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Preface and Introduction 

The basic stochastic approximation algorithms introduced by Robbins and 
Monro and by Kiefer and Wolfowitz in the early 1950s have been the subject 
of an enormous literature, both theoretical and applied. This is due to the 
large number of applications and the interesting theoretical issues in the 
analysis of "dynamically defined" stochastic processes. The basic paradigm 
is a stochastic difference equation such as On+! = On +EnYn, where On takes 
its values in some Euclidean space, Yn is a random variable, and the "step 
size" En > 0 is small and might go to zero as n ~ 00. Roughly speaking, 
() is a parameter of a system, and the random v:ector Yn is a function of 
"noise-corrupted" observations taken on the system when the parameter is 
set to ()n. One recursively adjusts the parameter so that some goal is met 
asymptotically. This book is concerned with the qualitative and asymptotic 
properties of such recursive algorithms in the diverse forms in which they 
arise in applications. There are analogous continuous time algorithms, but 
the conditions and proofs are generally very close to those for the discrete 
time case. 

The original work was motivated by the problem of finding a root of 
a continuous function g(()), where the function is not known but the ex
perimenter is able to take "noisy" measurements at any desired value of 
(). Recursive methods for root finding are common in classical numerical 
analysis, and it is reasonable to expect that appropriate stochastic analogs 
would also perform well. 

In one classical example, 0 is the level of dosage of a drug, and the func
tion g(()) (which is assumed to be increasing with ()) is the probability 
of success at dosage level O. The level at which g(()) takes a given value 
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v is sought. The probability of success is known only by experiment at 
whatever values of 0 are selected by the experimenter, with the experimen
tal outcome being either success or failure. Thus, the problem cannot be 
solved analytically. One possible approach is to take a sufficient number 
of observations- at some fixed value of 0, so that a good estimate of the 
function value is available, and then to move on. Since most such observa
tions will be taken at parameter values far from the optimum, much effort 
might be wasted in comparison with the stochastic approximation algo
rithm On+! = On + En[V - observation at On], where the parameter value 
moves (on the average) in the correct direction after each observation. In 
another example, we wish tp minimize a real-valued continuously differen
tiable function fO of O. Here, On is the nth estimate of the minimum, and 
Yn is a noisy estimate of the negative of the derivative of f (.) at On, perhaps 
obtained by a Monte Carlo procedure. The algorithms are frequently con
strained in that the iterates On are projected back to some set H if they ever 
leave it. The mathematical paradigms have posed substantial challenges in 
the asymptotic analysis of recursively defined stochastic processes. 

A major insight of Robbins and Monro was that, if the step sizes in 
the parameter updates are allowed to go to zero in an appropriate way as 
n --+ 00, then there is an implicit averaging that eliminates the effects of the 
noise in the long run. An excellent survey of developments up to about the 
mid 1960s can be found in the book by Wasan [181]. More recent material 
can be found in [9, 34, 42, 99, 165]. The book [139] deals with many of the 
issues involved in stochastic optimization in general. 

In recent years, algorithms of the stochastic approximation type have 
found applications in new and diverse areas, and new t~chniques have been 
developed for proofs of convergence and rate of convergence. The actual and 
potential applications in signal processing have exploded. Indeed, whether 
or not they are called stochastic approximations, such algorithms occur 
frequently in practical systems for the purposes of noise or interference 
cancellation, the optimization of "post processing" or "equalization" fil
ters in time varying communication channels, adaptive antenna systems, 
and many related applications. In these applications, the step size is of
ten a small constant En = E, or it might be random. In such applications, 
the underlying processes are often nonstationary, the optimal value of 0 
changes with time, and one keeps En strictly away from zero in order to 
allow "tracking." Such tracking applications lead to new problems in the 
asymptotic analysis (e.g., when En are adjusted adaptively); one wishes to 
estimate the tracking errors and their dependence on the structure of the 
algorithm. 

New challenges have arisen in applications to adaptive control. There 
has been a resurgence of interest in general "learning" algorithms, moti
vated by the training problem in artificial neural networks [4, 29, 70], the 
on-line learning of optimal strategies in very high-dimensional Markov deci
sion problems [183] with unknown transition probabilities, and in learning 
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automata [113] and related areas. The actual recursive forms of the al
gorithms in many such applications are of the stochastic approximation 
type. Owing to the types of averaging methods used, the "noise" can be 
"pseudorandom" [134], rather than random. 

