Object-Z and another for the B-Method. The material for new chapters are presented in
the same style as in the old chapters. Also, the two new chapters include extensive exam-
ples and case studies, and provide a detailed tutorial of the techniques introduced in those
chapters.

How to Use the Book

In the second edition of the book, we have added considerable new material and we have
also restructured the chapters into various parts. Consequently, those who have used the
first edition may see a different layout of the book. The book includes several different
specification techniques grouped into various categories. In addition, it also includes chap-
ters with necessary mathematical background for these techniques. Because of the diverse
nature of these techniques, the book can be used by different groups of people for different
purposes. Below we suggest a few streams of course offerings to fit different curriculum
needs.



viii

Preface to the Second Edition

. Chapters in Part I are required for further reading of the book.
. Based on Part I, Part II, Chaps. 9, 10 of Part III, and Part [V a one-semester undergradu-

ate course within a software engineering program can be given. This course is intended
to be an Introduction to Formal Software Engineering Methods. The course can be ex-
tended into another semester by covering the material from one of the four specification
languages discussed in Chaps. 16 through 19, and choosing a project in which the stu-
dents would write a complete specification and analyze the specification. The examples
and case studies given in these chapters would help the students to achieve this goal.

. Chapters in Part II, Part III, and Chap. 15 from Part V can be offered as a one-semester

course for senior undergraduate students or first year graduate students in computer sci-
ence and computer engineering programs. This course is intended to be an Introduction
to Formal Methods.

. Parts V and VI are devoted to various formal specification techniques. Each chapter in

these parts gives a thorough tutorial of one specification technique. Together with the
mathematical fundamentals described in Part IV, each chapter in Parts V and VI can be
individually used to teach a one-semester course on a particular specification technique.
The course will introduce the formal method in some depth, choosing appropriate tools
suggested in the bibliographic notes of these chapters. It is suitable to teach this course
at senior undergraduate level or at the graduate level provided that the students are ex-
posed to some of the mathematical fundamentals described in Parts I through IV before
taking this course. Alternately, a quick overview of the fundamentals can be covered in
few weeks and the rest of the semester can be spent on the syntax and semantics of the
chosen specification technique.

. An advanced graduate-level course can be taught using any one of the techniques dis-

cussed in Parts V and VI with emphasis on developing complete specification for a fairly
large problem. This would involve refinement, proof obligation, and implementation.

. Another option would be to teach an advanced graduate-level course that requires the

students to critically compare the techniques in each group and write a report. For ex-
ample, one course could be taught on model-based specification techniques, all chapters
in Part VI. Students in this course will get an in-depth understanding of the techniques
and also would be able to choose the appropriate technique for a given problem.

. Practitioners of formal methods, especially those who use formal methods for indus-

trial applications, can use this book as a reference. In particular, the chapters in Parts V
and VI have been written in such a way that a practitioner who is familiar with one tech-
nique can quickly jump start with another technique with little time. The examples and
case studies in each chapter in these two parts provide sufficient information for a prac-
titioner to start writing the specification for a new application without much preparation
time.

Intended Audience

This book is written to serve as a text book for students in Software Engineering, Computer
Science, Computer Engineering and Information Systems Engineering. Software profes-
sionals who want to familiarize themselves with formal methods can use this book as a



Preface to the Second Edition ix

good reference. The wide coverage of various formal specification techniques and the tu-
torial nature of descriptions of each individual technique make the book as a good resource
for formal methods, all in one place. The bibliographic notes given at the end of each
chapter provokes the reader to expand their horizon beyond the materials discussed in that
chapter along with information on tool support.

Acknowledgments

Our sincere thanks go to the editorial board of Springer-Verlag, London whose persistent
persuasion gave us sufficient motivation to engage in this venture. Many people have as-
sisted us in bringing out the second edition of this book. First of all, those who have helped
us during the first edition deserve a second round of applause. During the extensive revi-
sions and additions to the second edition we received great support from Lei Feng, Pankaj
Goyal, Naseem Ibrahim, Diep Mai, Ka Lok Man, Mubarak Mohammad, Shiri Nematol-
laah, and Olga Ormandjieva. We express our sincere thanks for their dedication and timely
support.



Preface

This is a textbook on software specification emphasizing formal methods that are rele-
vant to requirements and design stages of software development. The aim of the book is to
teach the fundamental principles of formal methods in the construction of modular and ver-
ifiable formal specifications. The book introduces several formal specification techniques
and illustrates the expressive power of each technique with a number of examples.

General Characteristics

Traditional textbooks on software engineering discuss the difficulties and challenges that
lie on the path from requirements analysis to implementation of a software product. Most
of these books describe some techniques in detail and give hints on implementation of
these techniques. Only a few among them deal with important software engineering prin-
ciples and techniques, and discuss how a particular technique may be used to implement
a given principle. There is very little exposure in these books to a rigorous approach to,
or a systematic study of, the construction of verifiable software. Those who have acquired
an understanding of the fundamental principles of software engineering from traditional
textbooks will find the following characteristics of this book quite relevant to the practice
of software engineering.

e The book deals with specification.

