
Springer
NewYork
Berlin
Heidelberg
Barcelona
HongKong
London
Milan
Paris
Singapore
Tokyo

TEXTS IN COMPUTER SCIENCE

Editors
David Gries

Fred B. Schneider

TEXTS IN COMPUTER SCIENCE

Alagar and Periyasamy, Specification of Software Systems

Apt and 0/derog, Verification of Sequential and Concurrent
Programs, Second Edition

Back and von Wright, Refinement Calculus

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, C Programming: The Essentials for Engineers and Scientists

Brooks, Problem Solving with Fortran 90

Dandamudi, lntroduction to Assembly Language Programming

Fitting, First-Order Logic and Automated Theorem Proving,
Second Edition

Grillmeyer, Exploring Computer Science with Scheme

Homer and Se/man, Computability and Complexity Theory

lmmerman, Descriptive Complexity

Jalote, An lntegrated Approach to Software Engineering, Second Edition

Kizza, Ethical and Social lssues in the Information Age

Kozen, Automata and Computability

Li and Vitanyi, An lntroduction to Kolmogorov Complexity
and lts Applications, Second Edition

(continued after index)

Doron A. Peled

SOFTWARE RELIABILITY METHODS

Foreward by Edmund M. Clarke

With 50 Illustrations

~Springer

Doron A. Peled
Computing Seiences
Bell Labs/Lucent Technologies
Murray Hili, NJ 07974, USA
doron@research.bell-labs.com

Series Editors
David Gries
Department of Computer Science
415 Boyd Graduate Studies Research

Center
The University of Georgia
Athens, GA 30602-7404, USA

Library of Congress Cataloging-in-Publication Data
Peled, Doron, 1962-

Soltware reliability methods I Doron A. Peled.
p. cm. - (Texts in computer science)

lncludes bibliographical references and index.
ISBN 978-0-387-95106-5 (alk. paper)

Fred B. Schneider
Department of Computer Science
Upson Hall
Cornell University
lthaca, NY 14853-7501, USA

1. Computer software-Reliability. I. Title. II. Series.
QA76.76.R44 P317 2001
005--dc21 2001018395

Printed on acid-free paper.

© 2001 Lucent Technologies. All Rights Reserved.
All rights reserved. This work may not be translated or copied in whole or in part without the writter
permission of the publisher (Springer-Verlag New York, lnc., 175 Fitth Avenue, New York, NY 10010
USA), except for briet excerpts in connection with reviews or scholarly analysis. Use in connectior
with any form of information storage and retrieval, electronic adaptation, computer soltware, or b:
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if th
former are not especially identified, is not to be taken as a sign that such names, as understood b
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Allan Abrams; manufacturing supervised by Jerome Basma.
Photocomposed copy prepared from the author's Ji.TE]X files.

9 8 7 6 5 4 3 2 1

ISBN 978-0-387-95106-5 ISBN 978-1-4757-3540-6 (eBook)
DOI 10.100/978-1-4757-3540-6

SPIN 10774651

Springer-Verlag New York Berlin Heidelberg
A member ot BertelsmannSpringer Science+Business Media GmbH

To my parents, Priva and Zeev

Foreword by Edmund M. Clarke

It is a great pleasure for me to write the foreward for Doron Peled's new
book on software reliability methods. When I first opened the book, I was
immediately impressed by the breadth of its coverage. It covers

• specification and modeling,
• deductive verification,
• model checking,
• process algebra,
• program testing, and
• state and message sequence charts.

In addition to describing the individual methods in considerable depth, it
also discusses when each method is appropriate and the tradeoffs that are
necessary in selecting among them. The different techniques are illustrated
by many challenging exercises that can be used in conjunction with state of
the art tools. It even tells where to access the tools on the web! I do not know
of any other book that covers the same topics with such depth.

