
TEXTS IN COMPUTER SCIENCE

Editors
David Gries

Fred B. Schneider

Springer Science+Business Media, LLC

TEXTS IN COMPUTER SCIENCE

Alagar and Periyasamy, Specification of Software Systems

Apt and 0/derog, Verification of Sequential and Concurrent
Programs, Second Edition

Back and von Wright, Refinement Calculus

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, C Programming: The Essentials for Engineers and Scientists

Brooks, Problem Solving with Fortran 90

Dandamudi, lntroduction to Assembly Language Programming

Fitting, First-Order Logic and Automated Theorem Proving,
Second Edition

Grillmeyer, Exploring Computer Science with Scheme

Homer and Se/man, Computability and Complexity Theory

Jmmerman, Descriptive Complexity

Jalote, An lntegrated Approach to Software Engineering, Second Edition

Kizza, Ethical and Social lssues in the Information Age

Kozen, Automata and Computability

Li and Vitanyi, An lntroduction to Kolmogorov Complexity
and lts Applications, Second Edition

(continued after index)

Steven Homer Alan L. Seiman

COMPUTABILITY AND
COMPLEXITY THEORY

With 17 Illustrations

Springer

Steven Homer
Department of Computer Science
Boston University
111 Cummington Street
Boston, MA 02215, USA
homer@cs.bu.edu

Series Editors
David Gries
Department of Computer Science
415 Boyd Studies Research Center
The University of Georgia
Athens, GA 30605, USA

Library of Congress Cataloging-in-Publication Data
Homer, S. (Steven)

Alan L. Selman
Department of Computer Science and Engineering
226 Bell Hall
University at Buffalo
Buffalo, NY 14260-2000, USA
selman@cse.buffalo.edu

Fred B. Schneider
Department of Computer Science
Upson Hall
Cornell University
Ithaca, NY 14853-7501, USA

Computability and complexity theory I Steven Homer, Alan L. Selman.
p. cm. - (Texts in computer science)

Includes bibliographical references and index.
ISBN 978-1-4419-2865-8 ISBN 978-1-4757-3544-4 (eBook)
DOI 10.1007/978-1-4757-3544-4
1. Computer science. 2. Computable functions. 3. Computational complexity.

I. Selman, Alan L. II. Title. III. Series.
QA76 .H6236 2001
004-dc21 00-053829

Printed on acid-free paper.

© 2001 Springer Science+Business Media New York
Originally published by Springer -Verlag New York, Inc. in 2001
Softcover reprint of the hardcover 1 st edition 2001

All rights reserved. This work may not be translated or copied in whole or in part without the written permission
of the publisher [Springer Science+Business Media, LLCI. except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are
not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and
Merchandise Marks Act. may accordingly be used freely by anyone.

Production managed by MaryAnn Brickner; manufacturing supervised by Joe Quatela.
Typeset pages prepared using the authors' It'TEX2e files by Integre Technical Publishing Company, Inc.

9 8 7 6 5 4 3 2 1 SPIN 10769347

We dedicate this book to our wives, Michelle and Sharon

Preface

The theory of computing provides computer science with concepts, models, and
formalisms for reasoning about both the resources needed to carry out computa
tions and the efficiency of the computations that use these resources. lt provides
tools to measure the difficulty of combinatorial problems both absolutely and in
comparison with other problems. Courses in this subject help students gain an
alytic skills and enable them to recognize the limits of computation. For these
reasons, a course in the theory of computing is usually required in the graduate
computer science curriculum.

The barder question to address is which topics such a course should cover. We
believe that students should learn the fundamental models of computation, the
limitations of computation, and the distinctions between feasible and intractable.
In particular, the phenomena ofNP-completeness and NP-hardness have pervaded
much of science and transformed computer science. One option is to survey a
large nurober of theoretical subjects, typically focusing on automata and formal
languages. However, these subjects are less important to theoretical computer sci
ence, and to computer science as a whole, now than in the past. Many students
have taken such a course as part of their undergraduate education. We chose not
to take that route because computability and complexity theory are the subjects
that we feel deeply about and that we believe are important for students to learn.
Furthermore, a graduate course should be scholarly. lt is better to treat important
topics thoroughly than to survey the field.