The principal characteristic of this book is to discuss formalisms that provide a theo-
retical foundation for the principles of software engineering, and are appropriate to the
requirements and design stages of software development. We discuss the concept of ab-
straction, the need for formalism in software development, the mathematical basis of
formal methods, components of a formal system, specification languages, different lev-
els of rigor in applying languages, and the need for tool support to use formal methods
for different stages of software development. We discuss the relationship between spec-
ifications and implementations, as well as subjecting specifications to rigorous analyses
and formal proofs.

xi



Xii Preface

e The book emphasizes mathematical principles.
Formal approaches to software development can be understood and practiced by study-
ing the mathematics they use. A primary objective of the book is to relate discrete math-
ematical structures to the study of abstract data types, and to bring students to the level
of mathematical maturity where they can write and reason about small specifications.
Once the students acquire the basic mathematical skills that a formalism is based on,
mastery of formal specification languages, techniques for refinements, and proofs be-
come easy to understand and apply. We believe that the use of tools and techniques
become effective when their underlying principles are properly understood.

e The book teaches formal specification languages.
Unlike many recent books that are devoted to one formal specification language, we
discuss four specification languages to emphasize their design philosophies and their
practical applicability. We also discuss formal specifications based on set theory and
logic without regard to any specification language. The purpose here is to teach the
reader that these mathematical abstractions form the formal basis of the four specifica-
tion languages. The languages discussed in the book are OBJ3, VDM, Z, and Larch. We
illustrate their expressive power for different classes of applications. We expect that our
treatment of the subject will prepare the reader to learn more sophisticated languages and
tools that may be developed in the future. It is our belief that mastery of these languages
will allow the reader to choose the language that is suitable for a given application.

e The book presents proofs.
Informal arguments conducted in conjunction with a formal specification often lead to
a proof construction, which can be presented in a justifiable manner. Proofs ensure a
measure of certainty on claims that can be made of specified system properties. We
present proofs in rigorous as well as in formal styles. We avoid lengthy proofs, and put
more emphasis on modeling, specification, and rigorous reasoning of the specifications.

e The book presents engineering principles.
This book discusses the general principles for data refinement, operation refinement, and
interface specification, and illustrates how these are constructed for particular specifica-
tion languages. The presentation in the book aims to enable the reader to understand why
a particular technique is important and how to apply the technique.

Audience

This book is designed to be used as a textbook by students of computer science, software
engineering, and information engineering. Software professionals who want to learn formal
specification languages and use formal methods in their work will find the material in
the book useful for serious self-study. The sections on bibliographic notes give a broad
account of work related to the topic discussed in each chapter; this should help software
professionals to identify industrial applications and learn from the experience reported on
the use of tools.



Preface Xiii

Background Knowledge

The book is designed for undergraduates, and beginning graduate-level students in com-
puter science, computer engineering, software engineering, and information engineering.
We assume that the reader has completed an undergraduate course in discrete mathematics.
The reader must be fluent in programming and must have completed or must be doing a
course in software engineering. An exposure to undergraduate-level theoretical computer
science course, or attainment of a certain level of mathematical maturity which enables the
reader to abstract, conceptualize, and analytically reason about abstracted concepts will be
an asset.

Organization and Content

Several specification languages, formal methods, and tools based on them have been de-
veloped by different research groups. Some of these methods are practiced by industries
and government organizations such as NASA. Books devoted to one particular specifica-
tion language or method have been published recently. Organizing the essential material to
explore four specification languages in one textbook poses a challenge. We have organized
this textbook based on the view that a reader should learn the following:

e where and how to integrate formalism in the development process,
e a mathematical basis, and
o the formal specification methods.

These are organized as follows:

e The first three chapters debate the questions: Why do we study formal specification?
How do we integrate formal methods in a development process? What are the attributes
for a formal specification language?

e Chapters 4 and 5 introduce the concept of abstraction and formalism, and discuss exten-
sions to BNF and finite state machines, the two formal notations that the reader might
have used in earlier courses.

e Chapters 6 and 7 discuss specifications based on logic, set theory and relations, and
include material on proofs. Although the examples subjected to proofs are small, the
structure of formal proofs is brought out clearly. These two chapters must be read care-
fully by those readers who want to review their mathematical knowledge.

e Chapters 8-11 describe the specification languages OBJ3, VDM, Z and Larch. We dis-
cuss the algebraic-specification methodology in Chap. 8, and include a tutorial on OBJ3.
In Chap. 9, we introduce VDM, a model-based specification language. Chapter 10 deals
with Z, another leading model-based notation built around set theoretical foundation.
In Chap. 11, we discuss Larch and Larch/C++ specification languages. Our goal is to
treat specification languages from abstract to concrete levels. Whereas representational
details are ignored in an algebraic-specification language, VDM and Z specification
languages use abstract data types as models for representing information of software



Xiv Preface

systems. The Larch family of languages are geared toward interface specification, and
clearly separate the shareable abstraction from the programming language details. In
our opinion, these four languages are representatives of several specification languages
used for specifying sequential systems, and their features can be utilized in different
application areas.