The book also describes the process of applying formal methods, starting
with modeling and specification, then selecting an appropriate verification
technique, and, finally, testing the resulting program. This knowledge is es
sential in practice, but is rarely covered in software engineering texts. Most
books focus on a particular technique like program testing and do not cover
other validation techniques or how several techniques can be used in combi
nation. Because Doron has made significant contributions to the development
of many of the validation techniques described in the book, his insights are
particularly important on this critical issue.

The book is appropriate for a wide spectrum of people involved in the
development of software. lt is particularly appropriate for an upper level
undergraduate level course on software reliability or a master's degree course
in software engineering. In fact, it is sufficiently well annotated with pointers
to other more advanced papers that it can be used as a reference source
for software engineers engaged in code validation or by researchers in formal
methods.

Having just completed a book on model checking with Doron, I am im
mensely impressed with both his talent as a computer scientist and his skill
as a writer. I am sure that the present book will be an enormaus success.
I recommend it with great enthusiasm for anyone who is interested in the
problern of software reliability.

Preface

Many books focus on increasing the quality of software through the use of
formal methods. However, most books embrace one particular method, and
present it as the suggested solution for the software reliability problem. This
book presents a wider picture of formal methods, through a collection of
notations and techniques. It compares them, and discusses their advantages
and disadvantages.

One of the main challenges of formal methods is in transferring the tech
nology developed by researchers to the software development community. Re
cently, we seem to be starting to have a better understanding of the important
ingredients of formal methods tools. This manifests itself in the growing ac
ceptance of such tools in the software and hardware development industry.
ldeally, formal methods need to be intuitive to use (preferably using graphi
cal interfaces), do not impose on the user an extensive learning period, and
incur only small overhead to the development process. Formal methods are
much more acceptable today than ten or twenty years ago, in particular in
the hardware industry. Yet there is still a lively contention between different
approaches.

The focus of this book is on describing the main principles of formal meth
ods, through a collection of techniques. At the time of writing this book,
there are already many advanced techniques that are not covered here. Tech
niques that deal with real-time and hybrid systems, advanced specifica.tion
formalisms, and special data structures such as binary decision diagrams,
were not included. The exclusion of specific material does not mean that the
methods presented here are superior to the ones omitted. Nevertheless, the
algorithms and methods described here are being used in state-of-the-a.rt soft
ware reliability tools. The selection is merely intended to present the subject
of formal methods in a way tha.t seems deductive. However, it is impossible
to refrain from preferring to include subjects tha.t are closer to one's own re
search The main themes used throughout this book are logic and automata
theory. The interested rea.der can find deta.ils of advanced approaches in other
books and research papers listed at the end of relevant chapters.

Studying formal methods is incomplete without hands-on experience with
some tools. This book includes various exercises and projects, which may be
performed using software reliability tools. There are several running examples

x Preface

that are used in different chapters. An effective way to learn formal methods
and their strengths and weaknesses is to follow these examples throughout
the different chapters in which they occur. In some cases, a later chapter
further elaborates on a running example that was presented as an exercise
in a previous chapter. This also serves the purpose of helping readers check
their solutions to previous exercises (instead of providing an explicit solution).
The readers are encouraged to check if some of the additional intuition gained
about the running example may help in improving their solutions to previous
exercises.

Most exercises and projects presented here can be performed using a
choice of tools. While some of the software reliability tools are subject to
nontriviallicense fees, many of them can be used free of charge for nonprofit
purposes. This usually involves downloading the tool from its worldwideweb
page and installing it according to the instructions provided there. At the
end of relevant chapters, some tools and their corresponding web pages are
listed. Notice that even tools that can be used without acquiring a license
often require an agreement letter to be sent to the developers of the tool,
committing to their terms of use. In many cases, such termsrestriet the use
of the tool for academic purposes only, and maintain no responsibility for
darnagethat may be incurred by using it. Since web pagesandweb addresses
tend to change, and since new tools are constantly being constructed, replac
ing existing ones, one cannot guarantee that the provided web information
will remain up to date for long. Moreover, it is not guaranteed that the tools
will work under any particular environment.