Owing to the recent extensive development of methods such as infinitesi
mal perturbation analysis [73] for the estimation of the pathwise derivatives 
of complex discrete event systems, the possibilities for the recursive on-line 
optimization of many such systems that arise in communications or man
ufacturing have been widely recognized. The appropriate algorithms are 
often of the stochastic approximation type, but the criterion to be mini
mized is the average cost per unit time over the infinite time interval. 

Iterate averaging methods [107, 142, 195], which yield nearly optimal 
algorithms under broad conditions, have been developed. The iterate av
eraging effectively adds an additional time scale to the algorithm. Decen
tralized or asynchronous algorithms introduce new difficulties for analysis. 
Consider, for example, a problem where computation is split among several 
processors, operating and transmitting data to one another asynchronously. 
Such algorithms are only beginning to come into prominence, due to both 
the developments of decentralized processing and applications where each 
of several locations might control or adjust "local variables" but the cri
terion of concern is global. Another current "decentralized" application is 
in Q-Iearning, where the component updated at any time depends on the 
state of a Markov process. 

Despite their successes, the classical methods are not adequate for many 
of the algorithms that arise in such applications. Some of the reasons con
cern the greater flexibility desired for the step sizes, more complicated 
dependence properties of the noise and iterate processes, the types of con
straints that might occur, ergodic cost functions, possibly additional time 
scales, nonstationarity and issues of tracking for time varying systems, data
flow problems in the decentralized algorithm, iterate averaging algorithms, 
desired stronger rate of convergence results, and so forth. 

Much modern analysis of the algorithms uses the so-called ODE (ordi
nary differential equation) method introduced by Ljung [119] and exten
sively developed by Kushner and coworkers [89, 99, 102] to cover quite 
general noise processes and constraints by the use of weak ergodic or aver
aging conditions. The main idea is to show that asymptotically the noise 
effects average out so that the asymptotic behavior is determined effec
tively by that of a "mean" ODE. The usefulness of the technique stems 
from the fact that the ODE is obtained by a "local analysis," where the 
dynamical term of the ODE at parameter value 9 is obtained by averaging 
the Yn as though the parameter were fixed at 9. Constraints, complicated 
state dependent noise processes, discontinuities, and many other difficulties 
can be handled. Depending on the application, the ODE might be replaced 
by a constrained (projected) ODE or a differential inclusion. Owing to its 
versatility and naturalness, the ODE method has become a fundamental 
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technique in the current toolbox, and its full power will be apparent from 
the results in this book. 

The first three chapters describe applications and serve to motivate the 
assumptions and theorems to follow. Chapter 1 provides the general moti
vation underlying stochastic approximation and describes various classical 
examples. Modifications of the algorithms due to robustness concerns, im
provements based on iterate averaging methods, variance reduction, and 
other modeling issues are also introduced. Chapter 2 contains more ad
vanced examples, each of which is typical of a large class of current in
terest: animal adaptation models, the so-called Q-Iearning, and artificial 
neural networks. The optimization of discrete event systems is introduced 
by the application of infinitesimal perturbation analysis to the optimization 
of the performance of a queue with an ergodic cost criterion. The math
ematical and modeling issues raised in this example are typical of many 
of the optimization problems in discrete event systems or where ergodic 
cost criteria are involved. The example also serves to introduce the concept 
of "state dependent noise." Chapter 3 describes some applications arising 
in adaptive control and communication theory, areas that are major users 
of stochastic approximation algorithms. Some of the mathematical results 
that will be needed are collected in Chapter 4. 

