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Preface 

The theory of computing provides computer science with concepts, models, and 
formalisms for reasoning about both the resources needed to carry out computa
tions and the efficiency of the computations that use these resources. lt provides 
tools to measure the difficulty of combinatorial problems both absolutely and in 
comparison with other problems. Courses in this subject help students gain an
alytic skills and enable them to recognize the limits of computation. For these 
reasons, a course in the theory of computing is usually required in the graduate 
computer science curriculum. 

The barder question to address is which topics such a course should cover. We 
believe that students should learn the fundamental models of computation, the 
limitations of computation, and the distinctions between feasible and intractable. 
In particular, the phenomena ofNP-completeness and NP-hardness have pervaded 
much of science and transformed computer science. One option is to survey a 
large nurober of theoretical subjects, typically focusing on automata and formal 
languages. However, these subjects are less important to theoretical computer sci
ence, and to computer science as a whole, now than in the past. Many students 
have taken such a course as part of their undergraduate education. We chose not 
to take that route because computability and complexity theory are the subjects 
that we feel deeply about and that we believe are important for students to learn. 
Furthermore, a graduate course should be scholarly. lt is better to treat important 
topics thoroughly than to survey the field. 

This textbook is intended for use in an introductory graduate course in the
oretical computer science. lt contains material that should be core knowledge in 
the theory of computation for all graduate students in computer science. lt is self
contained and is best suited for a one-semester course. Most of the text can be 
covered in one semester by moving expeditiously through the core material of 
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Chapters 2 through 6 and then covering parts of Chapter 7. We will give more 
details about this below. 

As a graduate course, students should have some prerequisite preparation. The 
ideal preparation would be the kind of course that we mentioned above: an under
graduate course that introduced topics such as automata theory, formallanguages, 
computability theory, or complexity theory. We stress, however, that there is noth
ing in such a course that a student needs to know before studying this text. Our 
personal experience suggests that we cannot presume that all of our students have 
taken such an undergraduate course. For those students who have not, we advise 
that they need at least some prior exposure that will have developed mathematical 
skills. Prior courses in mathematicallogic, algebra (at the Ievel of groups, rings, 
or fields ), or number theory, for example, would all serve this purpose. 

Despite the diverse backgrounds of our students, we have found that graduate 
students are capable of learning sophisticated material when it is explained clearly 
and precisely. That has been our goal in writing this book. 

This book also is suitable for advanced undergraduate students who have sat
isfied the prerequisites. It is an appropriate first course in complexity theory for 
students who will continue to study and work in this subject area. 

The text begins with a preliminary chapter that gives a brief description of 
several topics in mathematics. We included this in order to keep the book self
contained and to ensure that all students have a common notation. Some of these 
sections simply enable students to understand some of the important examples 
that arise later. For example, we include a section on number theory and algebra 
that includes all that is necessary for students to understand that primality belongs 
toNP. 

The text starts properly with classical computability theory. We build com
plexity theory on top of that. Doing so has the pedagogical advantage that stu
dents learn a qualitative subject before advancing to a quantitative one. Also, the 
concepts build from one to the other. For example, although we give a complete 
proofthat the satisfiability problern is NP-complete, it is easy for students to un
derstand that the bounded halting problern is NP-complete, because they already 
know that the classical halting problern is c.e.-complete. 

We use the termspartial computable and computably enumerable (c.e.) in
stead of the traditional terminology, partial recursive and recursively enumerable 
(r.e.), respectively. We do so simply to eliminate confusion. Students of computer 
science know of "recursion" as a programming paradigm. We do not prove here 
that Turing-computable partial functions are equivalent to partial recursive func
tions, so by not using that notation, we avoid the matter altogether. Although the 
notation we are using has been commonplace in the computability theory and 
mathematicallogic community for several years, instructors might want to advise 
their students that the older terminology seems commonplace within the theoreti
cal computer science community. Computable functions are defined on the set of 
words over a finite alphabet, which we identify with the set of natural numbers 
in a Straightforward manner. We use the term effective, in the nontechnical, intu-
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itive sense, to denote computational processes on other data types. For example, 

we will say that a set of Turing machines is "effectively enumerable" if its set of 
indices is computably enumerable. 

Chapter 4 concludes with a short list of topics that students should know from 
the chapters on computability theory before proceeding to study complexity the

ory. We advise instructors who wish to minimize coverage of computability theory 
to refer to this list. Typically, we do not cover the second section on the recursion 
theorem (Section 3.10) in a one-semester course. Although we do not recommend 
it, it is possible to begin the study of complexity theory after learning the first five 
sections of Chapter 3 and at least part of Section 3.9 on oracle Turing machines, 
Turing reductions, and the arithmetical hierarchy. 

In Chapter 5 we treat general properties of complexity classes and relation
ships between complexity classes. These include important older results such as 
the space and time hierarchy theorems, as well as the more recent result of Im

merman and Szelepcsenyi that space-bounded classes are closed under comple
ments. lnstructors might be anxious to get to NP-complete problems (Chapter 6) 
and NP-hard problems (Chapter 7) but students need to learn the basic results of 
complexity theory and it is instructive for them to understand the relationships 

between P, NP, and other deterministic and nondeterministic, low-level complex
ity classes. Students should learn that nondeterminism is not well understood in 
general, that P =? NP is not an isolated question, and that other classes have com
plete problems as well (which we tak.e up in Chapter 7). Nevertheless, Chapter 5 
is a long chapter. Many of the results in this chapter are proved by complicated 

Turing-machine simulations and counting arguments, which give students great 
insight, but can be time-consurning to cover. For this reason, instructors might be 
advised to survey some of this material if the alternative would mean not having 
sufficient time for the later chapters. 

