
57
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_7

CHAPTER 7

Software Productivity
Through the Lens
of Knowledge Work
Emerson Murphy-Hill, Google, USA

Stefan Wagner, University of Stuttgart, Germany

While this book focuses on software developer productivity, other fields have studied

productivity more broadly. Such work lends a perspective that can contribute to a solid

foundation to what we know about software developer productivity. In this chapter, we

provide an overview of related work about perhaps the most relevant allied field outside

of software engineering, namely, the productivity of knowledge workers.

�A Brief History of Knowledge Work
The term knowledge work was coined by the management guru Peter Drucker in 1959 [1].

Unlike manual labor where the main output is largely physical goods, knowledge workers

deal primarily with information, where each task is usually different from the last, and the

main output of the work is knowledge.

Later, Drucker challenged the field of management research to improve the

productivity of knowledge workers in the same way they improved the productivity

of manual laborers [2]. Drucker's contrast of knowledge worker productivity against

manual worker productivity is insightful. While productivity of the manual worker can

https://doi.org/10.1007/978-1-4842-4221-6_7

58

be improved by understanding and automating the routine steps involved in creating a

physical good, the steps involved in the tasks performed by knowledge workers are so

nonroutine that similar kinds of automation cannot be easily employed.

For the past half-century, studies in management and other social sciences have

examined how to improve the productivity of the knowledge worker. Because software

developers are one kind of knowledge worker, it stands to reason that much of what such

studies have learned will be applicable to software developer productivity as well.

Studies about knowledge workers can teach us at least two things about productivity

of software developers: techniques for measuring productivity and a set of drivers that

have been shown to affect knowledge worker productivity. We next discuss each in turn.

�Techniques for Measuring Productivity
As we discuss elsewhere in this book, measuring software developers' productivity is

challenging, and likely no single metric will do (see Chapters 2 and 3). This problem

also afflicts researchers in knowledge work, yet they have made progress on the

problem by developing a breadth of techniques for measuring productivity. We next

describe the techniques used to measure knowledge worker productivity by turning to

a taxonomy of techniques from Ramírez and Nembhard [4]. We describe some of those

techniques and discuss the trade-offs in using each technique. Further, we group these

techniques into four categories, which we call outcome-oriented, process-oriented,

people-oriented, and multi-oriented techniques. Software engineering practitioners

and researchers can use these categories to choose appropriate productivity measures

for their contexts.

�Outcome-Oriented Techniques
In the original literature on improving the productivity of manual workers, it was

common to measure productivity by looking primarily at the output of work per unit

time. For software developers, this could be realized by measuring the number of

lines of code written per day, for instance. This measurement technique has also been

extended in knowledge worker research by accounting for inputs to the process—such

as resources or salaries used by the workers. Such outcome-oriented techniques have

the advantage of being relatively straightforward to measure. However, as Ramírez and

Nembhard point out, the knowledge worker research community has largely converged

Chapter 7 Software Productivity Through the Lens of Knowledge Work

https://doi.org/10.1007/978-1-4842-4221-6_2
https://doi.org/10.1007/978-1-4842-4221-6_3

59

on the opinion that such outcome-oriented techniques are generally inadequate

because they fail to take into account output quality, which they generally regard as a

critical aspect of productivity. See Chapter 5 for an in depth discussion of the importance

of quality when measuring productivity. An additional challenge to outcome-oriented

metrics for software engineering is that difficult software problems may have similar-

appearing output to easy problems.

Another refinement of these outcome-oriented techniques is using organizational

economic output as the outcome, such as a company’s earnings. The main advantage

of this approach is that economic output is arguably the most direct measure of

productivity, at least at a large scale—if a developer’s work does not produce profit

directly or indirectly, are they really being productive? The disadvantages of this

approach is that, as Ramírez and Nembhard point out, tracing profits down to individual

knowledge workers is difficult and also that present economic output is not necessarily

indicative of future potential economic output. In complex software organizations,

measuring the economic effect of key but indirect developers—such as open source

developers or infrastructure teams—is relatively challenging.

