CHAPTER 13

Human-Centered Methods
to Boost Productivity

Brad A. Myers, Carnegie Mellon University, USA
Amy J. Ko, University of Washington, USA

Thomas D. LaToza, George Mason University, USA
YoungSeok Yoon, Google, Korea

Since programming is a human activity, we can look to fields that have already
developed methods to better understand the details of human interactions with
technologies. In particular, the field of human-computer interaction (HCI) has dozens,
if not hundreds, of methods that have been validated for answering a wide range of
questions about human behaviors [4]. (And many of these methods, in turn, have been
adapted from methods used in psychology, ethnography, sociology, etc.) For example,
in our research, we have documented our use of at least ten different human-centered
methods across all the phases of software development [11], almost all of which have
impacts on programmer productivity.

Why would one want to use these methods? Even though productivity may be hard
to quantify, as discussed in many previous chapters of this book, it is indisputable
that problems exist with the languages, APIs, and tools that programmers use, and
we should strive to fix these problems. Further, there are more ways to understand
productivity than just metrics. HCI methods can help better understand programmers’
real requirements and problems, help design better ways to address those challenges, and
then help evaluate whether the design actually works for programmers. Involving real
programmers in these investigations reveals real data that makes it possible to identify
and fix productivity bottlenecks.

147
© The Author(s) 2019

C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_13

https://doi.org/10.1007/978-1-4842-4221-6_13#DOI

CHAPTER 13 HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

For example, a method called contextual inquiry (CI) [1] is commonly used
to understand barriers in context. In a CI, the experimenter observes developers
performing their real work where it actually happens and makes special note of
breakdowns that occur. For example, in one of our projects, we wondered what key
barriers developers face when fixing defects, so we asked developers at Microsoft to
work on their own tasks while we watched and took notes about the issues that arose
[7]. A key problem for 90 percent of the longest tasks was understanding the control flow
through code in widely separated methods, which the existing tools did not adequately
reveal. CIs are a good way to gather qualitative data and insights into developers’ real
issues. However, they do not provide quantitative statistics, owing to the small sample
size. Also, a CI can be time-consuming, especially if it is difficult to recruit representative
developers to observe. However, it is one of the best ways to identify what is really
happening in the field that affects the programmers’ productivity.

Another useful method to understand productivity barriers is doing exploratory
lab user studies [14]. Here, the experimenter assigns specific tasks to developers and
observes what happens. The key difference from a Cl is that here the participants
perform tasks provided by the experimenter instead of their own tasks, so there is less
realism. However, the experimenter can see whether the participants use different
approaches to the same task. For example, we collected a detailed data set at the
keystroke level of multiple experienced developers performing the same maintenance
tasks in Java [5]. We discovered that the developers spent about one-third of their
time navigating around the code base, often using manual scrolling. This highlights
an important advantage of these observational techniques—when we asked the
participants about barriers when performing these tasks, no one mentioned scrolling
because it did not rise to the level of salience. However, it became obvious to us that
this was a barrier to the programmers’ productivity when we analyzed the logs of what
the developers actually did. Knowing about such problems is the first step to inventing
solutions. And these kinds of studies can also provide numeric data, which can later be
used to measure the difference that a new tool or other intervention makes.

Neither of these methods can be used to evaluate how often an observed barrier
occurs, which might be important for calculating the overall impact on productivity.
For this, we have used surveys [16] and corpus data mining [9]. For example, after we
observed in our CIs that understanding control flow was important, we performed a
survey to count how often developers have questions about control flow and how hard
those questions are to answer [7]. The developers reported asking such questions on
average about nine times a day, and most felt that at least one such question was hard

148

CHAPTER 13 HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

to answer. In a different study, we felt that programmers were wasting significant time
trying to backtrack (return code to a previous state) while editing code. We had observed
that this seemed to be error-prone as changes often had to be undone in multiple places.
Therefore, we analyzed 1,460 hours of fine-grained code-editing logs from 21 developers,
collected during their regular work [18]. We detected 15,095 backtracking instances, for
an average rate of 10.3 per hour.

