
191
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_17

CHAPTER 17

The COSMIC Method for
Measuring the Work-Output
Component of Productivity
Charles Symons, Common Software Measurement International
Consortium (COSMIC), UK

The productivity of a software activity may be defined generally as work-output/work-

input, where work-input is the effort needed to produce the work-output. In this chapter,

we describe the ISO standard COSMIC method, which was designed to measure a size

of the work-output from a software process. Measured sizes must be useful for both

productivity measurement and for effort estimation, for most types of software.

For this chapter, we leave aside all the issues of how to interpret and exploit

measurements of the productivity of software activities (e.g., the factors that affect

productivity, the effect of measurements on the persons measured, etc.). Our challenge

is how to measure a size of the work-output of software developers in a way that:

•	 Is independent of the technology used (e.g., language, platform,

tools etc.), enabling productivity comparisons across different

technology-sets

•	 Is credible and acceptable to the team or project whose performance

is measured so that there is a clear connection with their total

work-input, so not just, for example, the code size produced by the

programmers in the team

https://doi.org/10.1007/978-1-4842-4221-6_17

192

•	 Is demonstrably useful for estimating the effort for future activities

•	 Does not take up too much time and effort in relation to how the

results will be used (automatic measurement being the ideal)

As well as being able to measure a delivered size and/or a developed size in the

case of new software, the method must be able to measure a changed size in the

case of a maintenance or enhancement task or a supported size in the case of

support activities.

�Measurement of Functional Size
In the late 1970s, Allan Albrecht proposed a method for measuring a size of the

functional requirements for a piece of software, an “amount of functionality delivered to

the user.” This was a nice piece of lateral thinking that led to the development of function

point analysis. His method is now maintained by the International Function Point Users

Group (IFPUG) and is still widely used.

Function point analysis was a big advance over counting source lines of

code as a size measure since the latter are technology-dependent and cannot be

estimated accurately until a software project is well advanced—too late for most

project budgeting purposes. In contrast, sizes of requirements measured in units of

function points are technology-independent. Hence, their use enables comparisons

of productivity across different technologies, development methods, etc., and a

software size can be estimated quite early in a project, as requirements-elicitation

proceeds.

However, Albrecht’s function point analysis has a number of disadvantages in

the context of modern software development. In 1998, therefore, an international

group of software measurement experts established the Common Software

Measurement International Consortium (COSMIC) aiming to develop a new method

for measuring functional requirements that overcomes the weaknesses of function

points. Table 17-1 summarizes the key differences between Albrecht’s function

point analysis and the COSMIC method. (FP = function points; CFP = COSMIC

function points.)

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

193

�The COSMIC Method
The method’s design rests on two fundamental software engineering principles that are

illustrated in Figures 17-1 and 17-2. In the following, all words in italics are precisely

defined COSMIC terms [2].

•	 Software functionality consists of functional processes that must

respond to events outside the software, detected by or generated by

its functional users (defined as the “senders or intended recipients of

data”). Functional users may be humans, hardware devices, or other

pieces of software.

•	 Software does only two things. It moves data (entering from its

functional users and exiting to them across the software boundary

and from/to persistent storage), and it manipulates data.

Table 17-1.  Comparison of Albrecht’s FPA Method with the COSMIC Method

Factor Albrecht’s FPA Method COSMIC Functional Size Measurement
Method

Design origin A 1970s-era IBM effort- estimation

method.

Fundamental software engineering

principles.

Design

applicability

Whole business applications. Business, real-time, and infrastructure

software, at any level of decomposition.

Size scale Limited size ranges for any one

process or file. For example, a single

process must have a size in the range

3–7 FP.

Continuous size scale. The smallest

possible size of a single process is 2 CFP,

but there is no upper limit to its size.

Measurement of

changes

Can only measure the size of a whole

process or of a whole file that must be

changed.

Can measure the size of a change to any

part of a process, so the smallest size of a

change is 1 CFP.

Availability Membership subscription. Open, free [1].