While the material in the first seven chapters should withstand the passage of time, it is
likely that some of the material in Chaps. 8—11 may become outdated because of changes
to the specification languages. The language OBJ3 has been around for a number of years,
and its design principles are sound. The reader is expected to learn these principles; the
syntax of the language or how OBJ3 system interprets a specification are secondary. We
have used the ISO standardized notation for VDM in this book. The Z notation is also being
standardized by ISO; however, the standardization process is not yet complete. Therefore,
we have adopted an earlier version of Z. The Larch Shared Language (LSL), in which
abstractions are developed, resembles an algebraic-specification language. However, the
semantics of LSL is based on first-order logic. Given the impressive LSL library con-
structed by Guttag and Horning, we do not expect the syntax and the semantics of traits in
the library to change much. However, the Larch/C++ interface specification language may
undergo changes. The reader is advised to refer to the web page for Larch/C++ maintained
by Gary Leavens for any update on the language. Since interface specification must be
related to programming, and C++ is widely used in industry, we hope that the choice of
Larch/C++ bridges the gap between design and implementation issues to be resolved by
software professionals.

Exercises

All chapters include a section on exercises. There are three types:

e Exercises based on the basic concepts and aimed at extending the basic knowledge; these
exercises include specifications and simple proofs.

e Extensions to examples discussed in the chapter; these require integration of the material
discussed in the chapter.

e Project-oriented exercises that require complete specifications and proofs.

Case Studies

Case studies are used in Chaps. 8§11 to illustrate the features of OBJ3, VDM, Z, and
Larch specification approaches. Each case study is chosen to demonstrate the integration
of different concepts and features from a particular specification language. For example,
the Window specification discussed in Chap. 8 demonstrates the integrated use of modular
development and parametric specification concepts in OBJ3. This specification can be in-
crementally extended with additional operations, views, and theories toward reusing it in



Preface xv

the design of another window management system. The Network example given in Chap. 9
is a simple version of a communication network. We have given a rigorous proof that the
specification supports safe communication of messages between any two nodes in the net-
work. The Automated billing system example presented in Chap. 10 is an instance of a
real-life commercial application, which can be extended to suit a more complex situation.
The case study in Chap. 11 presents Larch/C++ interface specifications for the two Rogue
Wave library classes RWZone, and RWFile. These two examples are chosen to illustrate
the applicability of Larch/C++ specification language to software products in commercial
class libraries. The case studies may be read at different times and may be adapted or
reused for different purposes.

Lab Components

The material in Chaps. 8—11 may be taught with tool-supported laboratory projects. In
order to ensure that the students use the tool effectively, the instructors must (1) provide
a solid foundation on theoretical issues, and (2) give assignments on simple specifications
which can be done by pencil and paper. This will give students sufficient familiarity with
the subject matter before they start learning to use the tools. The differences in syntactic
conventions, and even minor differences in semantics between the specification language
and the language employed by the tool must be overcome by the student. This implies that
laboratory projects may only be introduced closer to the end of teaching the language; only
then can the students’ knowledge be expected to grow.

How to Use the Book

This book has evolved from the lecture notes prepared by the first author eight years ago.
The notes were revised every year both for content and style. From the experience gained
by both of us from the same notes in teaching different courses at different universities, we
made extensive revisions to the notes in the last two years. However, the overall structure
of the notes has not changed. Since the structure has withstood changes to the specification
language details, such as syntax, we are confident that the different sequences as suggested
below would fit different curriculum needs:

1. Chapters 1 through 3 are required for further reading of the book.

2. Chapters 4 and 5 may be read partially as well as simultaneously.

3. Based on the first seven chapters, a one-semester (13—14 weeks) undergraduate course
within a software engineering program or computer science program or computer engi-
neering program can be given.

4. Depending on the mathematical background of students in an information engineering
program, material from Chaps. 1 through 7 may be selected and supplemented with
basic mathematics to offer a one-semester course.



Xvi Preface

5. A two-semester course for graduates or senior undergraduates in software engineering,
computer engineering, computer science, and information engineering programs can be
given as follows:

(a) Chapters 1 through 7 may be covered in semester I. One of the following sequences
for semester II may be followed:

e Chapters 8, 9
e Chapters 8, 10
e Chapters 9, 11
e Chapters 10, 11

6. An advanced graduate-level course can be given by choosing the material from Chaps. 8
through 11 and supplementing it with intensive laboratory sessions requiring the veri-
fied development of a large project. This type of course requires tool support; for exam-
ple, LP can be used with Larch, a theorem prover such as EVES or PVS may be used
with Z or VDM. The material in the book may be supplemented with published papers
in the area.

Acknowledgements

Our sincere thanks go to the many students and people who have helped us to create this
book. We are grateful to the students of COMP 648 Systems Requirements Specification
at Concordia University, and 74.716 Formal Specifications and Design at the University of
Manitoba, for pointing out many of the errors in previous versions of the lecture notes.

Our deepest sense of gratitude go to Darmalingum Muthaiyen, who critically read the
entire book, and gave us valuable feedback and corrections. His thorough reading and
suggestion for presentable style have contributed greatly to the current version of the book.