Once such productivity barriers have been identified, an intervention might be
designed, such as a new programming process, language, API, or tool. We have used a
variety of methods during the design process to help ensure that the intervention will
actually help. Natural-programming elicitation is a way to understand how programmers
think about a task and what vocabulary and concepts they use so the intervention
can be closer to the users’ thoughts [10]. One method for doing natural-programming
elicitation is to give target programmers a “blank paper” participatory design task,
where we describe the desired functionality and have the programmers design how that
functionality should be provided. The trick is to ask the question in a way that does not
bias the answers, so we often use pictures or samples of the results, without providing
any vocabulary, architecture, or concepts.

Rapid prototyping [15] allows quick and simple prototypes of the intervention to
be tried, often just drawn on paper, which helps to refine good ideas and eliminate bad
ones. Sometimes it might be too expensive to create the real intervention before being
able to test it. In these cases, we have used another recommended human-centered
method called iterative design using prototypes [14]. Typically, the first step employs
low-fidelity prototypes, which means that the actual interventions are simulated. For
many of our tools, we have used paper prototypes, which are quickly created using
drawing tools or even just pen and paper. For example, when trying to help developers
understand the interprocedural control flow of code, we used a Macintosh drawing
program called OmniGraffle to draw mock-ups of a possible new visualization and
printed them on paper. We then asked developers to pretend to perform tasks with them.
We discovered that the initial visualization concepts were too complex to understand yet
lacked information important to the developers [7]. For example, a key requirement was
to preserve the order in which methods are invoked, which was not shown (and is not
shown by other static visualizations of call graphs, either). In the final visualization, the
lines coming out of a method show the order of invocation, as shown in Figure 13-1.

149

CHAPTER 13 HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

EditBus
+send(.) D-HO¢-Q——
+setBuffer(..) @) E
EditPane
+setBuffer(..)
(a) (b)

Figure 13-1. (a) A paper prototype of the visualization drawn with the
Omnigralffle drawing tool revealed that the order of method calls was crucial to
visualize, as is shown in the final version of the tool (b), which is called Reacher

[7]. The method EditPane.setBuffer(..) makes five method calls (the five lines
exiting setBuffer shown in order from top to bottom, with the first and third being
calls to EditBus.send(. .)). Lines with “?” icons show calls that are conditional
(and thus may or may not happen at runtime). Other icons on lines include

a circular arrow to show calls inside of loops, diamonds to show overloaded
methods, and numbers to show that multiple calls have been collapsed.

No matter what kind of intervention it is, the creator might want to evaluate how well
programmers can use it and whether it actually improves productivity in practice. For
example, our observations about backtracking difficulties motivated us to create Azurite,
a plug-in for the Eclipse code editor that provides more flexible selective undo, in which
developers can undo past edits without necessarily undoing more recent ones [19]. But
how can we know if the new intervention can actually be used? There are three main
methods we have used to evaluate interventions: expert analyses, think-aloud usability
evaluations, and formal A/B testing.

150

CHAPTER 13 HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

In expert analyses, people who are experienced with usability methods perform the
analysis by inspection. For example, heuristic evaluation [13] employs ten guidelines to
evaluate an interface. We used this method to evaluate some APIs and found that the
really long function names violated the guideline of error prevention because the names
could be easily confused with each other, wasting the programmer’s time [12]. Another
expert-analysis method is called cognitive walkthrough [8]. It involves carefully going
through tasks using the interface and noting where users will need new knowledge to be
able to take the next step. Using both of these methods, we helped a company iteratively
improve a developer tool [3].

