Visual Event Detection

THE KLUWER INTERNATIONAL SERIES IN VIDEO COMPUTING

Series Editor

Mubarak Shah, Ph.D.

University of Central Florida Orlando, USA

Video is a very powerful and rapidly changing medium. The increasing availability of low cost, low power, highly accurate video imagery has resulted in the rapid growth of applications using this data. Video provides multiple temporal constraints, which make it easier to analyze a complex, and coordinated series of events that cannot be understood by just looking at only a single image or a few frames. The effective use of video requires understanding of video processing, video analysis, video synthesis, video retrieval, video compression and other related computing techniques.

The Video Computing book series provides a forum for the dissemination of innovative research results for computer vision, image processing, database and computer graphics researchers, who are interested in different aspects of video.

VISUAL EVENT DETECTION

NIELS HAERING DiamondBack Vision, Inc 11600 Sunrise Valley Drive Reston, VA 20191 USA

NIELS DA VITORIA LOBO School of Electrical Engineering and Computer Science University of Central Florida Orlando, FL 32816 USA

Springer-Science+Business Media, B.V.

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4419-4907-3 ISBN 978-1-4757-3399-0 (eBook) DOI 10.1007/978-1-4757-3399-0

Copyright © 2001 by Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2001. Softcover reprint of the hardcover 1st edition 2001

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the **publisher**, Springer-Science+Business Media, B.V.

Printed on acid-free paper.

Contents

Preface				
Ac	Acknowledgments			
1.	INTRODUCTION			1
	1.1	Rich Image Descriptions		
	1.2	Constructing Visual Primitives for Object Recognition and Event Detection		
	1.3	Signatu	re Based Recognition	9
		1.3.1	Signatures for Remote Sensing	10
		1.3.2	Visual Signatures	10
	1.4	The Da	ta Processing Theorem	11
	1.5	Object]	Recognition	12
	1.6	Event D	Detection	14
	1.7	Practica	al Applications	15
	1.8		ry and Overview of the Chapters	17
2.		RAMEW ECTOR	VORK FOR THE DESIGN OF VISUAL EVENT S	19
	2.1 Low-level Descriptors: Color, Spatial Texture, and Spatio-Te			
		Texture	· · · · ·	21
		2.1.1	Color Measures	23
			Gray-level Co-occurrence Matrix Measures	24
			Fourier Transform Measures	27
			Gabor Filter Measures	29
			Steerable Filter Measures	31
			Fractal Dimension Measures	36
	~ ~		Entropy Measures	37
	2.2	U	Classification	40
	2.3		Motion Estimation and Motion-Blob Detection	42
		2.3.1	Translational Geometry	43

VISUAL	EVENT	DETECTION
1 10 0110		2212011011

		2.3.2 Euclidean Geometry	43		
		2.3.3 Similarity Geometry	43		
		2.3.4 Affine Geometry	44 44		
		2.3.5 Projective Geometry	44 44		
	~ 4	2.3.6 Which Motion Model is Good Enough?			
	2.4		51		
		Shot Detection	52		
		Shot Summarization and Intermediate-Level Descriptors	53 58		
	2.7	Event Inference			
		2.7.1 Hunt Events	58		
		2.7.2 Landing Events	60		
		2.7.3 Rocket Launches	60		
	2.8	Summary of the Framework	63		
3.	FEA	FEATURES AND CLASSIFICATION METHODS 6			
	3.1	Classification without Preprocessing	65		
	3.2	Linear Relationships between Pairs of variables	66		
	3.3	Linear Analysis	67		
	3.4	Quadratic Analysis 67			
	3.5	Eigen-analyses 6			
	3.6	Minimally Correlated Features			
		Each Method in Isolation			
		Leaving One Out			
		Feature De-correlation			
			77		
4.		ULTS	79		
	4.1	Comparison of Classifiers	79		
	4.2	Selecting Expressive Subsets of Features	82		
		4.2.1 Random Sets of Features	82		
		4.2.2 Good Subsets of Features	83		
		4.2.3 A Greedy Algorithm	83		
		4.2.4 Beyond the Greedy Algorithm	83		
	4.3	Object Recognition	86		
		4.3.1 Feature Space Representation of the Video Frames	86		
		4.3.2 Detecting Deciduous Trees4.3.3 Detecting Grass, Trees, Sky, Rock, and Animals in	88		
		Wildlife Documentaries	93		
		4.3.4 Detecting Sky in Unconstrained Video	93 94		
		4.3.5 Detecting Sky in Onconstrained Video 4.3.5 Detecting Sky, Clouds, Exhaust, and human-made Structur			
		in Unconstrained Video	94		
	4.4	Event Detection	94		
		4.4.1 Global Motion Estimation	94		