We sincerely express our thanks to Dennis Lovie, Jonathan Jacky, and Randolph John-
son for reading and providing critical reviews on the Z notation. In particular, we greatly
appreciate Randolph Johnson’s comments on the semantics of some of the notations which
helped us improve the chapter to its current version. We followed up Dennis Lovie’s sug-
gestions on uniformity of names and descriptions in the examples, which enhanced the
readability of the chapter.

Jimmy Cheng and David So helped us in typesetting the first version of lecture notes
eight years ago. Many of the I&TEX commands defined by them have been used in typeset-
ting the current version of the book.

Finally, our thanks go toward everyone whose work has inspired us in writing this book.



Contents

Part I

1

Specification Fundamentals

The Role of Specification . . . . . ... ... ... ... ... .....
Software Complexity . . . . . . . . . ... ...
1.1.1  Size Complexity . . . . . . . ... ... .. ...
1.1.2  Structural Complexity . . . . ... ... ... .. ... ....
1.1.3  Environmental Complexity . . . . ... ... ... ... ...
1.1.4  Application Domain Complexity . . ... ... ... .....
1.1.5 Communication Complexity . . . . . .. ... .. ... ....
Software Specification . . . . . . .. ... ... L
1.2.1  Whatis a Specification? . . . . ... ... ... ... .....
1.2.2  Why Specify? . . . . . ...
1.23  Whatto Specify? . . . . . .. ...
1.24  Whento Specify? . . ... .. ... ... ...
1.2.5 How to Control Complexity? . .. ... ............
1.2.6 A Critique of Natural Language Specification . . . . . . . . ..

1.1

1.2

1.3
1.4

Exercises . . .

Bibliographic Notes . . . . . . ... ... ... ... ... . . .....

References . .

Specification Activities . . . . . . . ... ... ... .. L.
Integrating Formal Methods into the Software Life-Cycle . . . . . . . .
Administrative and Technical Roles . . . . . .. ... ... ... ...
2.2.1 SpecificationRoles . . . . . . ... ... ...
222 DesignRoles . . . . ... ... oo
2.2.3 ImplementationRoles . . ... ... ... ... ... .....

2.1
22

23
2.4

Exercises . . .

BibliographicNotes . . . . . . . ... ... .. ... ... ... ...

References . .