Another set of methods is empirical and involves testing the interventions with the
target users. The first result of these evaluations is an understanding of what participants
actually do, to see how the intervention works. In addition, we recommend using a think-
aloud study [2], in which the participants continuously articulate their goals, confusion,
and other thoughts. This provides the experimenter with rich data about why users
perform the way they do so problems can be found and fixed. As with other usability
evaluations, the principle is that if one participant has a problem, others will likely have
it too, so it should be fixed if possible. Research shows that a few representative users can
find a great percentage of the problems [14]. In our research, when we have evidence of
usefulness from early needs analysis through CI and surveys, it is often sufficient to show
usability of tools through think-alouds with five or six people. However, the evaluations
should not involve participants who are associated with the tool because they will know
too much about how the tool should work.

Unlike expert analyses and think-aloud usability evaluations, which are informal,
A/B testing uses formal, statistically valid experiments [6]. This is the key way to
demonstrate that one intervention is better than another, or better than the status quo,
with respect to some measure. For example, we tested our Azurite plugin for selective
undo in Eclipse against using regular Eclipse, and developers using Azurite were twice
as fast [19]. Such formal measures can be useful proxies for the productivity gains that an

151

CHAPTER 13 HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

intervention might bring. The resulting numbers might also help convince developers
and managers to try new interventions and change developers’ behaviors because they
might find having numbers more persuasive than just the creator’s claims about the
intervention. However, these experiments can be difficult to design correctly and require
careful attention to many possibly confounding factors [6]. In particular, it is challenging
to design tasks that are sufficiently realistic yet doable in an appropriate time frame for
an experiment (an hour or two).

To get a more realistic evaluation of an intervention, it may need to be measured
in actual practice. We have found this to be easiest to do by instrumenting the tools
to gather the desired metrics during real use, and then we can use data mining and
log analysis. For example, we used our Fluorite logger, which is another plugin for
Eclipse, to investigate how developers used the Azurite tool [17]. We found that
developers often selectively undid a selected block of code, such as a whole method,
restoring it to how it used to work and leaving the other code as is, which we call
regional undo, confirming our hypothesis that this would be the most useful kind of
selective undo [19].

Many other HCI methods are available that can answer additional questions
that creators of interventions might have (see Table 13-1 for a summary). Large
companies such as Microsoft and Google already embed user interface specialists
into their teams that create developer tools (such as in Microsoft’s Visual Studio
group). However, even small teams can learn to use at least some of these methods.
Based on our extensive use of these methods over many years, we argue that they
will be useful for better understanding the many different kinds of barriers that
programmers face, for creating useful and usable interventions to address those
barriers, and for better evaluating the impact of the interventions. In this way, these
methods will help increase the positive impact of future interventions on developers’
productivity.

152

CHAPTER 13 HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

(poanuijuod)

“IX81U09 PlIOM
-[eal ayy woJj Jayp Wb

'suoie1oadxa Jadojanap

‘ubisa('siseue wajqo.d

uone}aIa

Bumes |ejuawiiadxs ay| ojul ybisul ureb sisquawadxy pue sjuswaJinbay [01] Buiwesbold -jeimen
"Buriay|ly [nyosed salinbal 'sasnd.od ab.e| yum
Buiuiw eyeq ynoip st Ajuo abiswa ey susaned aas ued *Bujsa] pue uonenjeay
18Ul S Jadojansp ayl sJsuawLIadx3 “eiep Jo sannuenb ‘sisAjeue wa|qo.d (sishjeue Boj pue saipns
Bunoniisuosal o burLigu afJe| sapinoad Buluiw ele(pue sjuswaJinbay [6] sndioa Buipnjoun) Buluiw eleQg
‘ssaugeme Juedioied "1se} (Ajanneyal) ale skaning ‘Bunsa) pue uonen[eal
pue selq 0] 19algns sI pue "sjuedionued Auew aJe alay| "siskjeue wa|qoid
papodal -jjas st elep ayl "elep aAneuuenb apinoad shaning pue sjuswalinbay 91] sfaning
"pa199]|092 8q
UB9 BlEP [BILIBWNY "SHSE] aWeS
“1X81U09 PlIOM ay) Buiop sjuedioiped asedwod
-[B84 8y} Wo.y Jayip ybiw UB9 sJajuawliadxy -aises s "sisheue wa|qoid
Buipes [euawiiadxs ayy 1saJa1ul Jo AIAnoe ayp uo Buisnoo4 pue sjuswalinbay [¥1] saipnis Jasn qe| Aiojeiojdx3
Juajul
s Jadojanap ay) uo eiep Alenb-ybiy
ureb sieluswiadx3 ‘sebus|eyd
"BuILNSU0-awIN pue saljiAloe Aep-01-Aep ‘sisAjeue wa|qo.d
S| Annbui [enyxajuo) ojun ybisur ureb siguawIadx] pue spuswalinbay [1] Annbur [enjxauo)
papoddng saniAlay
suoneywi pue sabuajjeyn spjauag Aoy juawdojanaq alemyos 1G] poylaN