�Process-Oriented Techniques
Rather than looking at the outcomes of work, some studies examine how knowledge

workers’ tasks are performed. For instance, using the multiminute measurement

technique, knowledge workers fill out forms at regular intervals, reporting what they

have done from a predefined list of tasks. Building on this, productivity measurement

techniques can measure the time spent in value-added activities, which looks at what

percentage of time knowledge workers spend doing desirable activities compared to

the total number of hours worked. In software engineering, we could define desirable

activities as activities that add value to the software product. This could include

constructive activities, such as writing code, but also analytical, improving activities,

such as performing code reviews. The advantage of such techniques is that they are

amenable to some amount of automation, such as through experience sampling tools

(for example, www.experiencesampler.com/) or instrumentation like RescueTime

(https://www.rescuetime.com/). The primary disadvantages are that simply measuring

activities doesn’t measure how well knowledge workers conduct those activities and

that it doesn’t take into account quality. To the latter point, some activity-tracking

techniques have also been extended to measure quality-enhancing activities, such as by

Chapter 7 Software Productivity Through the Lens of Knowledge Work

https://doi.org/10.1007/978-1-4842-4221-6_5
http://www.experiencesampler.com
https://www.rescuetime.com

60

counting thinking and organizing as activities that enhance quality and thus enhance

productivity. This shows, however, that it is difficult to clearly distinguish between value-

adding and non-value-adding activities. Potentially, the categorization of waste could be

useful (see Chapter 19).

�People-Oriented Techniques
In contrast to the prior techniques, which seek to define productive outcomes and

activities up-front, people-oriented techniques empower knowledge workers to define

metrics for productivity for themselves. One way to do this is through the achievement

method, which measures productivity by determining the ratio of completed goals to

planned goals. An extension of the achievement method is the normative productivity

measurement methodology, which works to establish consensus among knowledge

workers about the different dimensions of productivity. The advantage of these

techniques is that measuring productivity as completion of self-determined goals has

good construct validity, as research suggests that task or goal completion is the top

reason that software developers report having a productive workday [5].

Using interviews and surveys to measure productivity is “a straightforward and

commonly used method” to measure knowledge worker productivity and to determine

knowledge worker compensation [4]. Such techniques have the advantage of being

relatively easy to administer with existing instruments from the literature and can

capture a wide variety of productivity factors. On the other hand, such techniques may

have low reliability. To increase the reliability of these techniques, many studies have

used peer evaluations, where knowledge workers rate their peers’ productivity. However,

the disadvantage of this technique is the so-called halo effect, where a peer might rate a

knowledge worker’s past performance as indicative of their current performance, even if

past and present productivity are unrelated.

�Multi-oriented Techniques
As we describe in Chapters 5 and 6, productivity can be measured through multiple

facets within an organization; likewise, the knowledge worker literature has sought

to understand productivity through multiple facets. For example, the multiple output

productivity indicator can be used to measure productivity when a knowledge worker

has more than one output. For instance, a software developer not only produces code

Chapter 7 Software Productivity Through the Lens of Knowledge Work

https://doi.org/10.1007/978-1-4842-4221-6_19
https://doi.org/10.1007/978-1-4842-4221-6_5
https://doi.org/10.1007/978-1-4842-4221-6_6

61

but also produces infrastructure tools and trains peers in organizational development

practices. A multiple-level productivity measurement technique is the macro, micro,

and mid-knowledge worker productivity models, which seeks to measure productivity at

the factory, individual contributor, and department levels, respectively. This technique

measures productivity over time using attributes such as quality, cost, and lost time.

The main advantage of these techniques is that they provide a more holistic view of

organizational productivity than many other metrics, but at the same time, collecting

them can be complex.

These three kinds of techniques—process-, people-, and multi-oriented—provide

a variety of options for practitioners and researchers to use. One way these techniques

can be used is to enable those who want to measure productivity to use off-the-shelf,

validated techniques, rather than creating new techniques with unknown validity.