Specification Qualities . . . . . . .. ... ... ... 00,

3.1

Process Quality

23
24
28
28
29
30
31
32
32

35
36

Xvii



xviii

Contents

3.1.1  Why a Programming Language Cannot Serve as a Specification

Language? . . . . . . .. ... 36

3.1.2  Attributes of Formal Specification Languages . . . . . .. . .. 38

3.1.3 A Model of Process Quality . . . . ... ............ 40

3.2 Product Quality and Utility . . . . . . ... ... ... ... ..... 40

3.2.1 Conformance to Stated Goals . . . . . ... ... ....... 41

3.2.2  Quality Dimensions and Quality Model . . . . . ... ... .. 43

3.3 EXEICISES . . v v v v v it e e e e e e e e 44

34 BibliographicNotes . . . . . . . . ... ... ... oo 45

References . . . . . . . . . . . . ... 45

4 Abstraction . . . .. ... 47

4.1 What Is Abstraction? . . . . . . . . .. ... 47

4.2 Abstractions in Mathematics . . . . . ... ... ... ... ... .. 48

4.3 Fundamental Abstractions in Computing . . . . . . . . ... ... ... 48

4.4  Abstractions for Software Construction . . . . . .. . ... ... ... 50

4.4.1 Problem Abstractions . . . . ... ... ... ... ... 51

4.4.2 Domain Abstraction . . . . . ... ... o 0o 51

4.4.3 Environmental Abstraction . . . . . . ... ... ... ... 53

4.4.4 System Abstractions . . . . .. ... ... 54

4.5 EXerciSes . . . . v v v it 55

4.6 BibliographicNotes . . . . . . . ... ... ... ... .. ... 56

References . . . . . . . . . . .. ... 56
PartII Formalism Fundamentals

5 FormalSystems. . . . ... ... ... ... ... 61

5.1 Peano’s Axiomatization of Naturals—Formalization in Mathematics . . 62

52 Modeland Theory . . . . ... ... ... ... .. .. . .. .. ... 63

5.2.1 Formalization in Engineering . . . . ... ... ... .. ... 63

5.2.2  Formalizationin Science . . . . . . ... ... ... .. .... 63

5.2.3  Formalization Process in Software Engineering . . . . . . . . . 64

5.3 Components of a Formal System . . . . ... ... ... ........ 65

5.3.1 Syntax ... 65

5322 Semantics . . . ... oo 66

5.3.3 Inference Mechanism . .. ... ................ 67

5.4 Properties of Formal Systems . . . . . . ... ... ... ... ... 69

54.1 ConsiStency . . . . . . o.ooiiii e 70

542 Completeness . . . . . . .. ... 70

54.3 Decidability . ... ... ... oo 71

5.5 Extended Syntactic Metalanguage . . . . ... ... .. ... ... .. 71

5.6 EXErcises . . . . . . ... e e 74

5.7 BibliographicNotes . . . . . . . . ... ... ... oo, 76

References . . . . . . . . . . . . .. ... 76



Contents Xix

Automata . . . . . ... 77
6.1 Deterministic Finite Accepters . . . . . . . ... .. ... ... .... 78
6.1.1  State Machine Modeling . . . . ... ... ... ... ..... 79
6.2 Nondeterministic Finite Accepters . . . . . . . ... ... ... .... 85
6.2.1 Finite State Transducers . . . . . .. ... ... ... ..... 93
6.3 EXErcises . . . . . . ... e 101
6.4 BibliographicNotes . . . . . . . ... ... ... . 102
References . . . . . . . . . ... 103
Extended Finite State Machine . . . . . . .. ... ... .......... 105
7.1 State Machine Hierarchy . . . . . ... ... ... ... ....... 107
7.1.1 Menu-Driven User Interface Model . . . . . ... .. .. ... 110
7.2 Modularity and Bottom-up Construction . . . . . . .. ... ... ... 113
7.2.1  Simulation . . ... ... ... o o 118
7.3 Transition Points . . . . . ... ... oo 119
7.4 Case Study—Elevator Control . . . . ... ... .. ... ....... 120
7.5 EXercises . . . . ... 124
7.6 BibliographicNotes . . . . . . . ... ... ... oo 127
References . . . . .. ... ... . . ... 127
Classification of Formal Specification Methods . . . . .. ... ... ... 129
81 TheFourPillars . . . . . .. .. ... ... .. 129
8.2 Classification . . . . . .. .. . ... e 130
8.2.1 Property-Oriented Specification Methods . . . . . .. ... .. 130
8.2.2 Model-Based Specification Techniques . . . . ... ... ... 131
8.3 Languages Chosen for Discussion . . . . . ... ............ 132
8.4 BibliographicNotes . . . . . . . . ... ... ... ... 133
References . . . . . . . . . .. ... 133

Part III Logic

9

10

Propositional Logic . . . . . . ... ... ... .. .. .. 137
9.1 Syntaxand Semantics . . . . . . .. ... ... oL 137
9.2 Proof . . . .. 139
9.2.1 Reasoning Based on Adopting a Premise . . . ... ... ... 139
9.2.2  Inference Based on Natural Deduction . . .. ... ... ... 140
9.23 ProofbyResolution . . . ... ... ... ... ... ..... 141
9.3 Consistency and Completeness . . . . . . . ... .. ... ... .... 143
9.4 EXercises . . . . . . .. 144
9.5 BibliographicNotes . . . . . . .. ... ... ... .. 145
References . . . . . . . . . . . . 145
Predicate Logic . . . . . . . .. ... ... ... .. 147
10.1 Syntax and Semantics . . . . . . . . .. ..o 148
10.1.1 Semantics . . . . . . .. ... 149

10.2 Validity, Equality, and Equivalence . . . . . . . .. ... ... ..... 151



XX Contents
10.2.1 Equality and Equivalence . . . ... ... ... ... ..... 151
10.3 More on Quantified Expressions . . . . . . ... ... ... ...... 154
10.3.1 Policy Language Specification . . . . . . . ... ... ... .. 155
10.3.2 Knowledge Representation. . . . . ... ... ... ... ... 158
104 Proofs . . . . . . .. 160
10.4.1 Natural Deduction Process . . . . . . ... ... ........ 160
1042 Resolution . . . . ... ... ... ... .. ... 162
10.4.3 Decidability . . . . .. ... ... ... 165
10.5 Axiomatic Specification Examples . . . . .. ... ... .. ... ... 166
10.5.1 Hoare’sNotation . . . . . .. ... ... ... .. ....... 166
10.6 EXercises . . . . . .o v v v it e 171
10.7 BibliographicNotes . . . . . . . . ... ... ... ... .. 174
References . . . . . . . . . . . ... 174
11 Temporal Logic . . . . . . ... ... .. ... .. .. ... 177
11.1 Temporal Logic for Specification and Verification . . . . . .. ... .. 178
11.2 Concept of World and Notion of Time . . . . .. ... ... ... ... 179
11.2.1 Temporal Abstraction . . . . ... ... ... ......... 179
11.2.2 Discrete or Continuous . . . . . . . . . .. ... ... ... .. 180
11.2.3 Linear and Branching Models of Time . . .. ... ... ... 181
11.2.4 Further Specializationsof Time . . . . . . ... ... ... .. 181
11.3 Propositional Temporal Logic (PTL) . . . . . ... ... ... .. ... 181
11.3.1 Syntax . . . .. . . e 182
11.3.2 Model and Semantics . . . . . . . . ... ... 183
11.3.3 Formal Semantics . . . . ... ... .............. 184
11.3.4 More Temporal Operators . . . . . . . . ... ... ... ... 184
1135 AXIOMS . . . v v v vt e e 186
11.3.6 Formalizing Propertiesin PTL . . . . . ... ... ... ... .. 187
11.3.7 Specifications . . . . . . ... ... 189
11.4 First Order Temporal Logic (FOTL) . . ... ... ... ... ..... 195
11.4.1 Formalizing Propertiesin FOTL . . . . ... ... ... ... .. 196
11.4.2 Temporal Logic Semantics of Sequential Programs . . . . . . . 199
11.4.3 Temporal Logic Semantics of Concurrent Systems with Shared
Variables . . . . . ... ... 201
11.5 Formal Verification . . . . . . . ... ... ... ... ... ... 205
11.5.1 Verification of Simple FOTL Specifications . . . . . . . .. .. 205
11.52 Model Checking . . . . . . . ... ... ... .. ... .. 210
11.5.3 Program Graphs, Transition Systems, and Kripke Structures . . 212
11.5.4 Model Checking using Biichi Automata . . . . . . . ... ... 217
11.6 Exercises . . . . . . . . . .. oo 221
11.7 BibliographicNotes . . . . . . . . .. ... ... ... . ... 226