The book gives quite general combined "stability-ODE" methods for 
unconstrained problems. Nevertheless, a large part of the work concerns 
constrained algorithms, because constraints are generally present either 
explicitly or implicitly. For example, in the queue optimization problem of 
Chapter 2, the parameter to be selected controls the service rate. What is 
to be done if the service rate at some iteration is considerably larger than 
any possible practical value? Either there is a problem with the model or 
the chosen step sizes, or some bizarre random numbers appeared. Further
more, in practice the "physics" of models at large parameter values are 
often poorly known or inconvenient to model, so that whatever "conve
nient mathematical assumptions" made might be meaningless. No matter 
what the cause is, one would normally alter the unconstrained algorithm if 
the parameter () took on excessive values. The simplest alteration is trunca
tion. Of course, in addition to truncation, a practical algorithm would have 
other safeguards to ensure robustness against "bad" noise or inappropriate 
step sizes, etc. It has been somewhat traditional to allow the iterates to 
be unbounded and to use stability methods to prove that they do, in fact, 
converge. This approach still has its place and is dealt with here. Indeed, 
one might even alter the dynamics by introducing "soft" constraints, which 
have the desired stabilizing effect. However, allowing unbounded iterates 
seems to be of greater mathematical than practical interest. Owing to the 
interest in the constrained algorithm, the "constrained ODE" is also dis
cussed in Chapter 4. The chapter contains a brief discussion of stochastic 
stability and the perturbed stochastic Liapunov function, which play an 
essential role in the asymptotic analysis. 
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The first convergence results appear in Chapter 5, which deals with the 
classical case where the Yn can be written as the sum of a conditional mean 
9n(On) and a noise term, which is a "martingale difference." The basic 
techniques of the ODE method are introduced, both with and without 
constraints. It is shown that, under reasonable conditions on the noise, 
there will be convergence with probability one to a "stationary point" or 
"limit trajectory" of the mean ODE for step size sequences that decrease 
at least as fast as ani log n, where an -+ O. If the limit trajectory of the 
ODE is not concentrated at a single point, then the asymptotic path of the 
stochastic approximation is concentrated on a limit or invariant set of the 
ODE that is also "chain recurrent" [6,62]. Equality constrained problems 
are included in the basic setup. 

Much of the analysis works with interpolated processes. The iterates 
On are interpolated into a continuous time process with interpolation in
tervals fn. The asymptotics (large n) of the iterate sequence are also the 
asymptotics (large t) of this interpolated sequence. It is the paths of the 
interpolated process that are approximated by the paths of the ODE. 

If there are no constraints, a stability method is used to show that the 
iterate sequence is recurrent. From this point on, the proofs are a special 
case of those for the constrained problem. As an illustration of the meth
ods, convergence is proved for an animal learning example (where the step 
sizes are random, depending on the actual history) and a pattern classifica
tion problem. In the minimization of convex functions, the subdifferential 
replaces the derivative, and the ODE becomes a differential inclusion, but 
the convergence proofs carry over. 

Chapter 6 treats probability one convergence with correlated noise se
quences. The development is based on the general "compactness methods" 
of [99]. The assumptions on the noise sequence are implied by (but weaker 
than) strong laws of large numbers. In some cases, they are both necessary 
and sufficient for convergence. They are intuitively natural, and probably 
not far from being necessary and sufficient even more generally. The way 
the conditions are formulated allows us to use simple and classical compact
ness methods to define the mean ODE and to show that its asymptotics 
characterize that of the algorithm. Stability methods for the unconstrained 
problem and the generalization of the ODE to a differential inclusion are 
discussed. The methods of large deviations theory provide an alternative 
approach to proving convergence under weak conditions, and some simple 
results are presented. 

In Chapters 7 and 8, we work with another type of convergence, called 
weak convergence, since it is based on the theory of weak convergence of 
a sequence of probability measures and is weaker than convergence with 
probability one. It is actually much easier to use in that convergence can 
be proved under weaker and more easily verifiable conditions and gener
ally with substantially less effort The approach yields virtually the same 
information on the asymptotic behavior. The weak convergence methods 



xviii Preface and Introduction 

have considerable theoretical and modeling advantages when dealing with 
complex problems involving correlated noise, state dependent noise, de
centralized or asynchronous algorithms, and discontinuities in the algo
rithm. It will be seen that the conditions are often close to minimal. Only 
a very elementary part of the theory of weak convergence of probability 
measures will be needed; this is covered in the second part of Chapter 7. 
The techniques introduced here are of considerable importance beyond the 
needs of the book, since they are a foundation of the theory of approxi
mation of random processes and limit theorems for sequences of random 
processes. 