Homework exercises are an important part of this book. They are embedded 
in the text where they naturally arise, and students should not proceed without 

working on them. Many are simple exercises, whereas others are challenging. 
Often we leave important but easy-to-prove propositions as exercises. We provide 
additional problems at the end of chapters, which extend and apply the material 
covered there. 

Once again, our intent has been to write a text that is suitable for all grad
uate students, that provides the right background for those who will continue to 

study complexity theory, and that can be taught in one semester. There are several 
important topics in complexity theory that cannot be treated properly in a one
semester course. Currently we are writing a second part to this text, which will be 
suitable for an optional second semester course, covering nonuniform complexity 
(Boolean circuits), parallelism, probabilistic classes, and interactive protocols. 

Boston, Massachusetts 
Buffalo, New York 

Steven Homer 
Alan L. Seiman 

January,2001 



Contents 

Preface vü 

1 Preliminaries 1 
1.1 Words and Languages 1 
1.2 K -adic Representation . 2 
1.3 Partial Functions . . 3 
1.4 Graphs ••••• 0 ••• 4 
1.5 Propositional Logic .. 6 

1.5.1 Boolean Functions . 8 
1.6 Cardinality . . . . . 8 

1.6.1 Ordered Sets . . . 10 
1.7 Elementary Algebra ... 11 

1.7.1 Rings and Fields . 11 
1.7.2 Groups ..... 15 
1.7.3 Number Theory 17 

2 Introduction to Computability 22 
2.1 Turing Machines . . . . . . 23 
2.2 Turing-Machine Concepts . 26 
2.3 Variations of Turing Machines . 28 

2.3.1 Multitape Turing Machines 29 
2.3.2 Nondeterministic Turing Machines 31 

2.4 Church's Thesis • 0 •••••••• 0 34 
2.5 RAMs ••• 0 • 0 •••••••••• 36 

2.5.1 Turing Machines for RAMS . 39 



xii Contents 

3 Undecidability 
3.1 Decision Problems . 
3.2 Undecidable Problems . 
3.3 Pairing Functions ... 
3.4 Computably Enumerable Sets 
3.5 Halting Problem, Reductions, and Complete Sets . 

3.5.1 Complete Problems 
3.6 S-m-n Theorem . . . 
3.7 Recursion Theorem .... 
3.8 Rice's Theorem . . . . . . 
3.9 Turing Reductions and Oracle Turing Machines 
3.10 Recursion Theorem, Continued 
3.11 References ........... . 
3.12 Additional Homework Problems. 

4 Introduction to Complexity Theory 
4.1 Complexity Classes and Complexity Measures 

4.1.1 Computing Functions 
4.2 Prerequisites . . . . . . . . . . . . . . . . . . 

5 Basic Results of Complexity Theory 
5.1 Linear Compression and Speedup 
5.2 Constructible Functions . . . . . 

5.2.1 Simultaneous Simulation 
5.3 Tape Reduction ........ . 
5.4 Inclusion Relationships .... . 

5.4.1 Relations between the Standard Classes . 
5.5 Separation Results . . . . . . . . . . 
5.6 Translation Techniques and Padding ...... . 

5.6.1 Tally Languages ............ . 
5.7 Relations between the Standard Classes-Continued . 

5.7.1 Complements ofComplexity Classes: 
The Immerman-Szelepcsenyi Theorem . 

5.8 Additional Homework Problems . . . . . . . . . 

6 Nondetenninism and NP-Completeness 
6.1 Characterizing NP 
6.2 The Class P . . . 
6.3 Enumerations . . 
6.4 NP-Completeness 
6.5 The Cook-Levin Theorem . 
6.6 More NP-Complete Problems 

6.6.1 The Diagonal Set Is NP-Complete 
6.6.2 Some Natural NP-Complete Problems 

41 
41 
43 
46 
47 
50 
52 
53 
55 
57 
59 
66 
69 
70 

72 
74 
76 
77 

78 
80 
86 
87 
90 
97 

105 
107 
111 
113 
115 

116 
120 

122 
123 
124 
126 
128 
130 
136 
137 
138 



6.7 Additional Homework Problems. 

7 Relative Computability 
7.1 NP-Hardness .... 
7.2 Search Problems .. 
7.3 The Structure ofNP 

7.3.1 Composite Number and Graph Isomorphism 
7.3.2 Reflection ................ . 

7.4 The Polynomial Hierarchy . . . . . . . . . . . . . 
7.5 Complete Problems for Other Complexity Classes 

7.5.1 PSPACE ................. . 
7.5.2 Exponential Time ............ . 
7.5.3 Polynomial Time and Logarithmic Space . 
7.5.4 A Note on Provably Intractable Problems . 

7.6 Additional Homework Problems . . . . . . . . . . 

References 

Author Index 

Subject Index 

Contents xiii 

142 

145 
147 
151 
153 
158 
161 
162 
170 
170 
174 
175 
179 
179 

181 

187 

191 


