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Abstract

In this paper, on the one hand, we aim to give a review on literature
dealing with the problem of supervised learning aided by additional unla-
beled data. On the other hand, being a part of the author’s first year PhD
report, the paper serves as a frame to bundle related work by the author
as well as numerous suggestions for potential future work. Therefore, this
work contains more speculative and partly subjective material than the
reader might expect from a literature review.

We give a rigorous definition of the problem and relate it to super-
vised and unsupervised learning. The crucial role of prior knowledge is
put forward, and we discuss the important notion of input-dependent
regularization. We postulate a number of baseline methods, being algo-
rithms or algorithmic schemes which can more or less straightforwardly
be applied to the problem, without the need for genuinely new concepts.
However, some of them might serve as basis for a genuine method. In the
literature review, we try to cover the wide variety of (recent) work and to
classify this work into meaningful categories. We also mention work done
on related problems and suggest some ideas towards synthesis. Finally, we
discuss some caveats and tradeoffs of central importance to the problem.

1



CONTENTS 2

Contents

1 Introduction 4

1.1 Supervised and unsupervised learning . . . . . . . . . . . . . . . 5

1.2 Supervised learning aided by additional unlabeled data . . . . . . 7

1.3 Paradigms for supervised classification . . . . . . . . . . . . . . . 9

1.3.1 The sampling paradigm . . . . . . . . . . . . . . . . . . . 9

1.3.2 The diagnostic paradigm . . . . . . . . . . . . . . . . . . 10

1.3.3 Regularization depending on the input distribution . . . . 11

1.4 Overview of the paper . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Baseline methods 13

2.1 Unsupervised learning, followed by assignment of clusters to classes 15

2.2 Expectation-maximization on a joint density model . . . . . . . . 17

2.2.1 A general view on expectation-maximization techniques . 18

2.3 Expectation-maximization, using an additional separator variable 24

2.4 Expectation-maximization on diagnostic models . . . . . . . . . . 25

3 Literature review 28

3.1 Theoretical analyses and early work . . . . . . . . . . . . . . . . 28

3.2 Expectation-maximization on a joint density model . . . . . . . . 31

3.3 Co-Training algorithms . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Adaptive regularization criteria . . . . . . . . . . . . . . . . . . . 38

3.5 The Fisher kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Restricted Bayes Optimal Classification . . . . . . . . . . . . . . 42

3.7 Transduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.1 A subjective critique of SLT transductive inference . . . . 46

4 Related problems 48

4.1 Active learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Coaching. Learning how to learn . . . . . . . . . . . . . . . . . . 50

4.3 Transfer of knowledge learned from a related task . . . . . . . . . 51



CONTENTS 3

5 Caveats and tradeoffs 52

5.1 Labels as missing data . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Diagnostic versus generative methods . . . . . . . . . . . . . . . 53

5.3 The sampling assumption . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusions 55

Bibliography 57



1 INTRODUCTION 4

1 Introduction

Learning from data can be seen as the most rigorous attempt to drastically
compress data without losing much of the inherent information. All learning
strategies must therefore be based on the belief in the hidden inherent simplic-
ity of relationships, Occam’s razor, as is the whole of modern natural science.
Statistical machine learning tries to replicate the highly original and creative
patterns of human learning on dull computers, using concepts from probability
theory.

The key to efficient compression is the introduction of latent variables associ-
ated with the observables, such that knowledge of the latent variables reduces
the complexity of describing the observables drastically. Namely, the combined
description of both latent and observable variables should be much less costly
than the straightforward description of the observables alone. An example is the
invention of words in a language to describe objects within our visual experi-
ences.

To link these variables, in order to be able to work with them in an inference
or coding-decoding machinery, we need to build models1. A model family is
a conditional probability distribution P (A|B, θ), where A and B are disjoint
sets of variables (B may be empty), and θ ∈ Θ is a latent variable associated
with the model family. Often, model families are written as sets of distribu-
tions {P (A|B, θ)|θ ∈ Θ}, and the elements, being conditional distributions A|B
indexed by values of θ, are called models2. Some model families, e.g. prior dis-
tributions for variables at the top of the hierarchy (see below) or certain noise
models, have |Θ| = 1, in which case we can get rid of the variable θ . It is very
important to note that all model families used within an inference machinery
are known beforehand to coding and decoding side (as are the ranges of all the
variables). Furthermore, we require that the whole machinery is completely de-
fined in the sense that the total of all models allows us to compute a joint prior
distribution over all variables in a consistent way.

Often, by observing which variable is conditioned on which under the model
families, one can determine a certain ordering (or “direction of data generation”)
which gives rise to a hierarchy. The notion of a hierarchy is very important in
Bayesian analysis, e.g. a complex of model families describing the part of the
hierarchy which specifies the joint prior distribution for a subset of the latent
variables, is sometimes referred to as hierarchical prior. Berger [8] gives a good
introduction into Bayesian analysis.

There are two important, basic mechanisms for introducing latent variables
to achieve better compression. The principle of divide and conquer states that

1Such models can be very simple, e.g. in the case of nonparametric statistical methods. We
will give examples below.

2Note that we treat
�

in the same way as any other latent variable. Our framework would
be easier if we defined model families simply as conditional distributions, however it is the
general convention to link a model family with an explicit variable

�
and to write the family

as set indexed by
�
, and we do not want to break with this.
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if a relationship cannot be described easily enough as it is, we should try to
separate it into a finite number of units, each of which is more accessible to
efficient description. In our framework, this can be done by introducing a new
grouping or clustering variable k with a finite range. A model forA|B can then be
described by a mixture of models for A|{B, k}, this also involves modeling k|B. A
second mechanism works by imposing functional relationships between variables,
obscured by completely unstructured noise. E.g. to describe the relationship
A|B, we can build a model family {P (A|B, θ)} such that each model computes
a fixed mapping Φθ(B), then P (A|B, θ) = Pnoise(A|Φθ(B)). The conditional
distribution on the right side is called a noise model. It is the same for all the
models in the family, and often has a simple parametric form, e.g. a Gaussian.
Note that if data for A,B is to be compressed given this model family, we
should prefer models θ such that the true distribution P (A|Φθ(B)) is indeed
as unstructured as possible, and close to Pnoise(A|Φθ(B)). Thus, the models
we prefer for compression are aimed towards separating structure from noise, a
central goal in learning from data.

1.1 Supervised and unsupervised learning

In statistical machine learning, two different scenarios can easily be distin-
guished:

• Supervised learning (learning with a teacher)

• Unsupervised learning

In the supervised learning scenario, aspects of an unknown probabilistic relation-
ship P (x, t) between examples or input points x ∈ X and targets or labels t ∈ T
are to be learned from labeled data {(xi, ti)|i = 1, . . . , n}, where the (xi, ti) are
drawn independently from P (x, t). This problem class includes pattern recogni-
tion or classification (T finite) and regression estimation (T ⊂ R).

In this paper, we will almost exclusively deal with the classification scenario, al-
though most ideas should carry over to other scenarios like regression estimation.
With respect to our coding perspective, we could say that in the classification
case, somebody else (humans from earlier generations, clever scientists, . . . ) has
already done the job of identifying t as grouping variable potentially valuable
for efficient compression. Since we (and the world around us) have agreed to
trust this decision, t is not latent anymore, but can be observed. We almost
surely possess further prior knowledge about the relationship which we can use
together with the data for our inference, and this prior knowledge might come
from the same source. Some readers might object here, noting that even simple
classification learning schemes can be shown to be consistent, i.e. can learn any
relation P (x, t) given unlimited data, so why bother with these compression
ideas and with models altogether? However, learning from limited data is of
course an ill-posed problem, since without any kind of prior knowledge about
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the relationship, the observed data does not contain any information on how to
generalize to unseen data.

Classification schemes can be grouped into two major classes (see [22],[71]),
following either the diagnostic or the sampling paradigm. Methods within the
diagnostic paradigm will be referred to as diagnostic methods (or discriminative
methods), while schemes within the sampling paradigm will be called generative
methods3. When designing a generative method, we use t as a grouping variable
in the compression sense, i.e. we assume that the class distributions P (x|t) can
be described efficiently. This assumption leads us to proposing a model family for
each of the class distributions. In diagnostic methods, which are more related
to regression estimation, we assume that P (t|x) can be described efficiently,
and we use a model family to impose a noisy functional relationship (the noise
model is a multinomial one). The imposed functional relationships can be very
simple, e.g. in logistic regression (e.g. [57]), but the model family can also be
parameterized in a very complex way. For example, in kernel methods, the model
family is parameterized by a latent function or mapping (i.e. θ represents one
or more random processes).

