
147
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,  
https://doi.org/10.1007/978-1-4842-4221-6_13

CHAPTER 13

Human-Centered Methods 
to Boost Productivity
Brad A. Myers, Carnegie Mellon University, USA

Amy J. Ko, University of Washington, USA

Thomas D. LaToza, George Mason University, USA

YoungSeok Yoon, Google, Korea

Since programming is a human activity, we can look to fields that have already 

developed methods to better understand the details of human interactions with 

technologies. In particular, the field of human-computer interaction (HCI) has dozens, 

if not hundreds, of methods that have been validated for answering a wide range of 

questions about human behaviors [4]. (And many of these methods, in turn, have been 

adapted from methods used in psychology, ethnography, sociology, etc.) For example, 

in our research, we have documented our use of at least ten different human-centered 

methods across all the phases of software development [11], almost all of which have 

impacts on programmer productivity.

Why would one want to use these methods? Even though productivity may be hard 

to quantify, as discussed in many previous chapters of this book, it is indisputable 

that problems exist with the languages, APIs, and tools that programmers use, and 

we should strive to fix these problems. Further, there are more ways to understand 

productivity than just metrics. HCI methods can help better understand programmers’ 

real requirements and problems, help design better ways to address those challenges, and 

then help evaluate whether the design actually works for programmers. Involving real 

programmers in these investigations reveals real data that makes it possible to identify 

and fix productivity bottlenecks.

https://doi.org/10.1007/978-1-4842-4221-6_13#DOI


148

For example, a method called contextual inquiry (CI) [1] is commonly used 

to understand barriers in context. In a CI, the experimenter observes developers 

performing their real work where it actually happens and makes special note of 

breakdowns that occur. For example, in one of our projects, we wondered what key 

barriers developers face when fixing defects, so we asked developers at Microsoft to 

work on their own tasks while we watched and took notes about the issues that arose 

[7]. A key problem for 90 percent of the longest tasks was understanding the control flow 

through code in widely separated methods, which the existing tools did not adequately 

reveal. CIs are a good way to gather qualitative data and insights into developers’ real 

issues. However, they do not provide quantitative statistics, owing to the small sample 

size. Also, a CI can be time-consuming, especially if it is difficult to recruit representative 

developers to observe. However, it is one of the best ways to identify what is really 

happening in the field that affects the programmers’ productivity.

Another useful method to understand productivity barriers is doing exploratory 

lab user studies [14]. Here, the experimenter assigns specific tasks to developers and 

observes what happens. The key difference from a CI is that here the participants 

perform tasks provided by the experimenter instead of their own tasks, so there is less 

realism. However, the experimenter can see whether the participants use different 

approaches to the same task. For example, we collected a detailed data set at the 

keystroke level of multiple experienced developers performing the same maintenance 

tasks in Java [5]. We discovered that the developers spent about one-third of their 

time navigating around the code base, often using manual scrolling. This highlights 

an important advantage of these observational techniques—when we asked the 

participants about barriers when performing these tasks, no one mentioned scrolling 

because it did not rise to the level of salience. However, it became obvious to us that 

this was a barrier to the programmers’ productivity when we analyzed the logs of what 

the developers actually did. Knowing about such problems is the first step to inventing 

solutions. And these kinds of studies can also provide numeric data, which can later be 

used to measure the difference that a new tool or other intervention makes.

Neither of these methods can be used to evaluate how often an observed barrier 

occurs, which might be important for calculating the overall impact on productivity. 

For this, we have used surveys [16] and corpus data mining [9]. For example, after we 

observed in our CIs that understanding control flow was important, we performed a 

survey to count how often developers have questions about control flow and how hard 

those questions are to answer [7]. The developers reported asking such questions on 

average about nine times a day, and most felt that at least one such question was hard 

Chapter 13  Human-Centered Methods to Boost Productivity



149

to answer. In a different study, we felt that programmers were wasting significant time 

trying to backtrack (return code to a previous state) while editing code. We had observed 

that this seemed to be error-prone as changes often had to be undone in multiple places. 

Therefore, we analyzed 1,460 hours of fine-grained code-editing logs from 21 developers, 

collected during their regular work [18]. We detected 15,095 backtracking instances, for 

an average rate of 10.3 per hour.