References . . . . . . . . . . . . ... 228



Contents Xxi
Part IV Mathematical Abstractions for Model-Based Specifications
12 Set Theory and Relations . . . . . . ... ... ... ............ 233
12.1 Formal Specification Based on Set Theory . . . . . . . ... ... ... 233
12.1.1 SetNotation . . ... ... ... ... ... . ...... 234
12.1.2 Reasoning with Sets . . . . . . . ... ... ... ... .... 235
12.1.3 A Specification Example . . . . . . .. ... ... ... ... 237
12.2 Formal Specification Based on Relations and Functions . . . . . . . .. 242
12.2.1 Relations and Functions . . . . . .. ... ... ........ 242
12.2.2 FunctionsonRelations . . . . .. ... ............. 244
1223 Reasoning . . . . . . . . ... ... 248
12.24 A Specification Example . . . . . . .. ... ... .. .. 251
12.3 Formal Specification Based on Sequences . . . . ... .. ... .... 254
12.3.1 Notation . . . . ... .. .. ... 254
12.3.2 Sequence Operators . . . . . . . . . . . v 254
1233 Proofs . . . . . ... 257
12.3.4 A Specification Example . . . . . ... ... ... . ... 261
12.4 EXercises . . . . . . . . oot i 262
12.5 BibliographicNotes . . . . . . . . .. ... ... ... 263
References . . . . . . .. ... ... 264
Part V. Property-Oriented Specifications
13 Algebraic Specification . . . . .. ... ... ... ... . L. 267
13.1 Algebra and Specification. . . . . . . ... ... ... ... ..., 267
13.2 Algebras—A Brief Introduction . . . . ... ... ... ... ..., 270
13.2.1 Homomorphisms . . . . . . ... ... ... ... ... .. 271
13.3 Abstract DataTypes. . . . . . . . . . o 273
13.3.1 Presentation . . . . . . ... ... 274
13.32 Semantics . . . . ... 276
13.4 Properties of Algebraic Specifications . . . . ... ... ... ... .. 277
13.4.1 Reasoning . . . . . . . . . . .. 277
13.4.2 Extending Many-Sorted Specifications . . . ... ... .. .. 279
13.4.3 Classification of Operations . . . . . ... ... ........ 280
1344 Adequacy . . . . . . . . .. 281
13.5 Structured Specifications . . . . . ... ... o000 282
13.6 OBJ3—An Algebraic Specification Language . . . ... ... ... .. 286
13.6.1 OBJ3BasicSyntax . . . . ... . ... ... ... .... 288
13.6.2 Built-In Sorts and Subsorts . . . . . ... ... 290
13.7 Signature and Equations . . . . . .. ... ... oL 294
13.7.1 SignatureofaModule . . . . .. ... ... ... ... .. 295
13.72 Equations . . . . . . . ... 296
13.8 Parameterized Programming . . . . . . ... ... ... ... ... .. 296
13.8.1 Theories . . . . . . . . . 297
1382 VIiews . . . . oot 298

13.8.3 Parameterized Modules . . . . . .. ... ... ... ..... 298



xxii Contents
13.8.4 Instantiation . . . . . . . .. ... ... ... 299
13.8.5 Module Expression . . . . . . ... ... ... ... ... 301

13.9 Case Study—A Multiple Window Environment . . . . . ... ... .. 302
13.9.1 Requirements . . . . . . . . . .. ... 302
1392 Modeling . . . . . .. ... 303
13.9.3 Formal Specifications . . . . . ... ... ... ........ 303

13.10EXercises . . . . . o oo oo e 309

13.11 Bibliographic Notes . . . . . . . . .. . ... ... ... ... ..... 310
References . . . . . . . . . . ... 311

14 Larch . . . ... .. .. 313

141 The TwoTiersof Larch . . . . . . ... ... ... ... ... ..... 313

142 LSL—Larch Shared Language . . . .. ... ... ... ... ..... 315
14.2.1 Equational Specification . . . . ... ... ... ... ... .. 315
14.2.2 More Expressive Specifications and Stronger Theories . . . . . 319
14.2.3 Composing Traits . . . . . . ... ... ... ... ... .. 321
1424 Renaming . . . . . . .. . . ... 321
14.2.5 Stating Checkable Properties . . . . .. ... ... ...... 322
14.2.6 Stating ASSumptions . . . . . . . . ... 324
14.2.7 Operator Overloading . . . . ... ... ... ... ...... 326
1428 In-lineTraits . . . . . ... ... ... ... ... .... 327