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

194

As there is no simple way to account for data manipulation, especially early in the life

of a piece of software when requirements are still evolving, the COSMIC size of a functional

process is measured by counting its data movements. In other words, this approach

assumes that each data movement accounts for any associated data manipulation.

By definition, a data movement is a subprocess that moves a group of data attributes

that all describe a single object of interest (think of an object-class, a relation in 3NF, or an

entity-type). The unit of measurement is one data movement, designated as 1x COSMIC

function point, or 1 CFP.

A functional process has a minimum size of 2 CFPs. It must have an Entry plus either

an Exit or a Write, as the minimum outcome of its processing, but there is no maximum

size. Single processes of size 60 CFP have been measured in business applications and

more than 100 CFP in avionics software.

The functional size of a piece of software in CFPs is the sum of the sizes of all its

functional processes. The size of any required change to a piece of software in CFPs is the

count of its data movements that must be changed, regardless of whether changes must

be to the data group moved and/or to the associated data manipulation.

A
Triggering

Event

causes

Boundary
A

Functional
User

to generate a data group
that is moved into a

A Functional
Process

Figure 17-1.  The event/functional user/data group/functional process
relationship

Functional Processes
of the software

being measured

Boundary

Functional Users
• Hardware devices,
• Other software or
• Humans

Entries

Exits

Reads Writes

Persistent
Storage

Figure 17-2.  The types of data movements of functional processes

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

195

Two examples illustrate the application of the method.

A simple functional process for a human functional user to enter data online about

a new employee would have an Entry to move the new employee data, a Read of the

database to check whether the employee already exists, a Write to create the new record,

and an Exit to convey any validation error messages. The total size would be 4 CFP.

A functional process of a military aircraft may receive a triggering Entry from a

sensor warning “missile approaching.” The process will output several messages as

Exits. Each Exit becomes the triggering Entry to a process in another part of the aircraft’s

distributed avionics system, for example, to issue warnings to the pilot to instruct the

aircraft to take evasive action and other countermeasures. All communicating software

components are functional users of each other; all input and output hardware devices

are functional users of the software components with which they communicate.

�Discussion of the COSMIC Model
In this section, we discuss various aspects of the model that might be argued to limit its

practical value as a measure of work-output.

For effort estimation, we need size estimates long before we know the
requirements in sufficient detail for a precise COSMIC size measurement.

When there is a new software requirement, the thought process for an estimator is

usually first “how big is it?” and then “what productivity figure should I use to convert

size to effort?” For example, an agile team would estimate the size of a user story in

story points and use a velocity figure measured on past sprints as the productivity

value. This same thought process is involved when estimating the effort to develop or

change a piece of software at any level of aggregation from a single user story all the

way up to a major new system. Estimators need a software size scale and a size/effort

relationship, i.e., productivity data, at each relevant level. The productivity data will

have been established from measurements on past, completed tasks, or projects with

characteristics similar to the new challenge.

However, a sponsor of a new software development typically needs a cost estimate

for budget purposes long before the requirements have been spelled out in sufficient

detail for a precise COSMIC size measurement. In practice, therefore, measurements

of approximate sizes of early requirements for effort estimation may be as commonly

needed as are precise sizes of delivered requirements for productivity measurement.

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

196

If the COSMIC models illustrated in Figures 17-1 and 17-2 and the definitions of

the various terms are to succeed, it must mean that for any given artifacts of some

software to be measured, everyone will identify and agree on the same set of functional

processes. (The artifacts may be early or detailed statements of requirements, designs,

implemented artifacts such as screen layouts and database definitions, or working code.)

Correctly identifying the functional processes is the basis for ensuring measurement

repeatability.

COSMIC method publications include a guideline [1] that describes several

approaches, of varying sophistication, for measuring an approximate size of early

requirements. All such approaches rely on being able to identify or estimate, directly or

indirectly, the number “n” of functional processes in the early requirements for the new

software. As an example, the simplest way of estimating an approximate COSMIC size

of such requirements is to multiply the estimated “n” by an estimated average size of

one process. More sophisticated approaches to approximate sizing include identifying

patterns of functional processes that are known to occur for the type of software being

estimated.