When one considers how stochastic approximation algorithms are used 
in applications, the fact of ultimate convergence with probability one can 
be misleading. Algorithms do not continue on to infinity, particularly when 
En --+ O. There is always a stopping rule that tells us when to stop the 
algorithm and to accept some function of the recent iterates as the "final 
value." The stopping rule can take many forms, but whichever it takes, all 
that we know about the "final value" at the stopping time is information 
of a distributional type. There is no difference in the conclusions provided 
by the probability one and the weak convergence methods. In applications 
that are of concern over long time intervals, the actual physical model might 
"drift." Indeed, it is often the case that the step size is not allowed to go 
to zero, and then there is no general alternative to the weak convergence 
methods at this time. 

The ODE approach to the limit theorems obtains the ODE by appropri
ately averaging the dynamics, and then by showing that the limit set of the 
ODE is just the set of asymptotic points of the {On}. The ODE is easier to 
characterize, and requires weaker conditions and simpler proofs when weak 
convergence methods are used. Furthermore, it can be shown that {On} 
spends "nearly all" of its time in an arbitrarily small neighborhood of the 
limit point or set. The use of weak convergence methods can lead to bet
ter probability one proofs in that, once we know that {On} spends "nearly 
all" of its time (asymptotically) in some small neighborhood of the limit 
point, then a local analysis can be used to get convergence with probability 
one. For example, the methods of Chapters 5 and 6 can be applied locally, 
or the local large deviations methods of [39] can be used. Even when we 
can only prove weak convergence, if On is close to a stable limit point at 
iterate n, then under broad conditions the mean escape time from a small 
neighborhood of that limit point is of the order of ee/En for some c > O. 

Section 7.2 is motivational in nature, aiming to relate some of the ideas 
of weak convergence to probability one convergence and convergence in 
distribution. It should be read "lightly." The general theory is covered in 
Chapter 8 for a broad variety of algorithms, using what might be called 
"weak local ergodic theorems." The essential conditions concern the rates 
of decrease of the conditional expectation of the future noise given the past 
noise, as the time difference increases. Chapter 9 illustrates the relative 
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convenience and power of the methods of Chapter 8 by providing proofs of 
convergence for some of the examples in Chapters 2 and 3. 

Chapter 10 concerns the rate of convergence. Loosely speaking, a stan
dard point of view is to show that a sequence of suitably normalized iter
ates, say, of the form (fJn - 0)/ Fn or nP(fJn - 0) for an appropriate f3 > 0, 
converges in distribution to a random variable with mean zero and finite 
covariance matrix V. We will do a little better and prove that the contin
uous time process obtained from suitably interpolated normalized iterates 
converges ''weakly'' to a stationary Gauss-Markov process, whose covari
ance matrix (at any time t) is V. The methods use only the techniques of 
weak convergence theory, which are outlined in Chapter 7. 

The use of stochastic approximation for the minimization of functions of 
a very high-dimensional argument has been of increasing interest. Owing 
to the high dimension, the classical Kiefer-Wolfowitz procedures can be 
very time consuming to use. As a result, there is much current interest in 
the so-called random-directions methods, where at each step n one chooses 
a direction dn at random, obtains a noisy estimate Yn of the derivative 
in direction dn , and moves an increment -EnYn . Although such methods 
have been of interest and used in various ways for a long time [99], con
vincing arguments concerning their value and the appropriate choices of 
the direction vectors and scaling were lacking. Recent work [166] proposed 
a different way of getting the directions and attracted needed attention 
to this problem. The proof of convergence of the random-directions meth
ods that have been suggested to date are exactly the same as that for the 
classical Kiefer-Wolfowitz procedure (see Chapter 5). The comparison of 
the rates of convergence under the different ways of choosing the random 
directions is given at the end of Chapter 10, and shows that the older and 
newer methods have essentially the same properties, when the norms of 
the direction vectors dn are the same. It is seen that the random-directions 
methods can be quite advantageous, but care needs to be exercised in their 
use. 