Once such productivity barriers have been identified, an intervention might be 

designed, such as a new programming process, language, API, or tool. We have used a 

variety of methods during the design process to help ensure that the intervention will 

actually help. Natural-programming elicitation is a way to understand how programmers 

think about a task and what vocabulary and concepts they use so the intervention 

can be closer to the users’ thoughts [10]. One method for doing natural-programming 

elicitation is to give target programmers a “blank paper” participatory design task, 

where we describe the desired functionality and have the programmers design how that 

functionality should be provided. The trick is to ask the question in a way that does not 

bias the answers, so we often use pictures or samples of the results, without providing 

any vocabulary, architecture, or concepts.

Rapid prototyping [15] allows quick and simple prototypes of the intervention to 

be tried, often just drawn on paper, which helps to refine good ideas and eliminate bad 

ones. Sometimes it might be too expensive to create the real intervention before being 

able to test it. In these cases, we have used another recommended human-centered 

method called iterative design using prototypes [14]. Typically, the first step employs 

low-fidelity prototypes, which means that the actual interventions are simulated. For 

many of our tools, we have used paper prototypes, which are quickly created using 

drawing tools or even just pen and paper. For example, when trying to help developers 

understand the interprocedural control flow of code, we used a Macintosh drawing 

program called OmniGraffle to draw mock-ups of a possible new visualization and 

printed them on paper. We then asked developers to pretend to perform tasks with them. 

We discovered that the initial visualization concepts were too complex to understand yet 

lacked information important to the developers [7]. For example, a key requirement was 

to preserve the order in which methods are invoked, which was not shown (and is not 

shown by other static visualizations of call graphs, either). In the final visualization, the 

lines coming out of a method show the order of invocation, as shown in Figure 13-1.

Chapter 13  Human-Centered Methods to Boost Productivity



150

No matter what kind of intervention it is, the creator might want to evaluate how well 

programmers can use it and whether it actually improves productivity in practice. For 

example, our observations about backtracking difficulties motivated us to create Azurite, 

a plug-in for the Eclipse code editor that provides more flexible selective undo, in which 

developers can undo past edits without necessarily undoing more recent ones [19]. But 

how can we know if the new intervention can actually be used? There are three main 

methods we have used to evaluate interventions: expert analyses, think-aloud usability 

evaluations, and formal A/B testing.

Figure 13-1.  (a) A paper prototype of the visualization drawn with the 
Omnigraffle drawing tool revealed that the order of method calls was crucial to 
visualize, as is shown in the final version of the tool (b), which is called Reacher 
[7]. The method EditPane.setBuffer(..) makes five method calls (the five lines 
exiting setBuffer shown in order from top to bottom, with the first and third being 
calls to EditBus.send(..)). Lines with “?” icons show calls that are conditional 
(and thus may or may not happen at runtime). Other icons on lines include 
a circular arrow to show calls inside of loops, diamonds to show overloaded 
methods, and numbers to show that multiple calls have been collapsed.

Chapter 13  Human-Centered Methods to Boost Productivity



151

In expert analyses, people who are experienced with usability methods perform the 

analysis by inspection. For example, heuristic evaluation [13] employs ten guidelines to 

evaluate an interface. We used this method to evaluate some APIs and found that the 

really long function names violated the guideline of error prevention because the names 

could be easily confused with each other, wasting the programmer’s time [12]. Another 

expert-analysis method is called cognitive walkthrough [8]. It involves carefully going 

through tasks using the interface and noting where users will need new knowledge to be 

able to take the next step. Using both of these methods, we helped a company iteratively 

improve a developer tool [3].

Another set of methods is empirical and involves testing the interventions with the 

target users. The first result of these evaluations is an understanding of what participants 

actually do, to see how the intervention works. In addition, we recommend using a think-

aloud study [2], in which the participants continuously articulate their goals, confusion, 

and other thoughts. This provides the experimenter with rich data about why users 

perform the way they do so problems can be found and fixed. As with other usability 

evaluations, the principle is that if one participant has a problem, others will likely have 

it too, so it should be fixed if possible. Research shows that a few representative users can 

find a great percentage of the problems [14]. In our research, when we have evidence of 

usefulness from early needs analysis through CI and surveys, it is often sufficient to show 

usability of tools through think-alouds with five or six people. However, the evaluations 

should not involve participants who are associated with the tool because they will know 

too much about how the tool should work.

