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Foreword 

The problem of scale pervades both the natural sciences and the vi
sual arts. The earliest scientific discussions concentrate on visual per
ception (much like today!) and occur in Euclid's (c. 300 B.C.) Optics 
and Lucretius' (c. 100-55 B.C.) On the Nature of the Universe. A very 
clear account in the spirit of modern "scale-space theory" is presented 
by Boscovitz (in 1758), with wide ranging applications to mathemat
ics, physics and geography. Early applications occur in the cartographic 
problem of "generalization", the central idea being that a map in order 
to be useful has to be a "generalized" (coarse grained) representation of 
the actual terrain (Miller and Voskuil 1964). Broadening the scope asks 
for progressive summarizing. Very much the same problem occurs in the 
(realistic) artistic rendering of scenes. Artistic generalization has been 
analyzed in surprising detail by John Ruskin (in his Modern Painters), 
who even describes some of the more intricate generic "scale-space sin
gularities" in detail: Where the ancients considered only the merging of 
blobs under blurring, Ruskin discusses the case where a blob splits off 
another one when the resolution is decreased, a case that has given rise 
to confusion even in the modern literature. 

It is indeed clear that any physical observation of some extended quan
tity such as mass density or surface irradiance presupposes a scale-space 
setting due to the inherent graininess of nature on the small scale and its 
capricious articulation on the large scale. What is the "right scale" does 
indeed depend on the problem, i.e., whether one needs to see the forest, 
the trees or the leaves. (Of course this list could be extended indefinitely 
towards the microscopic as well as the the mesoscopic domains, as has 
been done in the popular film Powers of Ten (Morrison and Morrison, 
1984». The physicist almost invariably manages to pick the right scale 
for the problem ~t hand intuitively. However, in many modern applica
tions the "right scale" need not be obvious at all, and one really needs a 
principled mathematical analysis of the scale problem. 

In applications such as vision the front end system has to process 
the radiance function blindly (since no meaning resides in the photons 
as such) and the problem of finding the right scale becomes especially 
acute. This is true for biological and artificial vision systems alike. Here 
a principled theory is mandatory and can a priori be expected to yield 
important insights and lead to mechanistic models. The modern scale
space theory has indeed led to an increased understanding of the low level 
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operations and novel handles on ways to design algorithms for problems 
in machine vision. 

In this book the author presents a commendably lucid outline of the 
theory of scale-space, the structure of low level operations in a scale
space setting and algorithmic schemes to use these structures such as to 
solve important problems in computer vision. The subjects range from a 
mathematical underpinning, over issues in implementation (discrete scale
space structures) to more open ended algorithmic methods for computer 
vision problems. The latter methods seem to me to point a way to a range 
of potentially very important applications. This approach will certainly 
turn out to be part of the foundations of the theory and practice of 
machine vision. 

It was about time for somebody to write a monograph on the subject 
of scale-space structure and scale-space based methods, and the author 
has no doubt performed an excellent service to many in the field of both 
artificial and biological vision. 

Utrecht, October 4th, 1993 Jan Koenderink 



Preface 

We perceive objects in the world as having structures both at coarse and 
fine scales. A tree, for instance, may appear as having a roughly round 
or cylindrical shape when seen from a distance, even though it is built 
up from a large number of branches. At a closer look, individual leaves 
become visible, and we can observe that the leaves in turn have texture 
at an even finer scale. 

The fact that objects in the world appear in different ways depending 
upon the scale of observation has important implications when analysing 
measured data, such as images, with automatic methods. A straightfor
ward way of exemplifying this is to note that every operation on image 
data must be carried out on a window, whose size can range from a single 
point to the whole image. The type of information we can get from such 
an operation is largely determined by the relation between structures in 
the image and the size of the window. Hence, without prior knowledge 
about what we are looking for, there is no reason to favour any particular 
scale. We should therefore try them all and operate at all window sizes. 

These insights are not completely new in computer vision. Multi-scale 
representations of images in terms of pyramids were developed already 
around 1970. A main motivation then was to achieve computational effi
ciency by coarse-to-fine strategies. This approach was also supported by 
findings in neurophysiology about the primate visual system. However, 
it was soon discovered that relating structures from different levels in 
the multi-scale representation was far from trivial. Structures at coarse 
levels could sometimes not be assigned any direct interpretation, since 
they were hard to trace to finer scales. Despite considerable efforts to 
develop techniques for matching between scales, a theoretical foundation 
was missing. 