([11] woif paydvpy) pasn aavl am sSpoylo| “I-€1 219V1

153

HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

CHAPTER 13

"HNap st ubisep

yse] ‘siuedioned ajeudoidde
saJ4inbaJ Bunsa| "1xajuod plIom
-[eaJ 8y} wouy Jayip ybiw
Bumas [equawiiadxe ay)

Ynaip si ubisap

yse] ‘siuedionued ajeudoidde
alinbal suonen[eas xajuod
PlIOM-[8J B} WO} JaYIp
61w Bumas [euawiiadxs ay)

"sanss| Aljigesn Jo sadA] swos
Ajuo jeanas sybnoayl-yiem

'sanss| Ayljigesn Jo sadfy

"sJadojanap sujouaq
anbiuyaay Jo 001 Mau e Jeu)
90U3PIA3 192.1p Sapinoid Bunsa)

‘Juajul

s Jadojonap ay) pue swajqo.d
Aujigesn [eanal suonenjea
‘sjuedioied aanbai jou

op Aay] 18kl 4B sybnoIyl-yem

‘sjuedioied ainbai

funsa) pue uonenjeay

‘Bunse) pue
uoneneA 'ubisaq ‘siskjeue
wajgoid pue spuswalinbay

‘Bunsal

pue uonenfeAd ‘ubiseq
‘Bunse) pue

uonenea "ubisaq "siskjeue

[9]

[e]

[8]

bunsa) gy

suoinen|eAs
Aujigesn pnofe-yuiyL

sybnoay-yem aaijubon

awWos Ajuo [eanal suonenjea 10u op A8y "1sey aJe suonenjeA wiajqold pue sjuswalinbay [e1] suonen[eAs ansLNaH
"pajeanal aq "Juawdojanap
WbIW swajqo.d 1eym Buniwi 1509-Ub1y 0] BunWwwWwo
|00} [eut} 8y} uey Aujapl 810J8(1509 MO| Je 4oeqpas)
Jomoj sey Buidfo10.d pidey Joy1eh ued sisuswiiadxgy ubisag [g1] BuidAoj0.d pidey
papoddng saniaoy
suonepwi] pue sabusjjeyn sjjouag Aoy juswdojanaq a1emyos a9 poylaN

(ponunuod) °r-¢r1219vJ

<
o
—

CHAPTER 13 HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

Key Ideas

The following are the key ideas from the chapter:

There are many methods used in human-computer interaction
research that can also be used to study what hinders and improves
software developer productivity, to help design interventions that
increase productivity, and to then evaluate and improve their impact.

The ten methods listed in this chapter have proven useful at various
phases of the process.

References

[1]

H. Beyer and K. Holtzblatt. Contextual Design: Defining Custom-
Centered Systems. San Francisco, CA, Morgan Kaufmann
Publishers, Inc. 1998.

Chi, M. T. (1997). Quantifying qualitative analyses of verbal data: A
practical guide. The journal of the learning sciences, 6(3), 271-
315.