An organization wanting to use any of these approaches to approximate COSMIC

size measurement will need to measure some software sizes accurately and use the

results to calibrate the chosen approximate sizing approach.

What about nonfunctional requirements?

A method that aims to measure a size of functional requirements might appear to

intentionally ignore nonfunctional requirements (NFRs). This would be nonsense since

NFRs may need a lot of effort to implement. Loosely speaking, functional requirements

define what the software must do, whereas NFRs define constraints on the software and

the way it is developed or, in other words, how the software must do it.

A joint COSMIC/IFPUG study developed a clear definition of NFRs and a

comprehensive glossary of NFR terms [3] and divided them broadly into two main

groups.

•	 Technical NFRs such as the programming language or hardware

platform to be used, or constraints from the environment such as

the number of users to be supported. These NFRs do not affect

software functional size. Rather, they may be factors that you need to

understand when interpreting productivity measurements and that

must usually be taken into account when estimating costs for a new

development.

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

197

•	 Quality NFRs such as requirements for usability, portability,

reliability, maintainability, etc. These evolve as a project progresses,

wholly or largely1, into requirements for software functionality. The

size of this functionality can be measured in the normal way, using

the standard rules of the COSMIC method, or can be estimated if

required for a new development.

So, sizes measured using the COSMIC method should reflect all the functionality

output as a result of the work-input on the software, regardless of whether this

functionality was initially stated in terms of functional or nonfunctional requirements.

What about complexity?

Productivity measurements based on functional sizes are sometimes criticized

for not reflecting software complexity. In a discussion of simplicity versus complexity,

Murray Gell-Mann (in “The Quark and the Jaguar”) shows that crude complexity can

be defined as “the length of the shortest message that will describe a system at a given

level of coarse graining.” According to this definition, therefore, a COSMIC size closely

measures the crude complexity of the functional requirements of a software system at

the level of granularity of the data movements of its functional processes.

However, as already noted, COSMIC sizes do not take into account the size or

complexity of the data manipulation associated with each data movement, i.e.,

algorithmic complexity. Experience suggests, however, that for a large part of business,

real-time and infrastructure software, the amount of data manipulation associated

with each type of data movement does not vary much. I know of only one actual

measurement of the number of lines of algorithm (LOA) per data movement, which was

for a very large chunk of a real-time avionics system. This showed, for example, that the

median number of LOA associated with one data movement was 2.5, with 99 percent of

data movements having no more than 15 LOA. This one piece of evidence supports the

validity of the COSMIC method design assumption for this domain that the count of data

movements reasonably accounts for any associated data manipulation, except for any

areas of software that are dominated by mathematical algorithms. In business, real-time,

and infrastructure software, these areas are typically few and concentrated.

1�An NFR for a system response time may give rise partly to the need for specific hardware or use
of a particular programming language (i.e., technical NFRs) and partly for requirements for
specific software functionality. The latter can be taken into account in the measure of functional
size.

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

198

If the development of some software requires significant amounts of new algorithms,

the effort associated with this work should probably be separated out in any productivity

measurement or should be estimated separately. Developing a new algorithm is

essentially a creative process for which there may be no meaningful size/effort

relationship. Alternatively, the functional size associated with the algorithms may be

measured, e.g., by a locally defined extension to the standard COSMIC method.

Are sizes of functional requirements still relevant in a world of component-
driven software development?

This question can be expressed more generally as “Can COSMIC sizing be used, and

is it still relevant in the world of modern software development, where much software

is assembled from reusable components, e.g., in the IoT or for mobile apps; when agile

developers don’t believe in detailed documentation and their processes may involve

much rework; in outsourced software contracts; etc.?”

The first obvious point to make is that if we are ever to understand software

productivity and use the measurements for estimating purposes, then we need a

plausible, repeatable, technology-independent measure of work-output. The COSMIC

method meets this need; sizes may be measured at any point in the life of a piece of

software.

