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Preface to the Second Edition 

Four years have passed since the first edition of this book. These years were 
"fast time" in the development of new approaches in statistical inference 
inspired by learning theory. 

During this time, new function estimation methods have been created 
where a high dimensionality of the unknown function does not always re
quire a large number of observations in order to obtain a good estimate. 
The new methods control generalization using capacity factors that do not 
necessarily depend on dimensionality of the space. 

These factors were known in the VC theory for many years. However, 
the practical significance of capacity control has become clear only recently 
after the appearance of support vector machines (SVM). In contrast to 
classical methods of statistics where in order to control performance one 
decreases the dimensionality of a feature space, the SVM dramatically in
creases dimensionality and relies on the so-called large margin factor. 

In the first edition of this book general learning theory including SVM 
methods was introduced. At that time SVM methods of learning were brand 
new, some of them were introduced for a first time. Now SVM margin 
control methods represents one of the most important directions both in 
theory and application of learning. 

In the second edition of the book three new chapters devoted to the 
SVM methods were added. They include generalization of SVM method 
for estimating real-valued functions, direct methods of learning based on 
solving (using SVM) multidimensional integral equations, and extension of 
the empirical risk minimization principle and its application to SVM. 

The years since the first edition of the book have also changed the general 
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philosophy in our understanding the of nature of the induction problem. 
After many successful experiments with SVM, researchers became more 
determined in criticism of the classical philosophy of generalization based 
on the principle of Occam's razor. 

This intellectual determination also is a very important part of scientific 
achievement. Note that the creation of the new methods of inference could 
have happened in the early 1970: All the necessary elements of the theory 
and the SVM algorithm were known. It took twenty-five years to reach this 
intellectual determination. 

Now the analysis of generalization from the pure theoretical issues be
come a very practical subject, and this fact adds important details to a 
general picture of the developing computer learning problem described in 
the first edition of the book. 

Red Bank, New Jersey 
August 1999 

Vladimir N. Vapnik 



Preface to the First Edition 

Between 1960 and 1980 a revolution in statistics occurred: Fisher's 
paradigm, introduced in the 1920s and 1930s was replaced by a new one. 
This paradigm reflects a new answer to the fundamental question: 

What must one know a priori about an unknown functional dependency 
in order to estimate it on the basis of observations? 

In Fisher's paradigm the answer was very restrictive--one must know 
almost everything. Namely, one must know the desired dependency up to 
the values of a finite number of parameters. Estimating the values of these 
parameters was considered to be the problem of dependency estimation. 

The new paradigm overcame the restriction of the old one. It was shown 
that in order to estimate dependency from the data, it is sufficient to know 
some general properties of the set of functions to which the unknown de
pendency belongs. 

Determining general conditions under which estimating the unknown 
dependency is possible, describing the (inductive) principles that allow one 
to find the best approximation to the unknown dependency, and finally 
developing effective algorithms for implementing these principles are the 
subjects of the new theory. 

Four discoveries made in the 1960s led to the revolution: 

(i) Discovery of regularization principles for solving ill-posed problems 
by Tikhonov, Ivanov, and Phillips. 

(ii) Discovery of nonparametric statistics by Parzen, Rosenblatt, and 
Chentsov. 
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(iii) Discovery of the law of large numbers in functional space and its 
relation to the learning processes by Vapnik and Chervonenkis. 

(iv) Discovery of algorithmic complexity and its relation to inductive in
ference by Kolmogorov, Solomonoff, and Chaitin. 

These four discoveries also form a basis for any progress in studies of learn
ing processes. 

The problem of learning is so general that almost any question that 
has been discussed in statistical science has its analog in learning theory. 
Furthermore, some very important general results were first found in the 
framework of learning theory and then reformulated in the terms of statis
tics. 

In particular, learning theory for the first time stressed the problem 
of small sample statistics. It was shown that by taking into account the 
size of the sample one can obtain better solutions to many problems of 
function estimation than by using the methods based on classical statistical 
techniques. 