Unlike expert analyses and think-aloud usability evaluations, which are informal, 

A/B testing uses formal, statistically valid experiments [6]. This is the key way to 

demonstrate that one intervention is better than another, or better than the status quo, 

with respect to some measure. For example, we tested our Azurite plugin for selective 

undo in Eclipse against using regular Eclipse, and developers using Azurite were twice 

as fast [19]. Such formal measures can be useful proxies for the productivity gains that an 

Chapter 13  Human-Centered Methods to Boost Productivity



152

intervention might bring. The resulting numbers might also help convince developers 

and managers to try new interventions and change developers’ behaviors because they 

might find having numbers more persuasive than just the creator’s claims about the 

intervention. However, these experiments can be difficult to design correctly and require 

careful attention to many possibly confounding factors [6]. In particular, it is challenging 

to design tasks that are sufficiently realistic yet doable in an appropriate time frame for 

an experiment (an hour or two).

To get a more realistic evaluation of an intervention, it may need to be measured 

in actual practice. We have found this to be easiest to do by instrumenting the tools 

to gather the desired metrics during real use, and then we can use data mining and 

log analysis. For example, we used our Fluorite logger, which is another plugin for 

Eclipse, to investigate how developers used the Azurite tool [17]. We found that 

developers often selectively undid a selected block of code, such as a whole method, 

restoring it to how it used to work and leaving the other code as is, which we call 

regional undo, confirming our hypothesis that this would be the most useful kind of 

selective undo [19].

Many other HCI methods are available that can answer additional questions 

that creators of interventions might have (see Table 13-1 for a summary). Large 

companies such as Microsoft and Google already embed user interface specialists 

into their teams that create developer tools (such as in Microsoft’s Visual Studio 

group). However, even small teams can learn to use at least some of these methods. 

Based on our extensive use of these methods over many years, we argue that they 

will be useful for better understanding the many different kinds of barriers that 

programmers face, for creating useful and usable interventions to address those 

barriers, and for better evaluating the impact of the interventions. In this way, these 

methods will help increase the positive impact of future interventions on developers’ 

productivity.

Chapter 13  Human-Centered Methods to Boost Productivity



153

Ta
bl

e 
13

-1
. 

M
et

h
od

s 
W

e 
H

av
e 

U
se

d
 (

A
da

pt
ed

 fr
om

 [1
1]

 )

M
et

ho
d

Ci
te

So
ftw

ar
e 

De
ve

lo
pm

en
t 

Ac
tiv

iti
es

 S
up

po
rt

ed
Ke

y 
Be

ne
fit

s
Ch

al
le

ng
es

 a
nd

 L
im

ita
tio

ns

Co
nt

ex
tu

al
 in

qu
iry

[1
]

Re
qu

ire
m

en
ts

 a
nd

  

pr
ob

le
m

 a
na

ly
si

s.

Ex
pe

rim
en

te
rs

 g
ai

n 
in

si
gh

t i
nt

o 
 

da
y-

to
-d

ay
 a

ct
iv

iti
es

 a
nd

 

ch
al

le
ng

es
. E

xp
er

im
en

te
rs

 g
ai

n 

hi
gh

-q
ua

lit
y 

da
ta

 o
n 

th
e 

de
ve

lo
pe

r’s
 

in
te

nt
.

Co
nt

ex
tu

al
 in

qu
iry

 is
  

tim
e-

co
ns

um
in

g.

Ex
pl

or
at

or
y 

la
b 

us
er

 s
tu

di
es

[1
4]

Re
qu

ire
m

en
ts

 a
nd

  

pr
ob

le
m

 a
na

ly
si

s.

Fo
cu

si
ng

 o
n 

th
e 

ac
tiv

ity
 o

f i
nt

er
es

t 

is
 e

as
ie

r. 
Ex

pe
rim

en
te

rs
 c

an
 

co
m

pa
re

 p
ar

tic
ip

an
ts

 d
oi

ng
 th

e 

sa
m

e 
ta

sk
s.