Schemes for regression estimation usually proceed in the same way as diagnos-
tic classification methods, i.e. model P (t|x). Traditionally, in such diagnostic
schemes, the parameter θ of the model family {P (t|x, θ)} and the input variable
x are a-priori independent. This leads to schemes in which it is not necessary
to learn anything about the marginal P (x) from data. In coding terms, these
schemes do not need to describe the input points in the data efficiently. We
can easily modify our coding perspective in such cases, namely by allowing the
input points in the dataset (to be compressed) to be sent for free. However, an
important point we will make in this paper (see subsections 1.3.2,1.3.3 and 2.4)
is that this kind of independence assumption is not sensible if we want to learn
from additional unlabeled data. As soon as we drop this assumption (see e.g.
[83]), efficient description of the input points becomes an issue.

While supervised learning usually follows a well-defined goal, e.g. minimizing
the generalization error in classification or minimizing the expected loss in re-
gression estimation, there are no such definitive criteria for unsupervised learn-
ing scenarios4. Here, we are required to find “interesting structures” within a
sample {xi|i = 1, . . . , m}, independently drawn from the unknown distribu-
tion P (x) (also called source). According to Occam’s razor, what we are really
looking for are structures which are inherently very simple, however obscured
by unpredictibly random noise. This problem seems to be very much harder

3The term “sampling paradigm” is used for “historical” reasons, but actually clashes in the
most unfortunate way with the terminology for methods employing Monte Carlo sampling,
such are often referred to as sampling methods.

4There is a general criterion which has already been mentioned above. Namely, the best
solution to an unsupervised learning problem is the one that enables us to encode the data
source in the most efficient way. However, while this criterion can lead us successfully during
the design of the model family, model selection or the search within a model family, it is too
strong as an absolute criterion in practice, where it is often only feasible (or desirable) to focus
on particular aspects instead of attacking the whole problem of the optimal representation.
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than the supervised learning scenario, since it requires the algorithm (or the
designer thereof) to identify latent variables suitable for efficient compression
of the source. In essence, an unsupervised method performs density estimation,
and many of the most successful unsupervised algorithms are formulated as gen-
erative models for P (x) whose complexity is carefully controlled and regularized
while being fitted to the data. By choosing appropriate restrictive model fami-
lies, we can also aim for lower targets, i.e. learning particular kinds of structure
in the data, with no intention of representing P (x) faithfully by the final result,
however the basic “drive” in the optimization is always to fit the data in the
best possible way.

Examples of unsupervised techniques include latent subspace models like princi-
pal component analysis (PCA) (e.g. [10]), factor analysis (e.g. [28]) or principal
curves [39]. Here, we introduce a latent “compression” variable u, living in a
low-dimensional space, furthermore impose a noisy functional relationship on
x|u. The functional relationships are represented either by linear or by more
powerful nonlinear models, in the latter case the model family is tightly regular-
ized by an appropriate prior P (θ) on the model parameter θ. The noise model
is usually a Gaussian. Other examples are mixture models (e.g. [59],[93],[70])
where the latent variable is a grouping variable from a finite set (similar to
the class label in supervised classification), and the conditional models come
from simple families such as Gaussians with structurally restricted covariance
matrices. Combinations of mixture and latent subspace models have also been
considered in numerous variants (e.g. [91], [34],[96],[33]).

Finally note how, within all these models, complexity can be regulated at vari-
ous levels. The relations between latent and observable variables are kept simple
by choosing relatively narrow model families or by regularizing models, i.e. by
penalizing complex models within a family. This is naturally achieved by placing
a prior distribution over the parameter of the model family, which judges simple
models as more probable than complex ones. But also the complexity of other
latent variables needs to be tightly controlled, e.g. the number of components
in a mixture or the number of dimensions of latent subspaces. Often, there is
considerable interplay between levels in this hierarchy. For example, in split-and-
merge heuristics for mixture density estimation (e.g. [96]), components are split
once their densities grow wide or unusually elongated, while components are
merged once their densities overlap strongly. In this example, the prior distribu-
tions over the model families for the components favour more concentrated over
strongly elongated distributions, while the prior on the number of components
favours small numbers.

1.2 Supervised learning aided by additional unlabeled

data

There are problems which do not belong to either of the principal classes dis-
cussed in the previous subsection 1.1, and they are of immense practical impor-
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tance. For example, we might face a supervised classification problem for the
relationship P (x, t) for which it is easy to obtain a large sample of unlabeled
data, but the process of labeling points x drawn from P (x), according to P (t|x),
is very expensive, computationally hard or difficult to perform out of other rea-
sons. For example, the labeling might require human insight, such as in speech
recognition, object recognition in images or classifying hypertext pages, or the
performance of expensive tests or experiments, such as in medical diagnosis or
functional proteomics5. In short, the practical interest in methods to attack the
problem of supervised learning aided by additional unlabeled data (short: the
labeled-unlabeled problem), to be defined in the following, is considerable.

Given an unknown probabilistic relationship P (x, t) between input points x

and class labels t ∈ T = {1, . . . , c}, the problem is to predict t from x, i.e. to
find a predictor t̂ = t̂(x) such that the generalization error of t̂,

Px,t

{

t̂(x) 6= t
}

, (1)

is small, ideally close to the Bayes error, being the minimum of the generaliza-
tion errors of all predictors. We are looking for algorithms to compute t̂ from

• a labeled sample Dl = {(xi, ti)|i = 1, . . . , n}, where the (xi, ti) are drawn
independently from P (x, t),

• an unlabeled sample Du = {xi|i = n+1, . . . , n+m}, where the xi are drawn
independently from the marginal input distribution P (x) =

∑c

t=1 P (x, t).
Du is sampled independently from Dl,

• prior knowledge (or assumptions) about the unknown relationship.

If Du is empty, this is the traditional supervised learning problem. The most
interesting case from a practical viewpoint arises for n = |Dl| rather small and
m = |Du| � n.

Let us define some additional notation which we will use throughout the paper.
Define X l = (x1, . . . , xn), Tl = (t1, . . . , tn), so that Dl = (Xl, Tl). Let Xu =
(xn+1, . . . , xn+m), i.e. Du = Xu. Furthermore, denote the missing labels on
the points from Du by Tu = (tn+1, . . . , tn+m). The combined evidence (i.e. the
complete observed data) is D = (Dl, Du).

Availability of prior knowledge about the relationship (often in a form of Oc-
cam’s razor) is crucial, as argued in subsection 1.1. However, it is very important
to note that prior knowledge (or assumptions) are used to a quite different de-
gree and with different final impact, if we compare supervised and unsupervised

5Here, one tries to deduce the function of certain proteins in a cell. In the moment, the
ultimate, but often very difficult and expensive method to do this is to grow a crystal, and
then to determine the three-dimensional protein structure using x-ray crystallography. Other
features, such as the expression level of the protein in a certain type of cell under certain
conditions, its linear amino acid sequence or flow characteristics under gel electrophoresis, can
be determined very much cheaper and on a large scale, often fully automatized.
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learning. In supervised learning, prior knowledge is used merely as a kind of “se-
curity belt”, to prevent the algorithm to run ahead and use its most fancy model
to fit all bits and pieces of the dataset. In the limit of a large labeled dataset, this
belt becomes looser and looser, until its impact on the final prediction almost
vanishes. In unsupervised learning, prior assumptions will always have a strong
impact on the final result. There is not something like an “a-priori interesting
structure” in data, i.e. any kind of structure we discover in data always depends
on our view on the examples, e.g. on the features we use to describe them or
the distance we use to relate them. Having made this observation, for any al-
gorithm to attack the general problem of supervised learning with additional
unlabeled data, it is crucial to balance the impact of prior assumptions very
carefully between these two extremes.

1.3 Paradigms for supervised classification

The basic paradigms for supervised classification have already been introduced
in subsection 1.1. Here, we discuss them in more detail and describe the role
unlabeled data plays in each of them. The relative merits of typical methods
within the paradigm, especially w.r.t. possible extensions of such methods to
solve the labeled-unlabeled problem are discussed in subsection 5.2.

