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Foreword by Edmund M. Clarke 

It is a great pleasure for me to write the foreward for Doron Peled's new 
book on software reliability methods. When I first opened the book, I was 
immediately impressed by the breadth of its coverage. It covers 

• specification and modeling, 
• deductive verification, 
• model checking, 
• process algebra, 
• program testing, and 
• state and message sequence charts. 

In addition to describing the individual methods in considerable depth, it 
also discusses when each method is appropriate and the tradeoffs that are 
necessary in selecting among them. The different techniques are illustrated 
by many challenging exercises that can be used in conjunction with state of 
the art tools. It even tells where to access the tools on the web! I do not know 
of any other book that covers the same topics with such depth. 

The book also describes the process of applying formal methods, starting 
with modeling and specification, then selecting an appropriate verification 
technique, and, finally, testing the resulting program. This knowledge is es
sential in practice, but is rarely covered in software engineering texts. Most 
books focus on a particular technique like program testing and do not cover 
other validation techniques or how several techniques can be used in combi
nation. Because Doron has made significant contributions to the development 
of many of the validation techniques described in the book, his insights are 
particularly important on this critical issue. 

The book is appropriate for a wide spectrum of people involved in the 
development of software. lt is particularly appropriate for an upper level 
undergraduate level course on software reliability or a master's degree course 
in software engineering. In fact, it is sufficiently well annotated with pointers 
to other more advanced papers that it can be used as a reference source 
for software engineers engaged in code validation or by researchers in formal 
methods. 

Having just completed a book on model checking with Doron, I am im
mensely impressed with both his talent as a computer scientist and his skill 
as a writer. I am sure that the present book will be an enormaus success. 
I recommend it with great enthusiasm for anyone who is interested in the 
problern of software reliability. 



Preface 

Many books focus on increasing the quality of software through the use of 
formal methods. However, most books embrace one particular method, and 
present it as the suggested solution for the software reliability problem. This 
book presents a wider picture of formal methods, through a collection of 
notations and techniques. It compares them, and discusses their advantages 
and disadvantages. 

One of the main challenges of formal methods is in transferring the tech
nology developed by researchers to the software development community. Re
cently, we seem to be starting to have a better understanding of the important 
ingredients of formal methods tools. This manifests itself in the growing ac
ceptance of such tools in the software and hardware development industry. 
ldeally, formal methods need to be intuitive to use (preferably using graphi
cal interfaces), do not impose on the user an extensive learning period, and 
incur only small overhead to the development process. Formal methods are 
much more acceptable today than ten or twenty years ago, in particular in 
the hardware industry. Yet there is still a lively contention between different 
approaches. 

The focus of this book is on describing the main principles of formal meth
ods, through a collection of techniques. At the time of writing this book, 
there are already many advanced techniques that are not covered here. Tech
niques that deal with real-time and hybrid systems, advanced specifica.tion 
formalisms, and special data structures such as binary decision diagrams, 
were not included. The exclusion of specific material does not mean that the 
methods presented here are superior to the ones omitted. Nevertheless, the 
algorithms and methods described here are being used in state-of-the-a.rt soft
ware reliability tools. The selection is merely intended to present the subject 
of formal methods in a way tha.t seems deductive. However, it is impossible 
to refrain from preferring to include subjects tha.t are closer to one's own re
search The main themes used throughout this book are logic and automata 
theory. The interested rea.der can find deta.ils of advanced approaches in other 
books and research papers listed at the end of relevant chapters. 

Studying formal methods is incomplete without hands-on experience with 
some tools. This book includes various exercises and projects, which may be 
performed using software reliability tools. There are several running examples 
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that are used in different chapters. An effective way to learn formal methods 
and their strengths and weaknesses is to follow these examples throughout 
the different chapters in which they occur. In some cases, a later chapter 
further elaborates on a running example that was presented as an exercise 
in a previous chapter. This also serves the purpose of helping readers check 
their solutions to previous exercises (instead of providing an explicit solution). 
The readers are encouraged to check if some of the additional intuition gained 
about the running example may help in improving their solutions to previous 
exercises. 

Most exercises and projects presented here can be performed using a 
choice of tools. While some of the software reliability tools are subject to 
nontriviallicense fees, many of them can be used free of charge for nonprofit 
purposes. This usually involves downloading the tool from its worldwideweb 
page and installing it according to the instructions provided there. At the 
end of relevant chapters, some tools and their corresponding web pages are 
listed. Notice that even tools that can be used without acquiring a license 
often require an agreement letter to be sent to the developers of the tool, 
committing to their terms of use. In many cases, such termsrestriet the use 
of the tool for academic purposes only, and maintain no responsibility for 
darnagethat may be incurred by using it. Since web pagesandweb addresses 
tend to change, and since new tools are constantly being constructed, replac
ing existing ones, one cannot guarantee that the provided web information 
will remain up to date for long. Moreover, it is not guaranteed that the tools 
will work under any particular environment. 

Different communities have different interests in formal methods. It is of 
course impossible to present a book that will appeal equally to managers, 
software developers, quality assurance teams and researchers alike. Never
theless, I tried to include material that would be interesting to members of 
each one of these groups. Consequently, the reader may want to skip sections 
that may seem too theoretical, or too technical. It should be pointed out that 
the focus of this book is mainly on techniques rather than on methodology. 

Some of the formal methods presented in this book are described together 
with the corresponding algorithm. Understanding the algorithms is usually 
not crucial for using the methods, but may give a deeper perspective on how 
they work. Most of the mathematical proofs involving the methods described 
were omitted. In some cases, proof sketches are included, to add more intu
ition. 

The author would like to thank the following people for enlightening dis
cussions and comments related to this book: Nina Amla, Christel Baier, David 
Basin, Shai Ben-David, Roderick Bloem, Glenn Bruns, Ed Clarke, Dennis 
Dams, Xiaoqun Du, Kousha Etessami, Amy Felty, Elsa Gunter, Doug Howe, 
Oma Kupferman, Bart Knaack, Bob Kurshan, Bengt Jonsson, Leonid Libkin, 
Anca Muscholl, Kedar Namjoshi, Wojciech Penczek, Kavita Ravi, Natara
jan Shankar, Natasha Sharygina, Marian Srenby, Richard Tefler, Wolfgang 
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Thomas, Moshe Vardi, Igor Walukiewicz, Thomas Wilke, Mihalis Yannakakis 
and Lenore Zuck. Indeed, one of the great benefits of writing such a book 
is the opportunity to further learn from the suggestions and comments of 
practitioners and experts of the particular subject. 

Quoting from Lewis Carroll's adventure books is hardly original. How
ever, it is little known that Charles Lutwidge Dodgson, who wrote under the 
pen name Lewis Carroll, was a mathematician interested in the visual repre
sentation of logic. His 'biliteral' and 'triliteral' diagrams are predecessors of 
Karnaugh maps, representing logic in a way that can be easily taught and 
understood, a recent trend in many formal methods. 

Doron Peled, March 2001, Murray Hili, NJ 
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