This textbook is intended for use in an introductory graduate course in the
oretical computer science. lt contains material that should be core knowledge in
the theory of computation for all graduate students in computer science. lt is self
contained and is best suited for a one-semester course. Most of the text can be
covered in one semester by moving expeditiously through the core material of

viii Preface

Chapters 2 through 6 and then covering parts of Chapter 7. We will give more
details about this below.

As a graduate course, students should have some prerequisite preparation. The
ideal preparation would be the kind of course that we mentioned above: an under
graduate course that introduced topics such as automata theory, formallanguages,
computability theory, or complexity theory. We stress, however, that there is noth
ing in such a course that a student needs to know before studying this text. Our
personal experience suggests that we cannot presume that all of our students have
taken such an undergraduate course. For those students who have not, we advise
that they need at least some prior exposure that will have developed mathematical
skills. Prior courses in mathematicallogic, algebra (at the Ievel of groups, rings,
or fields), or number theory, for example, would all serve this purpose.

Despite the diverse backgrounds of our students, we have found that graduate
students are capable of learning sophisticated material when it is explained clearly
and precisely. That has been our goal in writing this book.

This book also is suitable for advanced undergraduate students who have sat
isfied the prerequisites. It is an appropriate first course in complexity theory for
students who will continue to study and work in this subject area.

The text begins with a preliminary chapter that gives a brief description of
several topics in mathematics. We included this in order to keep the book self
contained and to ensure that all students have a common notation. Some of these
sections simply enable students to understand some of the important examples
that arise later. For example, we include a section on number theory and algebra
that includes all that is necessary for students to understand that primality belongs
toNP.

The text starts properly with classical computability theory. We build com
plexity theory on top of that. Doing so has the pedagogical advantage that stu
dents learn a qualitative subject before advancing to a quantitative one. Also, the
concepts build from one to the other. For example, although we give a complete
proofthat the satisfiability problern is NP-complete, it is easy for students to un
derstand that the bounded halting problern is NP-complete, because they already
know that the classical halting problern is c.e.-complete.

We use the termspartial computable and computably enumerable (c.e.) in
stead of the traditional terminology, partial recursive and recursively enumerable
(r.e.), respectively. We do so simply to eliminate confusion. Students of computer
science know of "recursion" as a programming paradigm. We do not prove here
that Turing-computable partial functions are equivalent to partial recursive func
tions, so by not using that notation, we avoid the matter altogether. Although the
notation we are using has been commonplace in the computability theory and
mathematicallogic community for several years, instructors might want to advise
their students that the older terminology seems commonplace within the theoreti
cal computer science community. Computable functions are defined on the set of
words over a finite alphabet, which we identify with the set of natural numbers
in a Straightforward manner. We use the term effective, in the nontechnical, intu-

Preface ix

itive sense, to denote computational processes on other data types. For example,

we will say that a set of Turing machines is "effectively enumerable" if its set of
indices is computably enumerable.

Chapter 4 concludes with a short list of topics that students should know from
the chapters on computability theory before proceeding to study complexity the

ory. We advise instructors who wish to minimize coverage of computability theory
to refer to this list. Typically, we do not cover the second section on the recursion
theorem (Section 3.10) in a one-semester course. Although we do not recommend
it, it is possible to begin the study of complexity theory after learning the first five
sections of Chapter 3 and at least part of Section 3.9 on oracle Turing machines,
Turing reductions, and the arithmetical hierarchy.

In Chapter 5 we treat general properties of complexity classes and relation
ships between complexity classes. These include important older results such as
the space and time hierarchy theorems, as well as the more recent result of Im

merman and Szelepcsenyi that space-bounded classes are closed under comple
ments. lnstructors might be anxious to get to NP-complete problems (Chapter 6)
and NP-hard problems (Chapter 7) but students need to learn the basic results of
complexity theory and it is instructive for them to understand the relationships

between P, NP, and other deterministic and nondeterministic, low-level complex
ity classes. Students should learn that nondeterminism is not well understood in
general, that P =? NP is not an isolated question, and that other classes have com
plete problems as well (which we tak.e up in Chapter 7). Nevertheless, Chapter 5
is a long chapter. Many of the results in this chapter are proved by complicated

Turing-machine simulations and counting arguments, which give students great
insight, but can be time-consurning to cover. For this reason, instructors might be
advised to survey some of this material if the alternative would mean not having
sufficient time for the later chapters.