1.3.1 The sampling paradigm

We refer to architectures following the sampling paradigm
as generative methods. Within such, we model the class
distributions P (x|t) using model families {P (x|t, θ)}, fur-
thermore the class priors P (t) by πt = P (t|π), π = (πt)t.
We also refer to an architecture of this type as a joint
density model architecture, since we are modeling the full
joint density P (x, t) by πtP (x|t, θ). For any fixed θ̂ , π̂,
an estimate of P (t|x) can then be computed by Bayes’
formula:

θ π

x t

P (t|x, θ̂ , π̂) =
π̂tP (x|t, θ̂)

∑c

t′=1 π̂t′P (x|t′, θ̂)
. (2)

Alternatively, one can obtain the Bayesian predictive distribution P (t|x, Dl)
by averaging P (t|x, θ, π) over the posterior P (θ , π|Dl). Within the sampling
paradigm, a model for the marginal P (x) emerges naturally as

P (x|θ , π) =

c
∑

t=1

πtP (x|t, θ). (3)
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Therefore, if labeled and unlabeled data is available, a natural criterion to max-
imize would be the joint log likelihood of both Dl and Du,

n
∑

i=1

log πti
P (xi|ti, θ) +

n+m
∑

i=n+1

log

c
∑

t=1

πtP (xi|t, θ), (4)

or alternatively the posterior P (θ, π|Dl, Du).6 This is essentially an issue of
maximum likelihood in the presence of missing data (treating t as latent vari-
able), which can in principle be attacked by the expectation-maximization (EM)
algorithm (see subsection 2.2).

While the implicit representation of P (x) is appealing, generative methods of-
ten exhibit significant drawbacks on supervised learning tasks, and we expect
some of these to be even more expressed if we add unlabeled data in the learn-
ing process, as described above. We discuss some of these issues in subsection
5.2. Furthermore, even in situations where the joint density model families are
appropriate, EM might exhibit severe local maxima problems, as discussed in
subsection 2.2.

1.3.2 The diagnostic paradigm

In diagnostic methods, we model the conditional distribu-
tion P (t|x) directly using the family {P (t|x, θ)}, as dis-
cussed in subsection 1.1. To arrive at a complete sampling
model for the data, we also have to model P (x) by a fam-
ily P (x|µ), however if we are only interested in updating
our belief in θ or in predicting t on unseen points, this
is not necessary, as we will see next. Under this model, θ

and µ are a-priori independent, i.e. P (θ , µ) = P (θ)P (µ).

µ θ

x t
The likelihood factors as

P (Dl, Du|θ, µ) = P (Tl|Xl, θ)P (Xl, Du|µ),

which implies that P (θ |Dl, Du) ∝ P (Tl|Xl, θ)P (θ), i.e. P (θ|Dl, Du) =
P (θ|Dl), and θ and µ are a-posteriori independent. Furthermore, P (θ |Dl, µ) =
P (θ|Dl). This means that neither knowledge of the unlabeled data Du nor any
knowledge of µ changes the posterior belief P (θ |Dl) of the labeled sample.
Therefore, in the standard data generation model for diagnostic methods, un-
labeled data cannot be used for Bayesian inference, and modelling the input
distribution P (x) is not necessary. The advantages and drawbacks of diagnostic
methods, as compared to generative ones (see subsection 1.3.1), are discussed
in subsection 5.2. In order to make use of unlabeled data in diagnostic methods,
the data generation model discussed above has to be modified, and this is the
topic of the next subsection.

6To predict, we average P (t| � ,
�
, � ) over the posterior. If we know that � is drawn from

P ( � ) and independent from D, we should rather employ the posterior P (
�
, � |Dl,Du, � ).

However, in this case the test set usually forms a part of Du, and the two posteriors are the
same.
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1.3.3 Regularization depending on the input distribution

We have seen in subsection 1.3.2 that within traditional diagnostic methods
for classification, we cannot make use of additional unlabeled data Du. The
principal reason for this is that θ (to model P (t|x)) and µ (to model P (x)) are
a-priori independent. In other words, the model family {P (t|x, θ)} is regularized
independently of the input distribution.

If we allow prior dependencies between θ and µ, e.g.
P (θ, µ) = P (θ|µ)P (µ) and P (θ) =

∫

P (θ|µ)P (µ) dµ

(as shown in the independence diagram to the right), the
situation changes. The conditional prior P (θ |µ) in prin-
ciple allows information about µ to be transferred to θ.
In general, θ and Du will be dependent given the labeled
data Dl, therefore unlabeled data can change our posterior
belief in θ.

µ θ

x t

We conclude that to make use of additional unlabeled data within the context
of diagnostic supervised techniques, we have to allow an a-priori dependence be-
tween the latent function representing the conditional probability and the input
probability itself, in other words, we have to use a regularization of the latent
function which depends on the input distribution. This argument is explored
in more detail in [83]. We remark that while the modification to the standard
data generation model for diagnostic methods suggested here is straightforward
in principle, choosing appropriate conditional priors P (θ |µ) which on the one
hand represent available prior knowledge in an appropriate way7, on the other
hand render the whole inference machinery tractable, at least in an approxi-
mative sense, can be very challenging. An important example is given by the
Co-Training paradigm (see subsection 3.3). Here, the idea of exploiting redun-
dancies between two or more views on examples is used to regularize a hypoth-
esis class based on information about P (x). This idea, which originates from
earlier work on unsupervised learning, can be seen as a quite general way to
construct conditional priors P (θ |µ) for a task at hand, although a reasonably
general formulation of such a construction process has not yet been given (to
our knowledge). Some ideas in that direction can be found in [83].

Some readers might feel a bit uneasy at this point. If we use a-priori depen-
dent θ and µ, the final predictive distribution depends on the prior P (µ) over
the input distribution. This forces us to model the input distribution itself, in
strong contrast to the situation for traditional diagnostic methods (see subsec-
tion 1.3.2). In this case, will our method still be a diagnostic one? Diagnostic
methods have the clear advantage over generative techniques that they often
require orders of magnitude less free parameters which have to be adjusted
while learning from data (see subsection 5.2). However, we do not model each
individual class distribution, but the marginal of x only. Furthermore, if the

7As discussed in detail in [83], P (
�
| � ) should enforce prior assumptions in a way which is

neither too restrictive, so as not to introduce a systematical bias, nor too loose, so that the
prior can be expected to have sufficient impact on the final prediction.
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input-dependent regularization is done sensibly (see [83] for a discussion), the
impact of an oversimple model for P (x) on the final prediction is much less
severe than in typical methods belonging to the sampling paradigm. Finally, it
is generally assumed that unlabeled data is abundant, therefore in theory we
need not restrict ourselves to simple models for P (x). To conclude, while it
is true that “diagnostic” techniques which use input-dependent regularization,
share the need for density modeling with generative methods, in our opinion
they should still be classified as belonging to the diagnostic paradigm8.

Theoretical studies of supervised learning methods within the probably approxi-
mately correct (PAC) framework (e.g. [52]) focus on diagnostic schemes and con-
sequently ignore the input distribution P (x) in that they either do not restrict
it at all or assume it to be uniform over X . The “ . . . question of how unlabeled
examples can be used to augment labeled data seems a slippery one from the
point of view of standard PAC assumptions” (citation from Blum and Mitchell
[11]). PAC bounds analyze deviations between training and generalization error
for certain predictors, drawn from a hypothesis set of limited complexity. Com-
plexity measures for hypothesis sets, such as the Vapnik-Chervonenkis (VC)
dimension (see [99]), usually do not depend on the input distribution. In other
words, a PAC result applies uniformly for any distribution P (x, t), which is nice,
but it merely bounds the probability of drawing an i.i.d. sample of a given size
from P (x, t) and then measuring a “more-than-ε” deviation between training
error (on this sample) and generalization error for any of the hypotheses from
the restricted class. If all the hypotheses in this class have unacceptably high
training error on the given training sample, the only thing we can do is to make
the hypothesis class larger and more complex, leading to a worse large deviation
bound. In most practical real-world applications, where samples do not have as-
tronomical size, even the best known PAC bounds on the generalization error
are usually ridiculously far from being tight.

However, in principle nothing stops us from considering PAC bounds which do
not hold uniformly for all P (x). Although such bounds would hold for all P (x, t),
their value would depend on characteristics of Du, therefore on P (x). Indeed,
the bounds given in [76] can be interpreted in this sense. Such bounds might
be tighter than uniform ones in cases where P (x, t) does not strongly violate
our prior assumptions. Such bounds could then possibly be used to motivate
regularization depending on the input distribution.

There are principled frameworks other than Bayesian analysis with conditional
priors that attack the labeled-unlabeled problem. Some of them will be dis-
cussed in the review section 3 of this paper. For example, subsection 3.6 dis-
cusses restricted Bayes optimal classification [94] and relates it directly to input-
dependent regularization.

8In the same way as restricted Bayes optimal classification is considered to be a diagnostic
technique (see subsection 3.6).
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1.4 Overview of the paper

We conclude this introductionary section by giving an overview of the remainder
of the paper. Although the essential aim of this paper is to give a review of
the literature on the labeled-unlabeled problem, parts of this work emphasize
and reflect the author’s subjective beliefs in what is important and original
versus what should be criticized and how. We would be very happy to get into
discussion with readers of this paper, and to validate our views based on their
arguments. However, we have done our best to report and to argue fair. We
do not claim to be exhaustive, especially not with respect to less recent work.
Castelli and Cover [15] collect some references to older work.