143 More LSL Examples . . . . . .. ... ... ... ... ... ... 329
143.1 File . . . ... ... 330
1432 DateandZone . . . . . . .. ... ... 333
1433 Time . ... .. ... e 336

14.4 Larch/C++: A Larch Interface Specification Language for C++ . . . . . 339
14.4.1 Relating Larch/C++to C++ . . . . . .. ... .. ... .... 341
14.4.2 Function Specification . . . . . . .. ... ... ... ... .. 346
14.4.3 Additional Function Specification Features . . . . . . .. ... 348

145 ProofsinLSL . . . . . . . .. ... 348
14.5.1 Proof Obligations . . . ... ... ... ... ......... 349
14.5.2 LP the LarchProver . . . . ... ... ... ... ..... 351

14.6 Case Study—Two Examples from Rogue Wave Library . . . . . . . .. 355
14.6.1 RWZone Specification . . . . . ... ... ... ........ 355
14.6.2 RWFile Specification . . . . . . .. ... ... ... ...... 356

14.7 EXEICISeS . . . v v v v vt i i e e 358

14.8 BibliographicNotes . . . . . . . . ... .. .. ... ... ... ... 363
References . . . . . . . . . . ... 363

15 Calculus of Communicating Systems . . . . . . ... ... ......... 365

15.1 Why a Specific Calculus for Concurrency Is Necessary? . . . ... .. 367

15.2 Informal IntroductiontoCCS . . . . . . .. .. ... ... ... .... 368

15.3 CCS—Syntax and Semantics . . . . . . . . . .. . ... . 377
15.3.1 Syntax . . . ..o 377

15.3.2 The Operational Semantics of Agents . . . . ... ... .. .. 378



Contents XXiii

15.4 Simulation and Equivalence . . . . . ... ... ... ... ... ... 383
15.4.1 Derivation Trees . . . . . . . . .. .. ... .. ... ... .. 384
1542 Milner'sLaws . . . .. ... ... . . ... o ... 387
15.4.3 Labeled Transition Systems—Some Properties . . . . . . . . . 391
15.4.4 Trace Equivalence . . . . .. ... ... ............ 392
15.4.5 Equivalence and Congruence . . . . . . ... ......... 394

15.5 EXercises . . . . . . oo v it i 399

15.6 BibliographicNotes . . . . . . . . . . . ... ... ... 401
References . . . . . . . . . . . ... 402

Part VI Model-Based Specifications

16

17

Vienna Development Method . . . . . . . ... ... ... ......... 405
16.1 Structure of a VDM Specification . . . . .. ... ... ... ... .. 405
16.2 Representational Abstraction . . . . . . . ... .. ... ... ... .. 406
16.2.1 Identifiers . . . . . . . . . . ... 407
1622 Simple Types . . . . . . o oo v i 407
16.2.3 Composite Types . . . . . . . ... ... oL 409
16.2.4 Patterns, Bindings and Values . . . . ... ... ... ... .. 416
16.2.5 State Representation . . . . . .. ... ... .......... 417
162.6 Invariants . . . . . . . . .. ... 420
16.3 Operational Abstraction. . . . . . ... ... ... ... ... .... 421
16.3.1 LetExpression . . . . . . ... ... ... ... ... ..... 421
16.3.2 Function Definitions . . . . . ... ... ... ......... 422
16.3.3 Operation Definitions . . . . . .. ... ... .. ....... 424
164 Statements . . . . . . . ... 427
16.5 Specification Examples . . . . . . .. ... ... 0o 0oL 430
16.6 Case Study—Computer Network . . . . . . ... .. ... ... .... 440
16.7 RigorousReasoning . . . . . . . . .. ... ... ... ... 447
16.8 Refinement and Proof Obligations . . . . .. ... ... ... ..... 449
16.8.1 DataRefinement . . . . ... ... ... ............ 449
16.8.2 Example for Data Refinement . . . . . . . ... ... ... .. 451
16.8.3 Operation Decomposition . . . . . ... ... ......... 453
16.8.4 Example for Operation Decomposition . . . . ... ... ... 454
169 EXercises . . . . . . . . oo i it 455
16.10 Bibliographic Notes . . . . . . . ... . ... ... .. ..., 457
References . . . . . . . .. ... ... 458
The Z Notation . . . . . .. ... ... ... .. ... ... ....... 461
17.1 AbstractionsinZ . . . . . . ... ... e 461
17.2 Representational Abstraction . . . . . . . . ... ... ... 461
1721 TYpes . . o oo o e e 462
17.2.2 Abbreviation . . . . . . ... .. L 464
17.2.3 Relations and Functions . . . . .. ... ... ......... 465

17.2.4 Sequences . . . . . . ..ot 466



XXiv Contents
1725 Bags . . . 467
172.6 Free Types . . . . . . o v v v v it e 470
17277 Schemas . ... ... ... ... ... ... 471
17.2.8 State Representation . . . . . ... ... ... .. .. ..... 481

17.3 Operational Abstraction . . . . . . . ... ... ... ... ....... 482
17.3.1 Operations . . . . . . . . . v i it 482
17.3.2 Schema Decorators and Conventions . . . . . . ... ... .. 484
17.3.3 Sequential Composition . . . . . . . ... ... ... ..... 487
1734 Functions . . . . . ... ... ... ... 488
17.3.5 GenericFunctions . . . . . . ... ... ... ......... 489