 N
um

er
ic

al
 d

at
a 

ca
n 

 

be
 c

ol
le

ct
ed

.

Th
e 

ex
pe

rim
en

ta
l s

et
tin

g 

m
ig

ht
 d

iff
er

 fr
om

 th
e 

re
al

-

w
or

ld
 c

on
te

xt
.

Su
rv

ey
s

[1
6]

Re
qu

ire
m

en
ts

 a
nd

  

pr
ob

le
m

 a
na

ly
si

s.
  

Ev
al

ua
tio

n 
an

d 
te

st
in

g.

Su
rv

ey
s 

pr
ov

id
e 

qu
an

tit
at

iv
e 

da
ta

. 

Th
er

e 
ar

e 
m

an
y 

pa
rti

ci
pa

nt
s.

 

Su
rv

ey
s 

ar
e 

(re
la

tiv
el

y)
 fa

st
.

Th
e 

da
ta

 is
 s

el
f-

 re
po

rte
d 

an
d 

is
 s

ub
je

ct
 to

 b
ia

s 
an

d 

pa
rti

ci
pa

nt
 a

w
ar

en
es

s.

Da
ta

 m
in

in
g 

(in
cl

ud
in

g 
co

rp
us

 

st
ud

ie
s 

an
d 

lo
g 

an
al

ys
is

)

[9
]

Re
qu

ire
m

en
ts

 a
nd

  

pr
ob

le
m

 a
na

ly
si

s.
  

Ev
al

ua
tio

n 
an

d 
te

st
in

g.

Da
ta

 m
in

in
g 

pr
ov

id
es

 la
rg

e 

qu
an

tit
ie

s 
of

 d
at

a.
 E

xp
er

im
en

te
rs

 

ca
n 

se
e 

pa
tte

rn
s 

th
at

 e
m

er
ge

 o
nl

y 

w
ith

 la
rg

e 
co

rp
us

es
.

In
fe

rr
in

g 
or

 re
co

ns
tru

ct
in

g 

th
e 

de
ve

lo
pe

r’s
 in

te
nt

 

is
 d

iffi
cu

lt.
 D

at
a 

m
in

in
g 

re
qu

ire
s 

ca
re

fu
l fi

lte
rin

g.

Na
tu

ra
l- 

pr
og

ra
m

m
in

g 

el
ic

ita
tio

n

[1
0]

Re
qu

ire
m

en
ts

 a
nd

  

pr
ob

le
m

 a
na

ly
si

s.
 D

es
ig

n.

Ex
pe

rim
en

te
rs

 g
ai

n 
in

si
gh

t i
nt

o 

de
ve

lo
pe

r e
xp

ec
ta

tio
ns

.

Th
e 

ex
pe

rim
en

ta
l s

et
tin

g 

m
ig

ht
 d

iff
er

 fr
om

 th
e 

re
al

-

w
or

ld
 c

on
te

xt
.

(c
on

ti
n

u
ed

)

Chapter 13  Human-Centered Methods to Boost Productivity



154

Ta
bl

e 1
3-

1.
 (

co
n

ti
n

u
ed

)

M
et

ho
d

Ci
te

So
ftw

ar
e 

De
ve

lo
pm

en
t 

Ac
tiv

iti
es

 S
up

po
rt

ed
Ke

y 
Be

ne
fit

s
Ch

al
le

ng
es

 a
nd

 L
im

ita
tio

ns

Ra
pi

d 
pr

ot
ot

yp
in

g
[1

5]
De

si
gn

Ex
pe

rim
en

te
rs

 c
an

 g
at

he
r  

fe
ed

ba
ck

 a
t l

ow
 c

os
t b

ef
or

e 

co
m

m
itt

in
g 

to
 h

ig
h-

co
st

 

de
ve

lo
pm

en
t.

Ra
pi

d 
pr

ot
ot

yp
in

g 
ha

s 
lo

w
er

 

fid
el

ity
 th

an
 th

e 
fin

al
 to

ol
, 

lim
iti

ng
 w

ha
t p

ro
bl

em
s 

m
ig

ht
 

be
 re

ve
al

ed
.