Some important topics have been “outsourced” into separate papers, such as
the issue of input-dependent regularization of conditional density models (see
[83] and subsection 1.3.3). Others are subject of current work, such as the gen-
eralization of Fisher kernels mentioned briefly in subsection 3.5. We would also
like to emphasize that the paper is somewhat biased towards mentioning recent
work done by the author himself. Besides giving a comprehensive literature re-
view, another aim of this paper is to build a frame around this work, to put it
into a context and onto a basis, all within the effort to give an overview over
the first year of the author’s PhD period.

In section 2, we identify baseline methods for the problem of supervised learning
aided by additional unlabeled data (the “labeled-unlabeled problem”). These
methods attack the problem in a generic way and are straightforward trans-
formations of already existing standard methods (for supervised or unsuper-
vised learning) to the new problem domain. Any method claiming to solve the
labeled-unlabeled problem should ideally be compared with all of them. Section
3 contains the literature review and forms the main part of the paper. Section
4 describes some problems that we think are related to the labeled-unlabeled
problem, together with selected work done on these problems. In section 5, we
discuss some caveats and tradeoffs linked with the labeled-unlabeled problem.
Section 6 presents conclusions.

2 Baseline methods

In this section, we define some baseline methods which can in principle be used to
attack any realization of the labeled-unlabeled problem, as defined in subsection
1.2. The criteria used to select these methods are not rigid, but some of them
might be:

1. The method is generic, i.e. not only applicable to a special task.

2. The method is a relatively straightforward transformation of already ex-
isting standard techniques for supervised and/or unsupervised learning.
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It is our opinion that these baseline methods, or straightforward variants thereof,
should not be considered as solutions to the labeled-unlabeled problem, even
though they might work well on certain tasks. Each of them has several severe
shortcomings (these will be discussed) which, in our opinion, have to be ad-
dressed using (probably) genuinely new ideas. However, baseline methods are
very useful to compare genuinely new techniques against.

The simplest baseline method is of course to discard the unlabeled data and to
predict based on the labeled training data Dl (and the available prior knowl-
edge) alone, using our favourite supervised algorithm. However, some authors
seem to overemphasize the importance of this baseline method. For example,
if n = |Dl| is rather small9, most supervised methods will naturally perform
poorly. Therefore, if a labeled-unlabeled algorithm outperforms this baseline
method significantly, we cannot necessarily conclude that the labeled-unlabeled
algorithm is suitable to solve our problem, but rather that the problem cannot
be sensibly attacked based on the sparse data Dl only. Another, possibly more
subtle issue is the use of cross-validation to set free parameters in supervised
learning methods. Cross-validation on small training sets is doomed to fail due
to very high variance. In our opinion, the only sensible way to predict from small
training sets is by using Bayesian inference together with any kind of available
prior information.

On certain, artificially created tasks we can compare our labeled-unlabeled
method against the “non-plus-ultra” method, namely a supervised algorithm
which is given Dl, Du and the missing labels on Du. This is of course not a
baseline method, but it might be quite useful in a case study to set limits. Ex-
pecting that our method comes very close to this ideal for rather small Dl is
naive, though. Although our aim is the same as for a supervised method, the
given data information is much closer to an unsupervised setting.

Some readers might object that we are presenting or suggesting some meth-
ods here without having tested them on data. However, most of the methods
presented here have been proposed in the literature, at least on special tasks.
This will be made clear in the review section 3 of this paper. Second, rather
than concrete baseline algorithms we suggest methods or schemes. The concrete
realization is left to anyone who might want to use them for comparative studies.

9It is difficult to get a “working definition” for what we mean by “rather small” Dl. If our
model and prior assumptions for P ( � , t) are correct, we could define n to be a rather small
dataset size if Bayesian analysis using these assumptions performs on average significantly
worse than the (optimal) Bayes classifier which achieves the Bayes error. In practice, it is
necessary to study learning curves for both the supervised baseline method and the labeled-
unlabeled algorithm, in which test errors (averaged over some trials) are plotted against the
relative size of Dl, i.e. the percentage of labeled data, n/(n + m).
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2.1 Unsupervised learning, followed by assignment of

clusters to classes

Let us assume that m � n, i.e. while labeled data is sparse, unlabeled data is
abundant. In this case, we can use a sophisticated unsupervised algorithm to
generate a model (or a posterior distribution over models) which fits the unla-
beled data only. The design of the unsupervised method of course depends on
the prior knowledge we have about P (x, t). For example, assume X = R

d and
the validity of the “cluster assumption”, namely that two points x, x′ should
have the same label t if there is a path between them in X which passes only
through regions of relatively high P (x). Recently, Tipping [90] and Rattray [69]
proposed ways to construct sophisticated distance measures which are aimed at
finding such clusters. To this end, we first fit a Gaussian mixture model to the
unlabeled data (the number of mixture components can be much larger than
the number of classes c = |T |). From the fitted model, the distance between
any two points can then be computed. We can now use a simple algorithm like
k-nearest neighbor (see [27]) together with the labeled data Dl and the dis-
tance inferred from Du. Note that the “cluster assumption” is a very general
and weak assumption, therefore applicable as prior assumption to many unsu-
pervised tasks. If prior knowledge of a stronger nature is available, it might be
possible to use simpler distance measures, but it is important that the distance
can be learned from the unlabeled data Du.

In case of X = R
d, prior knowledge about the task might allow us to assume that

data from each class can faithfully be modeled as coming from an underlying
low-dimensional manifold (or, more generally, from a mixture of such manifolds),
convolved with Gaussian noise10. The generative topographic mapping (GTM) [9]
is a very powerful architecture in such situations, obtaining the latent manifold
as a smooth nonlinear mapping of a uniform distribution over a low-dimensional
space, represented by a regular grid. One could try to fit a mixture of GTM’s
with a rather small number of components K (however, K ≥ c = |T |) to Du,
keeping the component manifolds smooth using Occam priors11.

An even easier method can be constructed by imposing the existence of a (latent)
separator variable k between x and t, i.e. x and t are conditionally independent
given k. k lives in {1, . . . , K}, where typically K > c = |T |. We first fit a mixture
model to the relationship between x and k (where k is the variable selecting the
component). Then, we fix P (k) as well as the component models P (x|k) and
train the P (t|k), e.g. by maximizing the likelihood of the labeled data Dl. This
technique is further discussed in subsection 2.3, giving rise to another baseline
method.

The conceptually simple method based on the cluster assumption might work

10One can use spherical Gaussian noise, but a more reasonable model would be to use
Gaussians whose principal axes are aligned with the tangent space of the manifold at each
center. Both alternatives are discussed in [9].

11However, fitting mixtures of GTM has been proved very difficult in practice (thanks to
Chris Williams for pointing this out).
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surprisingly well on real-world problems. It is, however, restricted to the case
X = R

d, and the computation of the distances mentioned is computationally
quite heavy. A more fundamental aspect with respect to the labeled-unlabeled
problem is that the cluster assumption is usually not true everywhere in the
region of interest. Now, even if the labeled dataset Dl is small, it might point us
to such critical places, e.g. suggest splitting a cluster even though it is not crossed
by low-density regions of P (x). Ideally, the final distance should depend on this
information. One could for example start with the distance based on Du only,
then carefully “inject” the label information, thereby modifying the distance at
places where label evidence suggests so, leaving it unchanged everywhere else.
We are not aware of any principled work been done in this direction.

The technique based on the separator variable k is straightforward to run. How-
ever, we do not expect it to work very well in general, given that standard
Gaussian mixture models are used to fit P (x). One strength of mixture models
for density estimation is that many simple component densities can “connect”
together to model quite complicated, maybe elongated, connected high-density
regions. However, this notion of connectedness is not supported by the method
at all. Therefore, in general, connected high-density regions will only be labeled
consistently correct if labeled data falls within most of the components modeling
the region. This is improbable if Dl is small.

The (hypothetical) mixture of GTM’s method would alleviate this problem sig-
nificantly in that here, centers belonging to the same cluster (i.e. being assigned
to the same component GTM) are constrained to lie on the same smooth low-
dimensional manifold. Unfortunately, inference is computationally quite expen-
sive for GTM’s, growing exponentially in the number of dimensions of the latent
manifold. However, simple extensions of GTM, possibly employing more elabo-
rate noise models could be used as very powerful component models in a mixture
approach even if each component is restricted to a small latent dimensionality.