Different communities have different interests in formal methods. It is of
course impossible to present a book that will appeal equally to managers,
software developers, quality assurance teams and researchers alike. Never
theless, I tried to include material that would be interesting to members of
each one of these groups. Consequently, the reader may want to skip sections
that may seem too theoretical, or too technical. It should be pointed out that
the focus of this book is mainly on techniques rather than on methodology.

Some of the formal methods presented in this book are described together
with the corresponding algorithm. Understanding the algorithms is usually
not crucial for using the methods, but may give a deeper perspective on how
they work. Most of the mathematical proofs involving the methods described
were omitted. In some cases, proof sketches are included, to add more intu
ition.

The author would like to thank the following people for enlightening dis
cussions and comments related to this book: Nina Amla, Christel Baier, David
Basin, Shai Ben-David, Roderick Bloem, Glenn Bruns, Ed Clarke, Dennis
Dams, Xiaoqun Du, Kousha Etessami, Amy Felty, Elsa Gunter, Doug Howe,
Oma Kupferman, Bart Knaack, Bob Kurshan, Bengt Jonsson, Leonid Libkin,
Anca Muscholl, Kedar Namjoshi, Wojciech Penczek, Kavita Ravi, Natara
jan Shankar, Natasha Sharygina, Marian Srenby, Richard Tefler, Wolfgang

Preface xi

Thomas, Moshe Vardi, Igor Walukiewicz, Thomas Wilke, Mihalis Yannakakis
and Lenore Zuck. Indeed, one of the great benefits of writing such a book
is the opportunity to further learn from the suggestions and comments of
practitioners and experts of the particular subject.

Quoting from Lewis Carroll's adventure books is hardly original. How
ever, it is little known that Charles Lutwidge Dodgson, who wrote under the
pen name Lewis Carroll, was a mathematician interested in the visual repre
sentation of logic. His 'biliteral' and 'triliteral' diagrams are predecessors of
Karnaugh maps, representing logic in a way that can be easily taught and
understood, a recent trend in many formal methods.

Doron Peled, March 2001, Murray Hili, NJ

Contents

1. Introduction.. 1
1.1 Formal Methods . 2
1.2 Developing and Acquiring Formal Methods 5
1.3 Using Formal Methods . 7
1.4 Applying Formal Methods . 9
1.5 Overview of the Book . 11

2. Preliminaries . 13
2.1 Set Notation . 13
2.2 Strings and Languages . 15
2.3 Graphs . 16
2.4 Computational Complexity and Computability 20
2.5 Further Reading. 27

3. Logic and Theorem Proving . 29
3.1 First Order Logic . 29
3.2 Terms. 30
3.3 First Order Formulas . 33
3.4 Propositional Logic . 39
3.5 Proving First Order Logic Formulas. 39
3.6 Properties of Proof Systems. 43
3. 7 Proving Propositional Logic Properties . 46
3.8 A Practical Proof System.. 47
3.9 Example Proofs . 50
3.10 Machine Assisted Proofs. 59
3.11 Mechanized Theorem Provers . 61
3.12 Further Reading. 61

4. Modeling Software Systems . 63
4.1 Sequential, Concurrent and Reactive Systems 64
4.2 States . 67
4.3 State Spaces . 68
4.4 Transition Systems . 71
4.5 Granularity of Transitions . 75

x1v Contents

4.6 Examples of Modeling Programs . 77
4.7 Nondeterministic Transitions............................. 85
4.8 Assigning Propositional Variables to States 86
4.9 Combining State Spaces................................. 88
4.10 The Linear View . 90
4.11 The Branching View.................................... 91
4.12 Fairness . 92
4.13 The Partial Order View . 98
4.14 Modeling Formalisms 107
4.15 A Modeling Project 109
4.16 Further Reading .. 110