17.4 Specification Examples . . . . . ... ... ... L. 490

17.5 Proving Properties from Z Specifications . . . . . . ... ... ... .. 505
17.5.1 Initial State Validation . . . . ... ... ... ... ...... 506
17.5.2 Consistency of Operations . . . . . ... ... ......... 509

17.6 Case Study: An Automated Billing System . . . . ... ... .. ... 513

17.7 Additional FeaturesinZ . . ... ... ................. 521
17.7.1 Precondition Calculation . . . . . . ... .. ... ... .... 522
17.7.2 Promotion . . . . . . ... .. ... 524

17.8 Refinement and Proof Obligations . . . . . . .. ... ... ... ... 526
17.8.1 DataRefinement . . . .. ... ... .............. 527
17.8.2 Proof Obligations . . . . . . .. ... ... .. ........ 531

17.9 EXercises . . . . . . oo v v v it e e 534

17.10 Bibliographic Notes . . . . . . . . .. . ... ... ... ... ... 536
References . . . . . . . . . .. . ... 537

18 The Object-Z Specification Language . . . . . . .. ... ... ... ... 539

18.1 Basic Structure of an Object-Z Specification . . . . . . . ... ... .. 539
18.1.1 Parameterized Class . . . . . . ... ... ... ........ 542

18.2 Distinguished Features of Object-Orientation . . . . . ... ... ... 544
18.2.1 Encapsulation . . .. ... ... .. ... ... 544
18.2.2 Imheritance . . . . . . . ... .. ... ... 544
1823 Polymorphism . . . ... ... ... ... ... .. .. ..., 547

18.3 Composition of Operations . . . . . . . . ... ... ... ....... 548
18.3.1 Sequential Composition Operator . . . . . ... ... ... .. 548
18.3.2 Concurrency Operator . . . . . . . .. ... ... ... .... 549
18.3.3 Parallel Communication Operator . . . . . ... ... ..... 550
18.3.4 Nondeterministic Choice Operator . . . . . . . . .. ... ... 551
18.3.5 Environment Enrichment Operator . . . . .. ... ... ... 551

18.4 Specification Examples . . . . . . .. ... ... o000 552

185 CaseStudy . . . . .. . 564

18.6 EXercises . . . . . . . .o oot 571

18.7 BibliographicNotes . . . . . . . . . ... . ... 573

References . . . . . . . . . . . .. . ... 574



Contents XXV
19 TheB-Method . . ... ... ... ... .. ... ... ... . ... . 577
19.1 Abstract Machine Notation (AMN) . . . . . .. ... .. ... ..... 577
19.1.1 Structure of a B Specification . . . . ... ... ... ..... 578

19.2 Notations . . . . . . . . oot 582
19.2.1 Arrays . . . . ... 582

19.3 Nondeterministic Statements . . . . . . . .. ... ... ... ... .. 584
19.3.1 ANY Statement . . . . . . .. .. ... 584

19.3.2 CHOICE Statement . . . . . . . .. ... ... ........ 585

19.3.3 SELECT Statement . . . . . . . .. ... ........... 586

1934 PREStatement. . . . . ... ... ... ... ... ... 586

19.4 Structured Specifications . . . . . ... ... o 0oL 587
19.4.1 The INCLUDESClause . . . .. ... ... .......... 587

1942 The USESClause . .. ... .... ... ... ....... 591

19.43 TheSEESClause . . .. ... ... ... ........... 594

19.5 Refinement . . . . . . .. ... 596
19.5.1 Sequential Composition of Statements . . . . . ... ... .. 596

19.5.2 Local Variables . . . . . .. .. .. ... .. ... ... 597

19.5.3 Refinement Machine . . . . . ... ... ... .. ....... 597

19.6 Specification Examples . . . . . . .. ... ... 0oL 600

19.7 Case Study—A Ticketing System in a Parking Lot . . . . ... .. .. 613

19.8 Proof Obligations . . . . . . ... ... ... ... ..., 623
19.8.1 Proof Obligations for INCLUDES Clause . . . . ... ... .. 626

19.8.2 Proof Obligations for USES Clause . . . . ... ... ... .. 627

19.8.3 Proof Obligations for SEES Clause . . . ... ......... 628

19.8.4 Proof Obligations for Refinement . . . . . ... ... ... .. 628

199 EXercises . . . . . oo v v v it 630
19.10 Bibliographic Notes . . . . . . . . ... ... ... . . .. ... ..., 631
References . . . . . . . . . . . .. 632

Index . . . . . . e 635



	Specification of Software Systems
	Preface to the Second Edition
	Background and Motivation
	What is New in the Second Edition?
	Part I
	Part II
	Part III
	Part IV
	Part V
	Part VI

	How to Use the Book
	Intended Audience
	Acknowledgments

	Preface
	General Characteristics
	Audience
	Background Knowledge
	Organization and Content
	Exercises
	Case Studies
	Lab Components
	How to Use the Book
	Acknowledgements

	Contents



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