We finally mention a general idea for “injecting” the label information from Dl

after having learned a probabilistic partitioning P (k|x, θ̂) of X from Du. This
idea is in line with a method suggested in subsection 2.3 and works by fitting
simple local “experts” P (t|x, k, τ ) (e.g. logistic regression) to data in the differ-
ent clusters, where τ is the parameter vector. Expert k is trained on a reweighted
version of Dl, namely each point (xi, ti) is weighted by P (k|xi, θ̂). For example,
suppose that T = {−1, +1} and P (t|x, k, τ ) = σ(t(ωT

k x + bk)), where σ(u) =
1/(1 + exp(−u)) is the logistic function, and τ = (ω1, . . . , ωK , b1, . . . , bK). Fit-
ting such logistic regression models to maximize the likelihood of weighted data
can by done by the iteratively reweighted least squares (IRLS) technique (see
e.g. [57]). In our case, the data is sparse, so one would also employ an Occam
prior P (ω) = N(ω|0, αI). If we are only after an MAP approximation to full
Bayesian analysis12, we can still use the IRLS method to compute this. The
advantage of this method over labeling the clusters by assuming that k acts as

12The MAP approximation to Bayesian analysis is briefly discussed (in another context) in
subsection 2.4. Details can be found e.g. in [55].



2 BASELINE METHODS 17

separator between x and t, as discussed above in this subsection, is that clusters
can be split between several classes if the labeled data suggests so. Note that if
all points in Dl which have significant weight for cluster k, belong to one class,
by our Occam prior on ω the MAP model P (t|x, k, τ̂ ) will be almost constant.

2.2 Expectation-maximization on a joint density model

Rather than treating Du as genuinely unlabeled data, we can also view the labels
on these points as missing data. Expectation-maximization (EM) (see [25],[2]) is
a general technique for maximum likelihood estimation in the presence of latent
variables or missing data. The idea of the basic batch version of EM is simple.
We can distinguish between a complete likelihood function over observed and
unobserved data and a marginal likelihood function which is obtained from the
complete one by integrating the latent variables out. The goal is to maximize
the marginal likelihood. This is done by iterating the following two steps. In
the so-called E step, we compute the conditional distribution of the latent vari-
ables, given the observed data and the current model estimate. In the M step,
we compute the expectation of the complete log likelihood function under this
conditional distribution, and then choose a new model which maximizes this cri-
terion. To be more specific, let zv be the observed, zh be the hidden variables.
By Jensen’s inequality (e.g. [20]), applied to the concave log, we have

log P (zv|θ) = log

∫

P (zv , zh|θ) dzh ≥ E
zh∼Q(zh)

[

log
P (zv , zh|θ)

Q(zh)

]

(5)

for any distribution Q(zh). For fixed zv = z̄v and the current model estimate

θ̂, we choose Q(zh) = P (zh|z̄v, θ̂) in the E step in order to achieve the tightest
possible bound. EM can therefore be seen as successive maximization of (vary-
ing) lower bounds to the marginal log likelihood. A crucial fact about the EM
criterion as a lower bound to the marginal log likelihood is that they are equal
to first order if expanded w.r.t. θ around θ̂ , and one can show that a local
maximum point θ̂ of the bound also maximizes log P (zv|θ) locally.

It springs into mind to construct a model family for the joint distribution P (x, t)
and to determine a model maximizing the joint likelihood by using the EM algo-
rithm, in order to attack the labeled-unlabeled problem. This is most easily be
done by choosing model families for the class-conditional distributions P (x|t).
The joint log likelihood is

n
∑

i=1

log πti
P (xi|ti, θ) +

n+m
∑

i=n+1

log

c
∑

t=1

πtP (xi|t, θ), (6)

where πt = P (t|θ). The derivation of the EM equations then parallels very
closely the case of mixture models, which can be found in many textbooks, e.g.
[10].
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Indeed, using EM to “fill in” labels on Du has already been suggested very
early, namely in a note by R. J. Little in the discussion of [25]. Chapter 1.11
of [59] gives the idea and further references, however it is not clear whether
the authors suggest using the approach for classification or merely for partially
unsupervised learning, where unsupervised fitting of a mixture model to P (x) is
aided by a few labeled points Dl. It has been used to attack the labeled-unlabeled
problem, e.g. for text classification [66]. However, usage of EM in this context
is somewhat dangerous, as we will argue next. First of all, we are required
to model the class-conditional distributions. In the terminology of subsection
1.3, we operate within the sampling paradigm and not within the often more
robust diagnostic paradigm. It has frequently been observed that, in the purely
supervised setting, fitting the class-conditional distributions with rather poor
models, then estimating P (t|x) by using these models in Bayes’ formula, works
surprisingly well w.r.t. prediction, but poor as estimate of P (t|x), in that the
estimates at most points x have too low entropy (i.e. the prediction is too
confident at most points). Suppose we choose quite narrow families including
only simple models for the classes. We initialize EM by fitting the models to
the labeled data Dl. In the first E step, the missing labels are “filled in” by
their expected values, given the current model and the observed data. By the
overconfident nature of the estimates based on the poor class models, these
“pseudo-labels” will be quite definitive on many of the points from Du. In other
words, the first E step will assign a large number of points from Du to classes
quite confidently, based only on the initial poor model fitted to Dl. In the
subsequent M step, these artificially labeled points can outweigh the labeled
points from Dl, leading to a model which might even exhibit worse predictive
performance than the initial one. In any case, we expect EM applied in this way
to quickly converge into a poor local maximum of the joint likelihood, largely
determined by the “pseudo-labels” given to the points from Du during the first
E step. This problem could be alleviated by allowing more complex class density
models. However, in this case it is not clear how to fit these models initially if
Dl is small. A typical situation where straightforward EM fails empirically, is
shown in [65].

2.2.1 A general view on expectation-maximization techniques

This subsection contains advanced material not required for the general under-
standing of the remainder of the paper. Although we think the view on EM
techniques presented here is very useful for anybody who applies the standard
EM algorithm or variants to learning problems, the reader is invited to jump
to the last paragraphs of this subsection, where we state the consequences of
the view relevant for this paper. In later versions of this paper, the present
subsection will probably be “outsourced” into a separate, more comprehensive
technical report.

Although the standard batch EM algorithm, as applied straightforwardly to the
labeled-unlabeled problem, suffers from severe robustness problems mentioned
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above, other notions of EM might be much better suited to attack the problem.
The key here is to adopt a very general view on EM procedures which allows
us to modify the standard algorithm in a variety of ways without losing the
convergence guarantees.

EM is a special case of an alternating minimization procedure in the context of
information geometry (see [21]), as has been observed by several authors (e.g.
[2],[41]). Several important problems in information theory, such as computa-
tion of the capacity of a (discrete memoryless) channel or of the rate-distortion
function, can be shown to be equivalent to the following problem (see e.g. [20]):
given two convex setsQ and P of distributions over z ∈ Z, what is the minimum
divergence minQ∈Q,P∈P D(Q‖P ) between them, and for which Q∗ ∈ Q, P ∗ ∈ P
this minimum distance is attained? Here, the divergence D is given by the rel-
ative entropy (or Kullback-Leibler divergence)

D(Q ‖P ) = EQ

[

log
Q(z)

P (z)

]

. (7)

D is a very useful divergence measure between probability distributions with a
clear information-theoretic interpretation (see [20]) and strong, yet somewhat
deep, motivations through information geometry (e.g. [2]). Since D is convex in
both arguments, the solution to this problem is unique, and the following very
simple alternating minimization procedure is guaranteed to find it: start with
some Q ∈ Q, P ∈ P , then alternate E steps in which Q← argminQ∈Q D(Q‖P ),
and M steps in which P ← argminP∈P D(Q‖P ). The minimization procedures
(as well as their outcomes in this context) in E and M step are called e-projection
and m-projection (e.g. [2]). These steps are iterated until no more improvement
in D(Q‖P ) is observed.

EM can be seen as a variant of this algorithm, as will be shown next. In this
context, P will be a family of models for z , whileQ contains distributions related
to the empirical distribution of the data, as determined by the observed sample.
Unfortunately, in all nontrivial applications of EM, it turns out that P is not a
convex set13, therefore there can be many global solutions, and the algorithm
will in general not converge to any of these. However, given sufficient smoothness
conditions on P ,14 the algorithm finds a local solution, i.e. a pair (Q∗, P ∗) which
minimizes D(Q‖P ) among all Q ∈ Q and P ∈ P in an “environment” of P ∗.15

Let S be a convex manifold16 of distributions P (z) over Z. Let z = (zv, zh)
where zv is visible, zh is hidden. Define the model submanifold P as manifold em-

13In many cases, it is the direct product of several convex sets. EM can also be regarded
as alternating minimization procedure between three or more convex sets. As an aside, the
recently proposed information bottleneck learning algorithm can also be regarded as such a
procedure between three convex sets, therefore has the same theoretical basis than the EM
algorithm (see [92]).