It is up to each organization to determine the problem it is trying to solve and

then decide for itself how and when to apply the COSMIC method and how to use the

resulting measurements.

Because any one software activity could result in many types of COSMIC size

measurements, the parameters of each measurement must be recorded to ensure that

its meaning will be clear for future users. These parameters include the domain of the

software and its layer in the architecture and distinguish, for example the following:

•	 Sizes of new developments from sizes of changes or enhancements

•	 Sizes of developed from delivered software, where the latter includes

bought-in or reused software

•	 The level of decomposition (or of aggregation) of the software

Experience suggests that an organization should start work-output measurement on

its most commonly used software processes to build confidence in using the COSMIC

method and in the resulting productivity measurements, before moving on to measuring

more complex situations.

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

199

In summary, the design of the COSMIC method is a compromise between taking into

account all the factors we might think of as causing work-output and the practical need

that measurement should be simple and not need too much effort.

�Correlation of COSMIC Sizes with Development
Effort
The acid test of whether the COSMIC method is of real practical use is “Do CFP sizes, as

measurements of work-output, correlate well with measurements of development effort,

i.e., work-input?” If the correlations are good, then productivity comparisons should

be credible, and the results can be used for new effort estimation purposes with known

confidence.

Happily, studies over several years show that under repeatable conditions (same

type of software, same technologies, common rules for effort recording, etc.), CFP

sizes correlate well with effort for a variety of business and real-time software [4].

The correlations are significantly better, according to some studies, than when using

Albrecht’s FP sizes.

Recent studies on agile software developments [5] also show that CFP sizes correlate

with effort far better than do story point sizes at the level of sprints or iterations. (Story

points may be meaningful within individual teams, but they cannot be relied upon for

productivity comparisons across teams, nor for higher-level effort estimation purposes.)

Figure 17-3 shows the measurements from one such study with a Canadian supplier

of security and surveillance software. In their agile process, tasks are allocated to

iterations lasting from three to six weeks. The effort for each task is estimated in Planning

Poker sessions in units of story points on a Fibonacci scale, which are then converted

directly to work-hours. Figure 17-3 shows the actual effort versus the estimated effort for

22 tasks in nine iterations that required a total of 949 work-hours.

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

200

The sizes of the 22 tasks were subsequently measured in units of COSMIC function

points. Figure 17-4 shows the actual effort for these same 22 tasks plotted against the

CFP sizes.

y = 2.35x + 0.1
R² = 0.95

0

40

80

120

160

200

0 10 20 30 40 50 60 70 80

Ac
tu

al
 e

ff
or

t (
w

or
k-

ho
ur

s)

Size (COSMIC Function Points)

Figure 17-4.  Actual effort versus CFP sizes

y = 0.502x + 15.6
R² = 0.36

0

40

80

120

160

200

0 50 100 150 200

Ac
tu

al
 e

ffo
rt

 (w
or

k-
ho

ur
s)

Story Points → Estimated Effort (work-hours)

Figure 17-3.  Actual effort versus estimated effort

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

201

These two graphs show clearly the greatly improved correlation of task size versus

effort when size is measured using COSMIC function points, rather than story points.

Agile developers can substitute CFP sizes for story points to estimate or measure their

work-output without any need to change their agile processes.

In addition to its uses in effort estimation, studies in the domains of embedded real-

time and mobile telecoms software show that CFP sizes correlate well with the memory

size needed for the corresponding code.

Organizations using the COSMIC method are now routinely exploiting these

correlations to help estimate development effort from early software requirements or

designs, or in agile environments.

�Automated COSMIC Size Measurement
COSMIC size measurement automation is underway in three areas, in varying stages

from early exploration to commercial exploitation.

	 a)	 Automated COSMIC sizing from textual requirements using

natural language processing or artificial intelligence is still in the

development stage. This step has great potential as it would allow

early life-cycle estimating, e.g., of approximate sizes from user stories.

	 b)	 Automated COSMIC sizing from formal specifications or

designs has reached the commercial exploitation stage in a few

organizations. Here are two examples:

•	 Automatic CFP size measurement from UML models. Several

Polish public-sector organizations rely on the results to help

control price/performance of their software outsourcing contracts.