Another way these techniques can be used is as a framework to broaden productivity-

measurement efforts; if an organization is already using process-oriented productivity

techniques, they could broaden their portfolio by adding people-oriented techniques.

Similarly, researchers can choose multiple techniques to increase the validity of their

studies through triangulation.

�Drivers That Influence Productivity
The second major contribution of research on knowledge workers that can be applied

to software engineers is an understanding of what drivers can change knowledge

workers’ productivity. Understanding productivity drivers is valuable because it tells

organizations what changes they can make to improve knowledge worker productivity.

While some productivity drivers are specific to software development, such as code

complexity (see also Chapter 8), other drivers probably apply equally well to knowledge

workers generally and software developers specifically, such as the need for quiet spaces

required for concentration.

We draw on prior research, which we have found personally insightful, that catalogs

productivity drivers among knowledge workers. In an attempt to measure knowledge

worker productivity, Palvalin created SmartWoW, a survey that captures all the drivers

that affect productivity, according to the knowledge work literature [3]; readers who want

to know the strength of the scientific evidence for each factor are encouraged to explore

Chapter 7 Software Productivity Through the Lens of Knowledge Work

https://doi.org/10.1007/978-1-4842-4221-6_8

62

the research cited by Palvalin. Palvalin showed that his survey has reasonable validity

and reliability by assessing it at nine companies with almost 1,000 knowledge workers.

SmartWoW divides productivity drivers into five types, which we describe here:

Physical environment. The physical environment refers to the place where the

work occurs, whether that’s in the office or at home. Studies of knowledge workers

have found that a physical environment that increases productivity is one where there

is adequate space for solitary work for concentration, official and unofficial meetings,

and informal collaboration. A physical environment that enhances productivity also has

good ergonomics with low noise and few interruptions. Software developers’ frequent

complaints about open offices underscore the importance of work environment drivers.

Virtual environment. The virtual environment refers to the technology that

knowledge workers use. A virtual environment that enhances productivity is one where

the technology is easy to use and available wherever the knowledge worker is working.

Knowledge work studies have also identified several specific types of technology as

productivity-enhancing, including use of instant messaging, video conferencing, access

to co-workers’ calendars, and other collaborative groupware. This research suggests that

usable programming languages and powerful tools, as well as collaboration platforms

like GitHub, are important for improving software developer productivity.

Social environment. The social environment refers to the attitudes, routines,

policies, and habits performed by workers in an organization. Productive social

environments are those where knowledge workers are given freedom to choose their

work methods, work times, and work locations; information flows freely among workers;

meetings are efficient; clear technology usage and communication policies exist;

goals are cohesive and clearly defined; work is assessed in terms of outcomes, not just

in terms of activities; and experimentation with new work methods is encouraged.

A social environment for software development that enhances productivity is one

where, for example, developers are given freedom to try new tools and methodologies.

The importance of the social environment is underscored by Google’s finding that

psychological safety—that members of a team should be able to take risks without fear—

is the most important predictor of effective teams.

Individual work practices. While the prior environmental drivers enable productive

work through organizational practices, individual work practices measure to what extent

knowledge workers will actually implement these practices. Productive individual

work practices include knowledge workers using technology to reduce unnecessary

travel, using mobile devices when waiting (e.g., during travel), prioritizing important

tasks, using quiet spaces and shutting down disruptive software during tasks that

Chapter 7 Software Productivity Through the Lens of Knowledge Work

63

require concentration, preparing for meetings, taking care of their well-being, using

the organizations’ official communication channels, planning out their workday, and

experimenting with new tools and work methods. This suggests that developers are

productive when, for example, they can code, test, and push while commuting to work

on shared transit.

Well-being at work. Finally, Palvalin includes a knowledge worker’s well-being

at work both as a driver of productivity at work and as an outcome of productivity. A

productive knowledge worker is one who enjoys and is enthusiastic about their work,

finds meaning and purpose in their work, is not continuously stressed, is appreciated,

has a work-life balance, finds the work atmosphere pleasant, and resolves conflicts with

co-workers quickly. This suggests that the famous 80-hour workweek developer is not a

productive developer.