14We do not discuss these conditions in detail here, they are usually fulfilled in practice.
15To be able to talk about “smoothness” and “environments”, we first have to impose a

manifold structure on P . In the context of EM, this is usually done by defining P to be a
model family parameterized by

�
∈

�
d or some submanifold thereof.

16We shall not use geometrical properties of S here.
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bedded in S and parameterized by θ . The EM algorithm, as described at the be-
ginning of subsection 2.2, is an iterative procedure to, given a sample z̄v from zv ,
find a (local) maximum P̂ (z) = P̂ (z |θ̂) ∈ P of the marginal likelihood function
P (z) 7→ P (z̄v) =

∫

P ((z̄v , zh)) dzh. Now define the (universal) data manifold
QU to contain all Q(z) ∈ S such that the marginal Q(zv) =

∫

Q((zv, zh)) dzh

is equal to the (marginal) empirical point distribution δ(zv , z̄v) of z̄v.
17 QU is

clearly convex. It can be seen as to contain all possible beliefs about the com-
plete data after having observed zv = z̄v. Now, to show the equivalence of EM
with the alternating minimization procedure discussed in this section, we first
look at the E step. Let P̂ (z) = P (z |θ̂) denote the current model, and we are
looking for the e-projection Q̂, i.e. Q̂ ∈ QU to minimize D(·‖P̂ ). First, we can
write Q̂(z) = Q̂(zh|z̄v)δ(zv, z̄v), by the definition of the data manifold QU .
Then, it is easy to see that

D(Q̂ ‖ P̂ ) =

∫

Q̂(z) log
Q̂(z)

P (z |θ̂)
dz =

∫

Q̂(zh|z̄v) log
Q̂(zh|z̄v)

P (zh|z̄v, θ̂)
dzh + C

= D(Q̂(zh|z̄v) ‖P (zh|z̄v, θ̂)) + C,

(8)

where C is some constant independent of Q̂. By the nonnegativity of the relative
entropy, the minimizer is Q̂(zh|z̄v) = P (zh|z̄v , θ̂), i.e. the posterior distribution
employed by EM in the E step. Furthermore, with this choice of Q̂ we have that

−D(Q̂ ‖P (·|θ)) −H(Q̂) = E
Q̂

[log P (z |θ)]

= E
zh∼P (zh|z̄v ,θ̂) [log P ((z̄v, zh)|θ)] .

(9)

Since the right-hand side of this equation is the usual EM criterion to be max-
imized in M step, and H(Q̂) does not depend on P (·|θ)), we see that EM
performs an m-projection onto P in the M step.

There are two things to note if one wants to make use of this new view. First
of all, the quality of the final solution the algorithm presents, as well as its
convergence speed, depends very much on the initial choice of the model P .
A natural idea is to employ a sequence of EM algorithms, all having different
model submanifolds P , and using the solution computed by each algorithm as
initialization for the next one in the sequence. Since the EM algorithm is iterative
anyway, this “chaining” does not even change its character. Of course we have
to make sure that the model family P we are really after stands at the end of
the sequence. Several advantages can in principle be realized by employing a
suitably chosen sequence instead of one monolithic EM run:

• For our model submanifold P , it might be the case that EM only converges
into a satisfactory solution if initialized very carefully, otherwise gets stuck
into poor local solutions. Such an initialization often requires an expensive

17This distribution concentrates all the mass on the point �

v = ¯� v .
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search. Another common practice is to start the algorithm a lot of times
from different randomly chosen initial points. By employing a cleverly
designed sequence (see discussion below), the search can be done much
more principled and often more efficient.18

• For our P , it might be the case that EM takes an unacceptable long time
for convergence, unless it is initialized very carefully. Again, a suitably
chosen sequence of individually quickly converging EM runs can often be
expected to find a good initialization.

This idea will be generalized below, where we use it to obtain annealed versions
of EM.

The second point to note is that one does not necessarily have to perform com-
plete projections (i.e. minimizations) in all the E and M steps. Equivalently, one
can restrict the search for the projections to subsets of QU and P respectively.
In order not to get stuck in spurious extrema, we only require that a true re-
duction in D(Q‖P ) is achieved in each step. This means of course that in order
to assess final convergence, we have to face optimizations over the full QU and
P , but especially in early stages of the run we can get away more cheaply. Such
restrictions can of course affect the quality of the final solution as well as the
number of iterations needed until convergence, but in many cases the benefits
outweight the drawbacks by far.

Having argued in very general terms so far, we will now show how several well-
known extensions of EM arise naturally within the view presented above. We
will then motivate how some of these might be used to eventually make EM
work better on the labeled-unlabeled problem. The (so called) generalized EM
variant is obtained by allowing partial rather than complete minimization in
the M steps. Generalized EM sometimes runs faster due to simpler searches in
M steps. However, in general it requires more iterations until convergence than
standard EM.

The variational variant of EM systematically uses partial minimization in the
E steps. This variant is useful in cases where standard EM is computationally
infeasible. It replaces the full data manifold QU by a parameterized convex
submanifold Q which is chosen such that minimization of D(·‖P ) over Q as well
as computation of the criterion to be optimized in M step are feasible. Note that
usually Q does not contain most of the posterior distributions which standard
EM employs in the E steps, therefore the variational variant in general does not
convergence to a local maximum of the marginal likelihood. However, if Q is
a reasonably broad submanifold of QU , the final solution can still be of high
quality.

18For example, fitting of Gaussian mixtures via EM is often initialized by first fitting a
mixture from a restricted model family, such as the family of mixtures of Gaussians with the
identity as covariance matrix, or by running the k-means procedure which is a limit case of
the latter.
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There are sequential versions of EM which, in every E step, compute the pos-
terior distributions only over a subset of all latent variables in zh, and use
posteriors computed in earlier E steps on the remaining ones. In our view, this
corresponds to partial E step minimization as follows. Let Q be the current data
distribution and P̂ = P (·|θ̂) be the current model. Let zh = (zh1, zh2), and only
the posteriors on zh1 should be computed. We have to assume that, by choice of
the model family P , zh1 and zh2 are independent in the posterior P (zh|z̄v, θ̂).
Now, we restrict the search for the new data distribution Q̂ to distributions of
the form Q̂(zh1|z̄v)Q(zh2)δ(zv, z̄v), and under this restriction the e-projection

is P (zh1|z̄v, θ̂)Q(zh2)δ(zv, z̄v), which is what sequential EM variants use.

Note that while we have the freedom to choose the model submanifold P , the
universal data manifold QU is fixed by the definition above and the observed
data. On many tasks, it can be useful to sensibly restrict QU , e.g. to derive
variational variants of EM, as discussed above. We define the data submanifold
Q of an EM algorithm to be a submanifold of the data manifold QU , given the
observed data z̄v. An EM algorithm is formally defined by the pair (Q,P). In
this definition, we allow Q to be nonconvex as well as incomplete in the sense
that it might not contain all of the (potential) posteriors P (zh|z̄v, θ). In general,
the convergence guarantee of an EM algorithm holds only if Q is convex and
complete.

In general, the EM algorithm suffers from two basic problems. The first one is
that it often gets stuck into shallow local optima instead of finding high-quality
solutions (of reasonably high marginal likelihood). This is due to the fact that
the model submanifold P is usually not convex. The second one is that on mod-
els involving structural choices (such as connectivity in a network), the M step
optimizations are often intractably hard. Both problems are especially severe
if the model family exhibits symmetries in parameterization on different levels.
These problems can in principle be addressed by carefully choosing the initial
model P , but on many models this is as difficult as finding a good fit to the data
in the first place. A standard technique to attack such problems is simulated an-
nealing [53]. In the context of EM, the basic idea is to run a sequence of EM
algorithms on the data, each having its own model and data submanifold. After
convergence of one algorithm, we use the solution to initialize the next one. The
“art” is to choose the (Q,P) sequence in order to achieve a somewhat continu-
ous transition between early stages where hardly any shallow local optima are
present, and where it is rather easy to explore large parts of the model family in
the M steps, to late stages where model and data manifolds are close to the ones
we are aiming for. The successive solutions are, if annealing is done carefully,
better and better suited as initial models to guarantee that the final hard EM
run will find a reasonably deep optimum. For example, it has been suggested
to combine standard EM with deterministic annealing (e.g. [104],[95],[72]) to
alleviate the local optima problem. In our framework, this can be seen as run-
ning a sequence of EM algorithms, all sharing the same model submanifold, but
employing different data submanifolds obtained by constraining elements of QU

in a particular way. We therefore call it E-step annealing. If our model family P
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involves structural choices, we can also use M-step annealing (see [80]), which
involves running a sequence of EM algorithms, all sharing the same data mani-
fold QU , but employing different model submanifolds constructed from P by a
process of “controlled randomization”.