5. Formal Specification 113
5.1 Properties of Specification Formalisms 114
5.2 Linear Temporal Logic 116
5.3 Axiomatizing LTL 121
5.4 Examples of LTL Specification 123
5.5 Automata on Infinite Words 127
5.6 Specification using Büchi-automata 129
5.7 Deterministic Büchi Automata 132
5.8 Alternative Specification Formalisms 133
5.9 Complicated Specifications 136
5.10 Completeness of Specification 136
5.11 Further Reading .. 138

6. Automatie Verification 139
6.1 State Space Search 140
6.2 Representing States 143
6.3 The Automata Framework 143
6.4 Combining Büchi Automata 145
6.5 Complementing a Büchi Automaton 151
6.6 Checking Emptiness 152
6. 7 A Model Checking Example 154
6.8 Translating LTL into Automata 156
6.9 The Complexity of Model Checking 164
6.10 Representing Fairness 169
6.11 Checking the LTL Specifications 170
6.12 Safety Properties 171
6.13 The State Space Explosion Problem 172
6.14 Advantages of Model Checking 174
6.15 Weaknesses of Model Checking 174
6.16 Selecting Automatie Verification Tools 175
6.17 Model Checking Projects 175
6.18 Model Checking Tools . 176
6.19 Further Reading . 177

Contents xv

7. Deductive Software Verification 179
7.1 Verification of Flow Chart Programs 180
7.2 Verification with Array Variables 187
7.3 Total Correctness 190
7.4 Axiomatic Program Verification 195
7.5 Verification of Concurrent Programs 202
7.6 Advantages of Deductive Verification 207
7. 7 Weaknesses of Deductive verification 208
7.8 Soundness and Completeness of Proof Systems 210
7.9 Compositionality 212
7.10 Deductive Verification Tools 213
7.11 Further Reading .. 213

8. Process Algebra and Equivalences 215
8.1 Process Algebras 217
8.2 A Calculus of Communicating Systems 218
8.3 An Example: Dekker's Algorithm 225
8.4 Modeling Issues .. 229
8.5 Equivalences between Agents 230

8.5.1 Trace equivalence 231
8.5.2 Failure equivalence 232
8.5.3 Simulation Equivalence 233
8.5.4 Bisimulation and Weak Bisimulation equivalence 235

8.6 A Hierarchy of Equivalence Relations 237
8. 7 Studying Concurrency using Process Algebra 238
8.8 Calculating Bisimulation Equivalence 242
8.9 LOTOS ... 245
8.10 Process Algebra Tools , 247
8.11 Further Reading .. 247

9. Software Testing .. 249
9.1 lnspections and Walkthroughs 251
9.2 Control Flow Coverage Criteria 253
9.3 Dataflow Coverage Criteria 259
9.4 Propagating path conditions 261
9.5 Equivalence Partition 267
9.6 Preparing the Code for Testing 267
9.7 Checking the Test Suite 269
9.8 Compositionality 270
9.9 BlackBox Testing 272
9.10 Probabilistic Testing 275
9.11 Advantages of Testing 276
9.12 Disadvantages of Testing 277
9.13 Testing Tools .. 278
9.14 Further Reading .. 278

xv1 Contents

10. Combining Formal Methods 279
10.1 Abstraction .. 279
10.2 Combining Testing and Model Checking 286

10.2.1 Direct Checking 286
10.2.2 Black Box Systems 287
10.2.3 Combination Lock Automata 288
10.2.4 Black Box Deadlock Detection 289
10.2.5 Conformance Testing 290
10.2.6 Checking the ReHability of Resets 294
10.2. 7 Black Box Checking 294

10.3 The Cleanroom Method 297

11. Visualization . 299
11.1 U sing Visualizations for Formal Methods 300
11.2 Message Sequence Charts . 300
11.3 Visualizing Flowcharts and State Machines 305
11.4 Hierarchical State Graphs . 308
11.5 Visualizing Program Text 312
11.6 Petri Nets ... 312
11.7 Visualization Tools 314
11.8 Further Reading .. 316