Small sample statistics in the framework of the new paradigm constitutes 
an advanced subject of research both in statistical learning theory and in 
theoretical and applied statistics. The rules of statistical inference devel
oped in the framework of the new paradigm should not only satisfy the 
existing asymptotic requirements but also guarantee that one does one's 
best in using the available restricted information. The result of this theory 
is new methods of inference for various statistical problems. 

To develop these methods (which often contradict intuition), a compre
hensive theory was built that includes: 

(i) Concepts describing the necessary and sufficient conditions for con
sistency of inference. 

(ii) Bounds describing the generalization ability of learning machines 
based on these concepts. 

(iii) Inductive inference for small sample sizes, based on these bounds. 

(iv) Methods for implementing this new type of inference. 

Two difficulties arise when one tries to study statistical learning theory: 
a technical one and a conceptual one-to understand the proofs and to 
understand the nature of the problem, its philosophy. 

To overcome the technical difficulties one has to be patient and persistent 
in following the details of the formal inferences. 

To understand the nature of the problem, its spirit, and its philosophy, 
one has to see the theory as a whole, not only as a collection of its different 
parts. Understanding the nature of the problem is extremely important 
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because it leads to searching in the right direction for results and prevents 
searching in wrong directions. 

The goal of this book is to describe the nature of statistical learning 
theory. I would like to show how abstract reasoning implies new algorithms. 
To make the reasoning easier to follow, I made the book short. 

I tried to describe things as simply as possible but without conceptual 
simplifications. Therefore, the book contains neither details of the theory 
nor proofs of the theorems (both details of the theory and proofs of the the
orems can be found (partly) in my 1982 book Estimation of Dependencies 
Based on Empirical Data (Springer) and (in full) in my book Statistical 
Learning Theory (J. Wiley, 1998)). However, to describe the ideas with
out simplifications I needed to introduce new concepts (new mathematical 
constructions) some of which are nontrivial. 

The book contains an introduction, five chapters, informal reasoning and 
comments on the chapters, and a conclusion. 

The introduction describes the history of the study of the learning prob
lem which is not as straightforward as one might think from reading the 
main chapters. 

Chapter 1 is devoted to the setting of the learning problem. Here the 
general model of minimizing the risk functional from empirical data is in
troduced. 

Chapter 2 is probably both the most important one for understanding 
the new philosophy and the most difficult one for reading. In this chapter, 
the conceptual theory of learning processes is described. This includes the 
concepts that allow construction of the necessary and sufficient conditions 
for consistency of the learning processes. 

Chapter 3 describes the nonasymptotic theory of bounds on the conver
gence rate of the learning processes. The theory of bounds is based on the 
concepts obtained from the conceptual model of learning. 

Chapter 4 is devoted to a theory of small sample sizes. Here we introduce 
inductive principles for small sample sizes that can control the generaliza
tion ability. 

Chapter 5 describes, along with classical neural networks, a new type of 
universal learning machine that is constructed on the basis of small sample 
sizes theory. 

Comments on the chapters are devoted to describing the relations be
tween classical research in mathematical statistics and research in learning 
theory. 

In the conclusion some open problems of learning theory are discussed. 

The book is intended for a wide range of readers: students, engineers, and 
scientists of different backgrounds (statisticians, mathematicians, physi
cists, computer scientists). Its understanding does not require knowledge 
of special branches of mathematics. Nevertheless, it is not easy reading, 
since the book does describe a (conceptual) forest even if it does not con-
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sider the (mathematical) trees. 

In writing this book I had one more goal in mind: I wanted to stress the 
practical power of abstract reasoning. The point is that during the last few 
years at different computer science conferences, I heard reiteration of the 
following claim: 

Complex theories do not work, simple algorithms do. 

One of the goals of this book is to show that, at least in the problems 
of statistical inference, this is not true. I would like to demonstrate that in 
this area of science a good old principle is valid: 

Nothing is more practical than a good theory. 

The book is not a survey of the standard theory. It is an attempt to 
promote a certain point of view not only on the problem of learning and 
generalization but on theoretical and applied statistics as a whole. 

It is my hope that the reader will find the book interesting and useful. 
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