The last variant to be discussed here could be called robust EM, since it is aimed
towards alleviating the robustness problems of standard EM on the labeled-
unlabeled problem mentioned above (subsection 2.2). Two problems were iden-
tified there. First, we need to train models to fit each class distribution sepa-
rately. Since a class distribution can be very complicated, we would like to use
a broad model class. However, complicated models cannot be reliably fit using
the sparse labeled data Dl. Second, early “pseudo-labeling” of major parts of
the unlabeled points in Du, based on poor models trained on Dl, can have a
devastating effect on the final prediction. A robust variant of EM would start
by fitting rather simple class models to Dl. Let us separate Du into two sets

D
(a)
u (“active”) and D

(i)
u (“inactive”). Initially, D

(a)
u = ∅. In a sweep over D

(i)
u ,

we extract a few points most confidently labeled to one of the classes by the

current model, and place them into the active set D
(a)
u . We now run EM on the

data Dl and D
(a)
u , i.e. the latent variables are the labels of the points in D

(a)
u .

The more data we are looking at, the more complex models we can consider
for fitting, therefore it seems reasonable to broaden the model family slowly

while “injecting” more and more points from D
(i)
u . Formally, this can be incor-

porated in our view on EM as follows: zv consists of all variables in Dl and
Du, zh are the labels corresponding to input points in Du. Robust EM consists
of running a sequence of EM algorithms, each having its own model submani-

fold. For example, at a certain stage Du might be divided into D
(a)
u and D

(i)
u .

We divide zv = (z
(a)
v , z

(i)
v ) and zh = (z

(a)
h , z

(i)
h ) accordingly, furthermore let

z(a) = (z
(a)
v , z

(a)
h ), z(i) = (z

(i)
v , z

(i)
h ). Then, the model family P has the general

structure
{

P (z |θ) = P (z(a)|θ)U(z(i))
}

, (10)

where U(·) denotes the uniform distribution. Each model is therefore really only
a model over z(a), since it “models” the remaining variables by the uninformative
uniform distribution. By the i.i.d. assumption for Dl, Du,

P (z(a)|θ) =
∏

(xi,ti)∈Dl∪D
(a)
u

P (xi, ti|θ). (11)

Here, “(xi, ti) ∈ D
(a)
u ” means that xi ∈ D

(a)
u , and ti is the associated latent

label. To specify P , we therefore only need to specify P (x, t|θ). For this speci-
fication, we can use broader and broader model classes together with increasing

size of D
(a)
u . Now it is easy to see that the posterior in the E step becomes

P (zh|z̄v , θ̂) = P (z
(a)
h |z̄

(a)
v , θ̂)U(z

(i)
h ), and the criterion to be maximized in the

M step is, up to an additive constant, E
P (z

(a)
h

|z̄
(a)
v ,θ̂)

[log P (z
(a)
h , z̄

(a)
v |θ)]. That is,
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the components in z(i), representing the data in D
(i)
u , are simply ignored. A vari-

ant of robust EM has been suggested in [65] (the authors call it “self-training”).

To conclude, the new view on EM allows us to modify the standard version
in numerous ways, many of them are yet unexplored. In the context of the
labeled-unlabeled problem, the robust variant of EM discussed in the previous
paragraphs might alleviate shortcomings of the standard method. Also, E step
annealing (i.e. deterministic annealing) might be useful in this context. Facing
the problem that the posterior distribution over the latent variables (i.e. the
labels corresponding to the points in Du) has too low entropy over many of
its components during early stages of EM (we have called this “overconfident
pseudo-labeling” above), one could use E step annealing to blurr (i.e. “heat
up”) these posteriors during early iterations. We have not talked specifically
about the case that models themselves might incorporate latent variables, e.g.
encoding structural choices. In such cases, M step annealing might be helpful.

2.3 Expectation-maximization, using an additional sepa-

rator variable

In subsection 2.2, we discussed how the EM algorithm together with joint models
for P (x, t) could be used to attack the labeled-unlabeled problem. This involves
modeling the different classes separately by class-conditional models P (x|t, θ),
in which case the marginal model for x is

∑

t πtP (x|t, θ) (see (6) for notations).
If the class-conditional models are simple, this might be a poor model family
for the marginal distribution.

Another idea, already mentioned in subsection 2.1, is to in-
troduce a (latent) separator variable k. Under the model, k
separates x and t in the sense that x and t are conditionally
independent given k. This means that, under the model, all
the information x contains about its class t is already cap-
tured in k. This fact is illustrated in the independence model
on the right.

k

x t
Under this modeling assumptions, the joint log likelihood is

n
∑

i=1

log
∑

k

βti,kπkP (xi|k, θ) +

n+m
∑

i=n+1

log
∑

k

πkP (xi|k, θ), (12)

where πk = P (k|θ) and βt,k = P (t|k, θ). Again, it is straightforward to compute
the EM equations for this model (see [60]). Note that in this case, we do not
need to treat the labels of the points in Du as latent variables. Miller and Uyar
[60] present some results using this model together with Gaussian components
P (x|k, θ). The “many-centers-per-class” case in [66] can also be seen in this
context.

It should be rather straightforward to weaken the assumption of k being a sepa-
rator variable. This would lead to an architecture in which estimates of P (t|x, k)
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(e.g. by logistic regression) take over the role of the βt,k. Typically, by the sparse-
ness of Dl, the labeled data will not be sufficient to train these “local” predictors.
This problem can possibly be alleviated by regarding the label t as latent vari-
able and applying EM to k and t (in the terminology of section 2.2.1, the data
distribution Q is kept definitive (or “clamped”) on the observed labels). The re-

sulting predictor is
∑

k P (t|x, k, θ̂)P (k|x, θ̂), where P (k|x, θ) ∝ πkP (x|k, θ),
similar to a mixture-of-experts architecture (see [51], [101]). However, in the
latter, the gating models for P (k|x) are diagnostic rather than generative, and
the whole architecture is trained to maximize the conditional likelihood of the
data rather than the joint one. The relationship between the two architectures
is discussed in subsection 5.2.

Use of a separator variable should in most cases outperform straightforward EM
(see subsection 2.2) in a comparison where P (x|k, θ) and P (x|t, θ) come from
the same model family respectively, simply because k typically ranges over more
values than the class label t. For example, if this model family solely contains
unimodal distributions, only the version employing k can in principle model
multimodal class distributions. However, as already mentioned at the end of
subsection 2.1, it is not clear whether this advantage is really substantial. We
might for example let k range over a large set of values, in which case we might
be able to identify the marginal distribution P (x) almost exactly, based on a
large Du only. But since the model does not encode any prior “force” to e.g.
connect strongly overlapping components (the “cluster assumption”, mentioned
in subsection 2.1), or relate components a priori in any other way, a lot of labeled
data Dl is needed to associate the large number of components with the classes.
To be able to make real use of unlabeled data for supervised tasks, we not only
have to be able to identify the marginal P (x) well, but it is also required that we
identify (to a certain degree) the connected components of the class distributions.
While the former is relatively easy, given that Du is large, the latter is the real
challenge and can only be solved by employing prior knowledge about the nature
of the class distributions. Only if we are able to identify the class distributions
well, we can hope to realize the “exponential value” of a labeled sample Dl (see
[15], which is also discussed in subsection 3.1) to our advantage.

2.4 Expectation-maximization on diagnostic models

The method to be discussed in this subsection differs in several aspects from the
other methods presented in this section. First of all, we are not sure that it can be
applied reasonably generically. It has been applied successfully to a special task,
giving rise to the so-called Co-Training paradigm, as will be discussed below.
Second, the method we describe here is more an algorithmic scheme than an
algorithm. Before this scheme can be applied to a special task, prior knowledge
has to be gathered and encoded in a way such that the algorithmic scheme can
be realized exactly or approximately in a feasible algorithm. This might need
genuinely new ideas, therefore particular instances of the algorithmic scheme,
such as Co-Training, are not considered to be baseline algorithms.
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As discussed in subsecion 1.3.2, probabilistic diagnostic methods model P (t|x)
directly, without using the way over class-conditional density models. Tradi-
tionally, regularization of the model class {P (t|x, θ)} is done independently of
the input distribution, in which case unlabeled data Du does not contain any
additional information about the latent θ , given Dl (see subsection 1.3.2). In
such a setting, modeling the labels of points in Du as latent variables makes no
sense. Introducing a new point from Du into the game does not lead to any new
constraints of our belief in θ, since there is no information flow betweem Du and
θ. Applying EM to incorporate the latent label of the new point means that we
first predict the label, given our old belief about θ, which is independent of the
new point. Next, we “update” our belief in θ , based on this prediction. However,
since this update only uses information that was already know before the new
point was introduced, it cannot make our belief in θ sharper in a data-driven
way.