Contents

		4.4.2	Motion-Blob Detection	96	
		4.4.3		97	
		4.4.4		99	
		4.4.5		99	
			Landing Events	100	
		4.4.7	Rocket Launches	106	
	4.5	Summ	ary of Results	110	
5.	SUN	MMARY	AND DISCUSSION OF ALTERNATIVES	111	
	5.1	Classif	iers and Features	111	
		5.1.1	Correlation, Orthogonality, and Independence	113	
		5.1.2	Linear Dependence	113	
		5.1.3	Linear and Quadratic Classifiers	114	
		5.1.4	Random Feature Sets	115	
		5.1.5	Back-Propagation Neural Networks	115	
	5.2	Object	Recognition	115	
		-	Detection	116	
		5.3.1	Accuracy, Robustness, and Scalability	117	
	5.4	Buildin	ng Mosaics from Video	119	
	5.5	Improving the Modules of the Framework		122	
	0.0	5.5.1	Color, Spatial Texture, and Spatio-temporal Texture	122	
		5.5.2	Motion Estimation	122	
		5.5.3		123	
		5.5.4		123	
			Feedback	123	
			Shot summarization	124	
		5.5.7	Learning Event Models	124	
		5.5.8	Tracking	125	
		5.5.9	Kullback-Leibler Divergence for Correspondence		
			Matching	125	
		5.5.10	Temporal Textures	125	
	5.6	Applic	ations	126	
		5.6.1	Recipes for Selected Applications	127	
A.	API	PENDIX		129	
Re	References				
In	Index				

vii

Series Foreword

Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time those boundaries get shifted or blurred to evolve new fields. For instance, the original goal of computer vision was to understand a single image of a scene, by identifying objects, their structure, and spatial arrangements. This has been referred to as *image understanding*. Recently, computer vision has gradually been making the transition away from understanding single images to analyzing image sequences, or *video understanding*. Video understanding deals with understanding of video sequences, e.g., recognition of gestures, activities, facial expressions, etc. The main *shift* in the classic paradigm has been from the recognition of static objects in the scene to motion-based recognition of actions and events. Video understanding has overlapping research problems with other fields, therefore *blurring* the fixed boundaries.

Computer graphics, image processing, and video databases have obvious overlap with computer vision. The main goal of computer graphics is to generate and animate realistic looking images, and videos. Researchers in computer graphics are increasingly employing techniques from computer vision to generate the synthetic imagery. A good example of this is image-based rendering and modeling techniques, in which geometry, appearance, and lighting is derived from real images using computer vision techniques. Here the shift is from synthesis to analysis followed by synthesis. Image processing has always overlapped with computer vision because they both inherently work directly with images. One view is to consider image processing as low-level computer vision, which processes images, and video for later analysis by high-level computer vision techniques. Databases have traditionally contained text, and numerical data. However, due to the current availability of video in digital form, more and more databases are containing video as content. Consequently, researchers in databases are increasingly applying computer vision techniques to analyze the video before indexing. This is essentially analysis followed by indexing.

Due to the emerging MPEG-4, and MPEG-7 standards, there is a further overlap in research for computer vision, computer graphics, image processing, and databases. In a typical model-based coding for MPEG-4, video is first *analyzed* to estimate local and global motion then the video is *synthesized* using the estimated parameters. Based on the difference between the real video and synthesized video, the model parameters are *updated* and finally *coded* for transmission. This is essentially *analysis followed by synthesis, followed by model update, and followed by coding.* Thus, in order to solve research problems in the context of the MPEG-4 codec, researchers from different video computing fields will need to collaborate. Similarly, MPEG-7 will bring together researchers from databases, and computer vision to specify a standard set of descriptors that can be used to describe various types of multimedia information. Computer vision researchers need to develop techniques to automatically compute those descriptors from video, so that database researchers can use them for indexing.

Due to the overlap of these different areas, it is meaningful to treat *video computing* as one entity, which covers the parts of computer vision, computer graphics, image processing, and databases that are related to video. This international series on *Video Computing* will provide a forum for the dissemination of innovative research results in video computing, and will bring together a community of researchers, who are interested in several different aspects of video.

Mubarak Shah University of Central Florida Orlando

Preface

In this book we argue in favor of a bottom-up approach to object recognition and event detection. The underlying principle of the book is that many diverse pieces of evidence are more useful for object recognition and event detection than the most elaborate algorithm working on an impoverished image representation based on, say, edge information. Our approach is motivated by the data processing theorem, which states that the real world possesses a certain amount of information, only part of which we can hope to measure and extract. Processing the extracted information is leaking further information about the world. David Marr's [74] principle of least commitment and Rodney Brooks' [15] subsumption architecture are instances in Computer Vision and Robotics where researchers have consistently applied the data processing theorem.

We present a framework for the detection of visual events from video that is based on three principles, derived from the data processing theorem:

- Extract **rich image descriptions** to provide an expressive internal description of the world.
- Process the extracted information in a fat, flat hierarchy.
- Missing information will prevent crucial inferences, while additional information disguises relevant information in the worst case.

The structure of this book reflects these principles. We discuss the extraction of diverse image descriptions and their fusion in a fat and flat hierarchy into object recognizing, shot summarizing, and event detecting components. Rich image descriptions based on many diverse sources of information, such as color, spatial texture, and spatio-temporal texture measures greatly simplify object recognition and event detection tasks.

We present object recognition and event detection results for a number of applications and contrast our framework and its components with alternative solutions.

Acknowledgments

Thanks, Wen-Lin for your help, trust, time, and patience; and thank you, Niels Lobo, Mubarak Shah, and Richard Qian for your guidance and support.