Homework exercises are an important part of this book. They are embedded
in the text where they naturally arise, and students should not proceed without

working on them. Many are simple exercises, whereas others are challenging.
Often we leave important but easy-to-prove propositions as exercises. We provide
additional problems at the end of chapters, which extend and apply the material
covered there.

Once again, our intent has been to write a text that is suitable for all grad
uate students, that provides the right background for those who will continue to

study complexity theory, and that can be taught in one semester. There are several
important topics in complexity theory that cannot be treated properly in a one
semester course. Currently we are writing a second part to this text, which will be
suitable for an optional second semester course, covering nonuniform complexity
(Boolean circuits), parallelism, probabilistic classes, and interactive protocols.

Boston, Massachusetts
Buffalo, New York

Steven Homer
Alan L. Seiman

January,2001

Contents

Preface vü

1 Preliminaries 1
1.1 Words and Languages 1
1.2 K -adic Representation . 2
1.3 Partial Functions . . 3
1.4 Graphs ••••• 0 ••• 4
1.5 Propositional Logic .. 6

1.5.1 Boolean Functions . 8
1.6 Cardinality 8

1.6.1 Ordered Sets . . . 10
1.7 Elementary Algebra ... 11

1.7.1 Rings and Fields . 11
1.7.2 Groups 15
1.7.3 Number Theory 17

2 Introduction to Computability 22
2.1 Turing Machines 23
2.2 Turing-Machine Concepts . 26
2.3 Variations of Turing Machines . 28

2.3.1 Multitape Turing Machines 29
2.3.2 Nondeterministic Turing Machines 31

2.4 Church's Thesis • 0 •••••••• 0 34
2.5 RAMs ••• 0 • 0 •••••••••• 36

2.5.1 Turing Machines for RAMS . 39

xii Contents

3 Undecidability
3.1 Decision Problems .
3.2 Undecidable Problems .
3.3 Pairing Functions ...
3.4 Computably Enumerable Sets
3.5 Halting Problem, Reductions, and Complete Sets .

3.5.1 Complete Problems
3.6 S-m-n Theorem . . .
3.7 Recursion Theorem
3.8 Rice's Theorem
3.9 Turing Reductions and Oracle Turing Machines
3.10 Recursion Theorem, Continued
3.11 References
3.12 Additional Homework Problems.

4 Introduction to Complexity Theory
4.1 Complexity Classes and Complexity Measures

4.1.1 Computing Functions
4.2 Prerequisites

5 Basic Results of Complexity Theory
5.1 Linear Compression and Speedup
5.2 Constructible Functions

5.2.1 Simultaneous Simulation
5.3 Tape Reduction
5.4 Inclusion Relationships

5.4.1 Relations between the Standard Classes .
5.5 Separation Results
5.6 Translation Techniques and Padding

5.6.1 Tally Languages
5.7 Relations between the Standard Classes-Continued .

5.7.1 Complements ofComplexity Classes:
The Immerman-Szelepcsenyi Theorem .

5.8 Additional Homework Problems

6 Nondetenninism and NP-Completeness
6.1 Characterizing NP
6.2 The Class P . . .
6.3 Enumerations . .
6.4 NP-Completeness
6.5 The Cook-Levin Theorem .
6.6 More NP-Complete Problems

6.6.1 The Diagonal Set Is NP-Complete
6.6.2 Some Natural NP-Complete Problems

41
41
43
46
47
50
52
53
55
57
59
66
69
70

72
74
76
77

78
80
86
87
90
97

105
107
111
113
115

116
120

122
123
124
126
128
130
136
137
138

6.7 Additional Homework Problems.

7 Relative Computability
7.1 NP-Hardness
7.2 Search Problems ..
7.3 The Structure ofNP

7.3.1 Composite Number and Graph Isomorphism
7.3.2 Reflection

7.4 The Polynomial Hierarchy
7.5 Complete Problems for Other Complexity Classes

7.5.1 PSPACE
7.5.2 Exponential Time
7.5.3 Polynomial Time and Logarithmic Space .
7.5.4 A Note on Provably Intractable Problems .

7.6 Additional Homework Problems

References

Author Index

Subject Index

Contents xiii

142

145
147
151
153
158
161
162
170
170
174
175
179
179

181

187

191