He
ur

is
tic

 e
va

lu
at

io
ns

[1
3]

Re
qu

ire
m

en
ts

 a
nd

 p
ro

bl
em

 

an
al

ys
is

. D
es

ig
n.

 E
va

lu
at

io
n 

an
d 

te
st

in
g.

Ev
al

ua
tio

ns
 a

re
 fa

st
. T

he
y 

do
 n

ot
 

re
qu

ire
 p

ar
tic

ip
an

ts
.

Ev
al

ua
tio

ns
 re

ve
al

 o
nl

y 
so

m
e 

ty
pe

s 
of

 u
sa

bi
lit

y 
is

su
es

.

Co
gn

iti
ve

 w
al

k-
th

ro
ug

hs
[8

]
De

si
gn

. E
va

lu
at

io
n 

an
d 

te
st

in
g.

W
al

k-
th

ro
ug

hs
 a

re
 fa

st
. T

he
y 

do
  

no
t r

eq
ui

re
 p

ar
tic

ip
an

ts
.

W
al

k-
th

ro
ug

hs
 re

ve
al

 o
nl

y 

so
m

e 
ty

pe
s 

of
 u

sa
bi

lit
y 

is
su

es
.

Th
in

k-
al

ou
d 

us
ab

ili
ty

 

ev
al

ua
tio

ns

[2
]

Re
qu

ire
m

en
ts

 a
nd

 p
ro

bl
em

 

an
al

ys
is

. D
es

ig
n.

 E
va

lu
at

io
n 

an
d 

te
st

in
g.

Ev
al

ua
tio

ns
 re

ve
al

 u
sa

bi
lit

y 
 

pr
ob

le
m

s 
an

d 
th

e 
de

ve
lo

pe
r’s

  

in
te

nt
.

Th
e 

ex
pe

rim
en

ta
l s

et
tin

g 
m

ig
ht

 

di
ffe

r f
ro

m
 th

e 
re

al
-w

or
ld

 

co
nt

ex
t. 

Ev
al

ua
tio

ns
 re

qu
ire

 

ap
pr

op
ria

te
 p

ar
tic

ip
an

ts
. T

as
k 

de
sig

n 
is 

di
ffi

cu
lt.

A/
B 

te
st

in
g

[6
]

Ev
al

ua
tio

n 
an

d 
te

st
in

g
Te

st
in

g 
pr

ov
id

es
 d

ire
ct

 e
vi

de
nc

e 
 

th
at

 a
 n

ew
 to

ol
 o

r t
ec

hn
iq

ue
  

be
ne

fit
s 

de
ve

lo
pe

rs
.

Th
e 

ex
pe

rim
en

ta
l s

et
tin

g 

m
ig

ht
 d

iff
er

 fr
om

 th
e 

re
al

-

w
or

ld
 c

on
te

xt
. T

es
tin

g 
re

qu
ire

s 

ap
pr

op
ria

te
 p

ar
tic

ip
an

ts
. T

as
k 

de
si

gn
 is

 d
iffi

cu
lt.

Chapter 13  Human-Centered Methods to Boost Productivity



155

�Key Ideas
The following are the key ideas from the chapter:

•	 There are many methods used in human-computer interaction 

research that can also be used to study what hinders and improves 

software developer productivity, to help design interventions that 

increase productivity, and to then evaluate and improve their impact.

•	 The ten methods listed in this chapter have proven useful at various 

phases of the process.

�References

	 [1]	 H. Beyer and K. Holtzblatt. Contextual Design: Defining Custom-

Centered Systems. San Francisco, CA, Morgan Kaufmann 

Publishers, Inc. 1998.

	 [2]	 Chi, M. T. (1997). Quantifying qualitative analyses of verbal data: A 

practical guide. The journal of the learning sciences, 6(3), 271–

315.

	 [3]	 Andrew Faulring, Brad A. Myers, Yaad Oren and Keren Rotenberg. 

“A Case Study of Using HCI Methods to Improve Tools for 

Programmers,” Cooperative and Human Aspects of Software 

Engineering (CHASE’2012), An ICSE 2012 Workshop, Zurich, 

Switzerland, June 2, 2012. 37–39.