The performance of the stochastic approximation algorithms depends 
heavily on the choice of the step size sequence En! and the lack of a general 
approach to getting good sequences has been a handicap in appljcations. 
In [142], Polyak and Juditsky showed that, if the coefficients En go to zero 
slower than O(l/n), then the averaged sequence L~=l fJdn converges to its 
limit at an optimal rate. This implies that the use of relatively large step 
sizes, while letting the "off-line" averaging take care of the increased noise 
effects, will yield a substantial overall improvement. These results have 
since been corroborated by numerous simulations and extended mathe
matically. In Chapter 11, it is first shown that the averaging improves the 
asymptotic properties whenever there is a "classical" rate of convergence 
theorem of the type derived in Chapter 10, including the constant En = E 

case. This will give the minimal window over which the averaging will yield 
an improvement. The maximum window of averaging is then obtained by 
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a direct computation of the asymptotic covariance of the averaged process. 
Intuitive insight is provided by relating the behavior of the original and the 
averaged process to that of a three time scale discrete algorithm where it 
is seen that the key property is the separation of the time scales of the two 
slower processes. 

Chapter 12 concerns the decentralized/asynchronous algorithms, where 
the work is split between several processors, each of which has control over 
a different set of parameters. The processors work at different speeds, and 
there can be delays in passing information to each other. Owing to the 
asynchronous property, the analysis must be in "real" rather than "iter
ate" time. This complicates the notation, but all of the results of the pre
vious chapters can be carried over. Typical applications are decentralized 
optimization of queueing networks and Q-learning. 

Some topics are not covered. As noted, the algorithm in continuous time 
differs little from that in discrete time. The basic idea can be extended to 
infinite-dimensional problems [10, 12, 41, 60, 104, 135, 148, 158, 161, 177, 
178, 179, 202J. The function minimization problem where there are many 
local minima has attracted some attention [54, 96, 187J, but little is known 
at this time concerning effective methods. Some effort has been devoted [18J 
to showing that suitable conditions on the noise guarantee that there cannot 
be convergence to an unstable or marginally stable point of the ODE. 
Such results are needed and do increase confidence in the algorithms. The 
conditions can be hard to verify, particularly in high-dimensional problems, 
and the results do not guarantee that the iterates would not actually spend 
a lot of time near such bad points, particularly when the step sizes are 
small and there is poor initial behavior. Additionally, one tries to design 
the procedure and to use variance reduction methods to reduce the effects 
of the noise. Perhaps the general problem of avoiding "bad" points needs to 
be looked at in the context of the "multiminimum" problem, or controlled 
perturbation methods used (say, analogous to that at the end of Chapter 
5). 

Penalty-multiplier and Lagrangian methods for constrained problems are 
discussed in [99J. They involve only minor variations on what is done here, 
but they are omitted for lack of space. We concentrate on algorithms de
fined on r-dimensional Euclidean space, except as modified by inequality 
or equality constraints. The treatment of the equality constrained problem 
shows that the theory also covers processes defined on smooth manifolds. 
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Notation and numbering. Chapters are divided into sections, and sec
tions into subsections. Within a chapter, (1.2) (resp., (A2.1)) denotes Equa-
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tion 2 of Section 1 (resp., Assumption 2 of Section 1). Section 1 (Subsection 
1.2, resp.) always means the first section (resp., the second subsection of 
the first section) in the chapter in which the symbol is used. To refer to 
equations (resp., assumptions) in other chapters, we use, e.g., (1.2.3) (resp., 
(A1.2.3)) to denote the third equation (resp., the third assumption) in Sec
tion 2 of Chapter 1. When not in Chapter 1, Section 1.2 (resp., Subsection 
1.2.3) means Section 2 (resp., Subsection 3 of Section 2) of Chapter 1. 

Throughout the book, I . I denotes either a Euclidean norm or a norm 
on the appropriate function spaces, which will be clear from the context. 
A point x in a Euclidean space is a column vector, and the ith component 
of x is denoted by Xi. However, the ith component of () is denoted by ()i, 

since subscripts on () are used to denote the value at a time n. The symbol I 

denotes transpose. Moreover, both A' and (A)' will be used interchangeably, 
e.g., both g~/(()) and (g~(()))' denote the transpose of gn(()). Subscripts 
() and x denote either a gradient or a derivative, depending on whether 
the variable is vector or real-valued. For convenience, we list many of the 
symbols at the end of the book. 
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