12. Conclusions ... 317

References ... 321

Index ... 329

List of Figures

2.1 A directed graph . 17
2.2 An unfolding of the graph in Figure 2.1 . 19
2.3 A Turing Machine . 20

3.1 Proof trees . 51

4.1 Executing commutative transitions . 70
4.2 Executing noncommutative transitions . 70
4.3 Some states of the Sieve of Eratosthenes for N = 1 and P = 3. . . . 82
4.4 Dekker's mutual exclusion solution . 85
4.5 Propositional values for the states in Figure 4.3 87
4.6 Two local state spaces, and their asynchronaus composition 90
4. 7 The relation between executions and specification 91
4.8 A hierarchy of fairness criteria assumptions 97
4.9 A banking system . 99
4.10 A partial order description of the bank 100
4.11 Processes interacting by message passing 104
4.12 A partial order execution of the program in Figure 4.11 105
4.13 Two interleavings .. 106

5.1 A model of aspring .. 118
5.2 A Büchi automaton .. 128
5.3 Two representations for a Büchi automaton 130
5.4 Mutual exclusion .. 132
5.5 A liveness property .. 132
5.6 An automaton accepting words where A holds finitely many times 132
5. 7 Automaton for identifying words where A holds in even places ... 134

6.1 A DFS traversal of nodes with backward edges 142
6.2 Two automata to be intersected 147
6.3 Intermediatestage of intersection 147
6.4 The intersection of the automata in Figure 6.2 148
6.5 A traffic light model and the negation of a specification 155
6.6 The intersection of the automata in Figure 6.5 157
6. 7 The translation algorithm 162

xviii List of Figures

6.8 The initial node ... 163
6.9 Splitting the node in Figure 6.8 163
6.10 Splitting the right node in Figure 6.9 163
6.11 Generating a successor node 164
6.12 The set Nodes_Set at termination 165
6.13 The automaton with the accepting nodes 166

7.1 Nodes in a flowchart .. 180
7.2 A flowchart program for integer division 185
7.3 A proof tree ... 200

8.1 Two simple systems .. 216

8.2 Repeatedly executing ß from A ~ ailß.A 223
8.3 The graph for a.(ß.(8IIJ) + 'Y) 224
8.4 An automaton representing a binary variable c1 226
8.5 Agent P1 ... 228
8.6 Agents a.(ß + 'Y) and a.ß + a.(ß + 'Y) 233
8.7 Agents a.ß.")'.Nil + a.ß.8.Nil and a.(ß.")'.Nil + ß.8) 235
8.8 Agents a.ß + a and a.ß 235
8.9 Two agents for Exercise 8.5.1 236
8.10 A hierarchy of equivalences 238
8.11 Agents E and C ... 240
8.12 Process algebra queues 241
8.13 The state spaces for agents A and B 243

9.1 A part of a flowchart 254
9.2 A hierarchy of coverage criteria 258
9.3 A hierarchy of dataflow coverage 261
9.4 A flowchart for the GCD program 265
9.5 A hierarchy of procedure calls 270
9.6 A combined approach of testing and model checking 273
9.7 A graph for testing ... 274
9.8 A simple Markov Chain 276

10.1 A combined approach of verification and model checking 280
10.2 An n slot buffer and its abstraction 282
10.3 A 4 slot buffer of bits 283
10.4 A combination lock automaton 289
10.5 Two nonconforming automata 290
10.6 A combination lock from a state of a black box automaton 293
10.7 A system where checking the reliability of reset is impossible ... 295

11.1 A Message Sequence Chart 301
11.2 The ITU-120 textual representation of the MSC in Figure 11.1 .. 301
11.3 The partial order between the events in Figure 11.1 302

List of Figures xix

11.4 An HMSC graph ... 304
11.5 A template and a matehing scena.rio 305
11.6 Visualization of flowcharts 308
11.7 A simple hiera.rchical graph 309
11.8 Uniform exits ... 310
11.9 Concurrency within a state 311
11.10 A Petri Net .. 313
11.11 A Petri Net for the provisional mutual exclusion algorithm 315