	 [4]	 Julie A. Jacko. (Ed.). (2012). Human computer interaction 

handbook: Fundamentals, evolving technologies, and emerging 

applications. CRC press.

	 [5]	 Amy J. Ko, Brad A. Myers, Michael Coblenz and Htet Htet Aung. 

“An Exploratory Study of How Developers Seek, Relate, and 

Collect Relevant Information during Software Maintenance Tasks,” 

IEEE Transactions on Software Engineering. Dec, 2006. 33(12). 

pp. 971–987.

Chapter 13  Human-Centered Methods to Boost Productivity



156

	 [6]	 Ko, A. J., Latoza, T. D., & Burnett, M. M. (2015). A practical guide to 

controlled experiments of software engineering tools with human 

participants. Empirical Software Engineering, 20(1), 110–141.

	 [7]	 Thomas D. LaToza and Brad Myers. “Developers Ask Reachability 

Questions,” ICSE’2010: Proceedings of the International Conference 

on Software Engineering, Capetown, South Africa, May 2-8, 2010. 

185–194.

	 [8]	 C. Lewis et al., “Testing a Walkthrough Methodology for 

TheoryBased Design of Walk-Up-and-Use Interfaces,” Proc. 

SIGCHI Conf. Human Factors in Computing Systems (CHI 90), 

1990, pp. 235–242.

	 [9]	 Menzies, T., Williams, L., & Zimmermann, T. (2016). Perspectives 

on Data Science for Software Engineering. Morgan Kaufmann.

	[10]	 Brad A. Myers, John F. Pane and Amy J. Ko. “Natural Programming 

Languages and Environments,” Communications of the ACM. Sept, 

2004. 47(9). pp. 47–52.

	[11]	 Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and YoungSeok 

Yoon. “Programmers Are Users Too: Human-Centered Methods 

for Improving Programming Tools,” IEEE Computer, vol. 49, issue 

7, July, 2016, pp. 44–52.

	[12]	 Brad A. Myers and Jeffrey Stylos. “Improving API Usability,” 

Communications of the ACM. July, 2016. 59(6). pp. 62–69.

	[13]	 J. Nielsen and R. Molich. “Heuristic evaluation of user interfaces,” 

Proc. ACM CHI’90 Conf, see also: http://www.useit.com/

papers/heuristic/heuristic_list.html. Seattle, WA, 1–5 April, 

1990. pp. 249–256.

	[14]	 Jakob Nielsen. Usability Engineering. Boston, Academic Press. 

1993.

	[15]	 Marc Rettig. “Prototyping for Tiny Fingers,” Comm. ACM. 1994. 

vol. 37, no. 4. pp. 21–27.

Chapter 13  Human-Centered Methods to Boost Productivity

http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html


157

	[16]	 Rossi, P. H., Wright, J. D., & Anderson, A. B. (Eds.). (2013). 

Handbook of survey research. Academic Press.

	[17]	 YoungSeok Yoon and Brad A. Myers. “An Exploratory Study of 

Backtracking Strategies Used by Developers,” Cooperative and 

Human Aspects of Software Engineering (CHASE’2012), An ICSE 

2012 Workshop, Zurich, Switzerland, June 2, 2012. 138–144.

	[18]	 YoungSeok Yoon and Brad A. Myers. “A Longitudinal Study 

of Programmers’ Backtracking,” IEEE Symposium on Visual 

Languages and Human-Centric Computing (VL/HCC’14), 

Melbourne, Australia, 28 July–1 August, 2014. 101–108.

	[19]	 YoungSeok Yoon and Brad A. Myers. “Supporting Selective Undo 

in a Code Editor,” 37th International Conference on Software 

Engineering (ICSE 2015), Florence, Italy, May 16–24, 2015. 223–233 

(volume 1).

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any 

noncommercial use, sharing, distribution and reproduction in any medium or format, 

as long as you give appropriate credit to the original author(s) and the source, provide a 

link to the Creative Commons license and indicate if you modified the licensed material. 

You do not have permission under this license to share adapted material derived from 

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.

Chapter 13  Human-Centered Methods to Boost Productivity

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 13: Human-Centered Methods to Boost Productivity
	Key Ideas
	References