�Software Developers vs. Knowledge Workers:
Similar or Different?
In this chapter, we’ve drawn parallels between software developer and knowledge

worker productivity, so it’s natural to ask whether one should consider their productivity

the same or different. Our opinion is that each extreme is a cop-out; considering

software developer productivity the same as knowledge worker productivity would

abdicate our responsibility to study the productivity of software developers, while

considering them as entirely different would allow us to reinvent the wheel by ignoring

prior studies about knowledge worker productivity.

The reality is that knowledge workers and software developers are similar in some

ways and different in others, both in kind and in degree. In kind, arguably everything that

could possibly affect software developer productivity can be pigeonholed into one the

five types of productivity drivers described in the prior section, but doing so elides some

drivers that software developers may be uniquely positioned to measure and change,

such as software complexity. In degree, software developers’ productivity is similar in

some ways and different in others. For instance, while surveying Google’s employees, the

first author found that job enthusiasm affects productivity to a nearly identical degree

for both Google’s knowledge workers and its software developers; on the other hand, he

also found that time management autonomy affected knowledge workers’ productivity

substantially more than it affected software developers’ productivity.

Chapter 7 Software Productivity Through the Lens of Knowledge Work

64

In sum, those who want to understand the productivity of software developers

should also understand the productivity of knowledge workers, not because the latter

can replace the former but instead so they can make informed choices about when

existing measures and factors ought to be used and when new measures and factors

ought to be invented.

�Summary
While software development has its specific characteristics, there is a lot to learn

from studies of general knowledge work. First, it is not sufficient to look at quantity of

output but to include the quality of the work as well (see Chapters 4 and 5). Second, it

provides approaches to measure productivity besides outcome. Still, knowledge work

research has not found a suitable way to capture all important aspects of productivity.

Third, it provides a set of drivers for productivity that are directly applicable to software

development, such as enough space for solitary work and a pleasant work atmosphere.

�Key Ideas
The following are the key ideas from the chapter:

•	 Software developers are a specific kind of knowledge worker.

Knowledge worker productivity has been studied in a variety of

contexts, and those studies can be used to understand software

developers.

•	 There are four main techniques for measuring knowledge worker

productivity: outcome-, process-, people-, and multi-oriented

productivity measurement techniques.

•	 There are five categories of drivers that knowledge worker research

suggests influence productivity: the physical environment, the virtual

environment, the social environment, individual work practices, and

well-being at work.

Chapter 7 Software Productivity Through the Lens of Knowledge Work

https://doi.org/10.1007/978-1-4842-4221-6_4
https://doi.org/10.1007/978-1-4842-4221-6_5

65

�References

	 [1]	 Drucker, P. F. (1959). Landmarks of tomorrow. Harper & Brothers.

	 [2]	 Drucker, P. F. (1999). Knowledge-worker productivity: The biggest

challenge. California management review, 41(2), 79-94.

	 [3]	 Palvalin, M. (2017). How to measure impacts of work environment

changes on knowledge work productivity–validation and

improvement of the SmartWoW tool. Measuring Business

Excellence, 21(2).

	 [4]	 Ramírez, Y. W., & Nembhard, D. A. (2004). Measuring knowledge

worker productivity: A taxonomy. Journal of intellectual capital,

5(4), 602–628.

	 [5]	 Meyer A. N., Fritz T., Murphy G. C., Zimmermann T. (2014).

Software developers’ perceptions of productivity. SIGSOFT FSE

2014: 19–29.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 7 Software Productivity Through the Lens of Knowledge Work

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 7: Software Productivity Through the Lens of Knowledge Work
	A Brief History of Knowledge Work
	Techniques for Measuring Productivity
	Outcome-Oriented Techniques
	Process-Oriented Techniques
	People-Oriented Techniques
	Multi-oriented Techniques

	Drivers That Influence Productivity
	Software Developers vs. Knowledge Workers: Similar or Different?
	Summary
	Key Ideas
	References