Andrew Faulring, Brad A. Myers, Yaad Oren and Keren Rotenberg.
“A Case Study of Using HCI Methods to Improve Tools for
Programmers,” Cooperative and Human Aspects of Software
Engineering (CHASE’2012), An ICSE 2012 Workshop, Zurich,
Switzerland, June 2, 2012. 37-39.

Julie A. Jacko. (Ed.). (2012). Human computer interaction
handbook: Fundamentals, evolving technologies, and emerging
applications. CRC press.

Amy J. Ko, Brad A. Myers, Michael Coblenz and Htet Htet Aung.
“An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance Tasks,”
IEEE Transactions on Software Engineering. Dec, 2006. 33(12).

pp. 971-987.

155

CHAPTER 13

156

[6]

[7]

[10]

[11]

[14]

[15]

HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

Ko, A.]., Latoza, T. D., & Burnett, M. M. (2015). A practical guide to
controlled experiments of software engineering tools with human
participants. Empirical Software Engineering, 20(1), 110-141.

Thomas D. LaToza and Brad Myers. “Developers Ask Reachability
Questions,” ICSE’2010: Proceedings of the International Conference
on Software Engineering, Capetown, South Africa, May 2-8, 2010.
185-194.

C. Lewis et al., “Testing a Walkthrough Methodology for
TheoryBased Design of Walk-Up-and-Use Interfaces,” Proc.
SIGCHI Conf. Human Factors in Computing Systems (CHI 90),
1990, pp. 235-242.

Menzies, T., Williams, L., & Zimmermann, T. (2016). Perspectives
on Data Science for Software Engineering. Morgan Kaufmann.

Brad A. Myers, John F. Pane and Amy J. Ko. “Natural Programming
Languages and Environments,” Communications of the ACM. Sept,
2004. 47(9). pp. 47-52.

Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and YoungSeok
Yoon. “Programmers Are Users Too: Human-Centered Methods
for Improving Programming Tools,” IEEE Computer, vol. 49, issue
7, July, 2016, pp. 44-52.

Brad A. Myers and Jeffrey Stylos. “Improving API Usability,”
Communications of the ACM. July, 2016. 59(6). pp. 62-69.

J. Nielsen and R. Molich. “Heuristic evaluation of user interfaces,’
Proc. ACM CHI'90 Conf, see also: http://www.useit.com/
papers/heuristic/heuristic_list.html. Seattle, WA, 1-5 April,
1990. pp. 249-256.

Jakob Nielsen. Usability Engineering. Boston, Academic Press.
1993.

Marc Rettig. “Prototyping for Tiny Fingers,” Comm. ACM. 1994.
vol. 37, no. 4. pp. 21-27.

http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html

CHAPTER 13 HUMAN-CENTERED METHODS TO BOOST PRODUCTIVITY

[16] Rossi, P. H., Wright, J. D., & Anderson, A. B. (Eds.). (2013).
Handbook of survey research. Academic Press.

[17] YoungSeok Yoon and Brad A. Myers. “An Exploratory Study of
Backtracking Strategies Used by Developers,” Cooperative and
Human Aspects of Software Engineering (CHASE’2012), An ICSE
2012 Workshop, Zurich, Switzerland, June 2, 2012. 138-144.

[18] YoungSeok Yoon and Brad A. Myers. “A Longitudinal Study
of Programmers’ Backtracking,” IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’14),
Melbourne, Australia, 28 July-1 August, 2014. 101-108.

[19] YoungSeok Yoon and Brad A. Myers. “Supporting Selective Undo
in a Code Editor,” 37th International Conference on Software
Engineering (ICSE 2015), Florence, Italy, May 16-24, 2015. 223-233
(volume 1).

@@@@ Open Access This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any
noncommercial use, sharing, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

157

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 13: Human-Centered Methods to Boost Productivity
	Key Ideas
	References