In 1983, Witkin proposed that scale could be considered as a con
tinuous parameter, thereby generalizing the existing notion of Gaussian 
pyramids. He noted the relation to the diffusion equation and hence found 
a well-founded way of relating image structures between different scales. 
Koenderink soon furthered the approach, which has been developed into 
what we now know as scale-space theory. 

Since that work, we have seen the theory develop in many ways, and 
also realized that it provides a framework for early visual computations 
of a more general nature. The aim of this book is to provide a coherent 
overview of this recently developed theory, and to make material, which 

iii 
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has earlier existed only in terms of research papers, available to a larger 
audience. The presentation provides an introduction into the general foun
dations of the theory and shows how it applies to essential problems in 
computer vision such as computation of image features and cues to surface 
shape. The subjects range from the mathematical foundation to practical 
computational techniques. The power of the methodology is illustrated 
by a rich set of examples. 

I hope that this work can serve as a useful introduction, reference, and 
inspiration for fellow researchers in computer vision and related fields such 
as image processing, signal processing in general, photogrammetry, and 
medical image analysis. Whereas the book is mainly written in the form 
of a research monograph, the level of presentation has been adapted so 
that it can be used as a basis for advanced courses in these fields. 

The presentation is organized in a logical bottom-up way, following 
the ordering of the processing modules in an imagined vision system. It 
is, however, not necessary to read the book in such a sequential manner. 
Several of the chapters are relatively self-contained, and it should be pos
sible to read them independently. A guide to the reader describing the 
mutual dependencies is given in section 1.7 (page 22). I wish the reader 
a pleasant tour into this highly stimulating and challenging subject. 

Stockholm, September 1993, Tony Lindeberg 



Abstract 

The presentation starts with a philosophical discussion about computer 
vision in general. The aim is to put the scope of the book into its wider 
context, and to emphasize why the notion of scale is crucial when deal
ing with measured signals, such as image data. An overview of different 
approaches to multi-scale representation is presented, and a number of 
special properties of scale-space are pointed out. 

Then, it is shown how a mathematical theory can be formulated for 
describing image structures at different scales. By starting from a set of 
axioms imposed on the first stages of processing, it is possible to derive a 
set of canonical operators, which turn out to be derivatives of Gaussian 
kernels at different scales. 

The problem of applying this theory computationally is extensively 
treated. A scale-space theory is formulated for discrete signals, and it 
demonstrated how this representation can be used as a basis for expressing 
a large number of visual operations. Examples are smoothed derivatives 
in general, as well as different types of detectors for image features, such 
as edges, blobs, and junctions. In fact, the resulting scheme for feature de
tection induced by the presented theory is very simple, both conceptually 
and in terms of practical implementations. 

Typically, an object contains structures at many different scales, but 
locally it is not unusual that some of these "stand out" and seem to be 
more significant than others. A problem that we give special attention to 
concerns how to find such locally stable scales, or rather how to gener
ate hypotheses about interesting structures for further processing. It is 
shown how the scale-space theory, based on a representation called the 
scale-space primal sketch, allows us to extract regions of interest from an 
image without prior information about what the image can be expected 
to contain. Such regions, combined with knowledge about the scales at 
which they occur constitute qualitative information, which can be used 
for guiding and simplifying other low-level processes. 

Experiments on different types of real and synthetic images demon
strate how the suggested approach can be used for different visual tasks, 
such as image segmentation, edge detection, junction detection, and focus
of-attention. This work is complemented by a mathematical treatment 
showing how the behaviour of different types of image structures in scale
space can be analysed theoretically. 

v 



vi Abstract 

It is also demonstrated how the suggested scale-space framework can 
be used for computing direct cues to three-dimensional surface structure, 
using in principle only the same types of visual front-end operations that 
underlie the computation of image features. 

Although the treatment is concerned with the analysis of visual data, 
the notion of scale-space representation is of much wider generality and 
arises in several contexts where measured data are to be analyzed and 
interpreted automatically. 
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