•	 Renault, the French automotive manufacturer, has implemented

automatic COSMIC sizing of specifications held in the Matlab

Simulink tool for the software embedded in its vehicle electronic

control units [4]. CFP sizes are used to predict the development

effort and the hardware memory size needed for the ECUs and

to estimate the ECU execution times. The data is then used to

control price/performance for the supply of ECUs and their

embedded software. Other automotive manufacturers are known

to be implementing these processes.

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

202

	 c)	 Automated COSMIC sizing from static and from executing Java

code has been achieved with some manual input “seeding” of the

code, with high accuracy.

�Conclusions
The ISO-standard COSMIC method has met all its design goals and is being used around

the world for measuring a functional size, i.e., work-output, for most types of software.

Measured sizes have been shown to correlate well with development effort for

several types of software. The derived size/effort relationships are being used for effort

estimation with, in some known cases of real-time software, great commercial benefits.

The method has been recommended by the U.S. Government Accountability Office for

use in software cost estimation.

The method’s fundamental design principles are valid for all time. The method

definition [2] is mature and has been frozen for the foreseeable future. Automatic

COSMIC size measurement is already happening. As a further consequence of the

universality of the method’s underlying concepts, measured sizes should be easily

understood and therefore acceptable to the software community whose performance is

measured.

Measuring and understanding the productivity of software activities is a multifaceted

topic. The COSMIC method provides a solid basis for the many needs of work-output

measurement, a key component of productivity measurement.

�Key Ideas
Here are the key ideas from this chapter:

•	 It's important for productivity measurement and estimating to have

a measure for work output that can be compared across different

contexts.

•	 COSMIC function points are such a measure.

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

203

�References

	 [1]	 All COSMIC documentation, including the references below, is

available for free download from www.cosmic-sizing.org. For

an introduction to the method go to https://cosmic-sizing.

org/publications/introduction-to-the-cosmic-method-of-

measuring-software-2/.

	 [2]	 “The COSMIC Functional Size Measurement Method, Version

4.0.2, Measurement Manual (The COSMIC Implementation Guide

for ISO/IEC 19761: 2017),” which contains the Glossary of Terms.

	 [3]	 “Glossary of Terms for Non-Functional Requirements and

Project Requirements used in software project performance

measurement, benchmarking and estimating,” Version 1.0,

September 2015, published by COSMIC and IFPUG.

	 [4]	 “Measurement of software size: advances made by the COSMIC

community,” Charles Symons, Alain Abran, Christof Ebert, Frank

Vogelezang, International Workshop on Software Measurement,

Berlin 2016.

	 [5]	 “Experience of using COSMIC sizing in Agile projects,” Charles

Symons, Alain Abran, Onur Demirors. November 2017. https://

cosmic-sizing.org/publications/experience-using-cosmic-

sizing-agile-projects/

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

http://www.cosmic-sizing.org
https://cosmic-sizing.org/publications/introduction-to-the-cosmic-method-of-measuring-software-2/
https://cosmic-sizing.org/publications/introduction-to-the-cosmic-method-of-measuring-software-2/
https://cosmic-sizing.org/publications/introduction-to-the-cosmic-method-of-measuring-software-2/
https://cosmic-sizing.org/publications/experience-using-cosmic-sizing-agile-projects/
https://cosmic-sizing.org/publications/experience-using-cosmic-sizing-agile-projects/
https://cosmic-sizing.org/publications/experience-using-cosmic-sizing-agile-projects/

204

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 17 The COSMIC Method for Measuring the Work-Output Component of Productivity

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 17: The COSMIC Method for Measuring the Work-Output Component of Productivity
	Measurement of Functional Size
	The COSMIC Method
	Discussion of the COSMIC Model
	Correlation of COSMIC Sizes with Development Effort
	Automated COSMIC Size Measurement
	Conclusions
	Key Ideas
	References