The situation can change if the regularization of the model
class depends on the input distribution, as discussed in
subsection 1.3.3. To clarify this claim, let us give an ex-
ample, employing the terminology of subsection 1.3.3. We
model P (x) by the family {P (x|µ)} and an “Occam”
prior P (µ) on the parameters µ. Input-dependent regular-
ization means that we employ conditional priors P (θ |µ),

µ θ

x t
in which case P (θ, µ) = P (θ |µ)P (µ) and P (θ) =

∫

P (θ|µ)P (µ) dµ. The exact
Bayesian solution, the predictive distribution P (t|x, D), D = (Dl, Du), can

often be approximated by an maximum a-posteriori (MAP) solution P (t|x, θ̂),

where the MAP parameters (θ̂ , µ̂) maximize the posterior, or equivalently the
joint distribution P (D, θ, µ). Recalling the notation defined in subsection 1.2,
we have

P (D, θ , µ) = P (Tl|Xl, θ)P (θ |µ)P (X |µ)P (µ)

=
∑

Tu

P (Tu|Xu, θ)P (Tl|Xl, θ)P (θ |µ)P (X|µ)P (µ)

≥ exp

[

∑

Tu

Q(Tu) log
P (Tu|Xu, θ)P (Tl|Xl, θ)P (θ |µ)P (X|µ)P (µ)

Q(Tu)

]

.

(13)

In contrast to the situation where θ and µ are a-priori independent, proposing
latent labels Tu and running EM to compute an MAP solution might make
sense in this case. The reader might object by noting that since the Tu sim-
ply marginalize out in the joint (13), there is really no reason to employ EM:
instead of optimizing lower bounds on the marginal likehood and using elab-
orate sequences of alternating E and M steps, the marginal likelihood can be
maximized directly. The answer to this point is the same as the one in the case
of fitting mixture models. When fitting a mixture model, we can compute the
marginal likelihood and the gradient thereof essentially as easily as computing
the statistics needed in the E step of EM. We could therefore use any stan-
dard optimizer to maximize the marginal likelihood directly. However, in many
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cases optimization by EM works more efficiently and is conceptually simpler.
The same facts can be true in case of diagnostic models together with input-
dependent regularization. Here, the unlabeled points Xu constrain our belief in
θ in a certain way (via the model µ), i.e. they contain information about θ .
However, transferring this information “from Xu to θ” might often be much
easier using the EM way over the latent labels Tu. If P (θ |µ) encodes some sub-
tle contraints on the models P (t|x, θ), enforcing these constraints directly in an
optimization, together with the “force” to achieve high likelihood on the small
set Dl, might be very hard. Robust EM variants (see end of subsection 2.2.1)
might be good candidates to attack this problem. For example, let us observe
how a new unlabeled point xn+j would be “injected” in this case to enlarge
(13). First, in the E step, the latent labels Tu are predicted using the distribu-
tion P (Tu|Xu, θ , µ), where θ and µ represent the current MAP models before
having seen the new point.19 Here, xn+j has been injected into Xu and tn+j

into Tu. Then, in the M step, µ is updated to µ̃ so as to maximize P (X |µ)P (µ),
this is standard MAP on the model class {P (x|µ)}. Finally, we update θ so as
to maximize ETu∼Q[log P (Tu|Xu, θ)P (Tl|Xl, θ)P (θ |µ̃)]. This involves fitting a
diagnostic model by MAP to a dataset which is partly uncertain (the uncer-
tainty is over Tu and is represented by the data distribution Q, see subsection
2.2.1), and there exist standard methods for this task, for example the iteratively
reweighted least squares (IRLS) technique (see e.g. [57]).

It is possible to extend this method, using variational techniques to approximate
posterior beliefs of µ. This scheme is discussed in [83]. Exploring it on concrete
data and model families, such as Gaussian process classification, remains a topic
for future research.

The reader might have noticed that we have been quite cautious in the formu-
lation of this algorithmic scheme. Using EM on diagnostic models is quite “slip-
pery”, and it is not at all certain under what conditions on the input-dependent
regularization, represented by the conditional priors P (θ |µ), it can be success-
ful. We have argued that it cannot work if θ and µ are a-priori independent. On
the other hand, it works extremely well on certain special tasks where strong
structural prior knowledge about the relationship between input distribution
and discriminant function is available. Such a case is the Co-Training method
which has been proposed in [11] to attack the problem of Web page classification
(see subsection 3.3). The basic Co-Training algorithm can be seen as a robust
variant of EM on diagnostic models if the assumptions proposed in [11] are en-
coded in conditional priors P (θ|µ). A detailed derivation and discussion of this
view on Co-Training can be found in [83]. Using this view, the model algorithm
introduced in this section can be seen as a generalization of Co-Training.

19If we talk about “predicting” latent variables using a distribution R, we really mean that
we update the data distribution Q on these variables to coincide with R (see subsection 2.2.1).
In the M step, we compute the EM criterion by taking the expectation of the complete log
joint distribution w.r.t. Q. In simple (but important) cases, the resulting EM criterion looks
like the log joint distribution over a complete dataset (i.e. containing also values for the latent
variables), in which the values of the latent variables are given by their expectations under Q.
The terminology of “predicting” latent variables should be understood in this sense.



3 LITERATURE REVIEW 28

We finally note that further design decisions come up when using unlabeled
data in this context. For example, one can split the unlabeled dataset Du, using
one part for “injection” in a robust EM variant, as discussed in this subsection,
while the other part is used to select a sensible prior P (µ) over the model class
for the input distribution.

3 Literature review

Recently literature adressing the labeled-unlabeled problem comes from a cer-
tain variety of fields. We have attempted the “unsupervised task” to classify
these approaches into a number of clusters20. However, the aim is purely or-
ganisatorial, since this is neither the right time nor are we in a position to
formulate paradigms for the labeled-unlabeled problem. Class membership is
often “fuzzy”, as will be pointed out for any single reference. In this section, we
discuss solely work which adress the labeled-unlabeled problem directly. Some
work which is related to the problem, is discussed in section 4.

3.1 Theoretical analyses and early work

The idea of using EM on joint models to train on labeled and unlabeled data
(see subsection 2.2) is almost as old as the seminal paper [25] on (general)
EM. Titterington et al ([93], section 5.7) review early theoretical work on the
problem of discriminant analysis in the presence of additional unlabeled data.
Most of the authors assume the data has been generated from a mixture of
two Gaussians with equal covariance matrices, in which case the Bayes discrim-
inant is linear. They analyze the “plug-in” method from the sampling paradigm
in which the parameters of the class distributions are estimated by maximum
likelihood, as discussed in subsection 1.3.1. If the two Gaussians are somewhat
well-separated, the asymptotic gain of using unlabeled samples is very signif-
icant. Also, empirical studies on finite samples are promising. For details, see
[68],[31],[32]. McLachlan [58] gives a practical algorithm for this case which is es-
sentially a “hard” version of EM, i.e. in every “E step” the unlabeled points are
allocated to one of the populations, using the discriminant derived from the mix-
ture parameters of the previous step (note that the general EM algorithm had
not been proposed at that time). He proves that for “moderate-sized” training
sets from each population and for a pool Du of points sampled from the mixture,
if the algorithm is initialized with the ML solution based on the labeled data,
the solutions computed by the method converge almost surely against the true
mixture distribution with |Du| = m → ∞. While these papers give some pos-
itive motivation towards the feasibility of the labeled-unlabeled problem, they
start off from somewhat unrealistic assumptions. The prior assumption that the

20Having available limited prior knowledge and no labeled examples at all!
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class distributions are Gaussian with equal covariances is much too strong to be
sensibly applied (as prior knowledge) to nontrivial real-world tasks.

All the papers discussed so far in this subsection focus on generative methods,
i.e. assume parametric forms of the class-conditional distributions. Anderson
[3] suggests a modification of logistic regression, one of the most popular di-
agnostic methods. Logistic regression (see e.g. [71], also end of subsection 2.1)
models the logits log(P (t|x)/P (1|x)), t = 2, . . . , c = |T | as linear functions
of x. Here, x is augmented by a dummy attribute (dimension) whose value is
constantly 1. If the true underlying populations are all normal and share the
same covariance, the logits are indeed such linear functions. Supervised ML
logistic regression proceeds by choosing the linear function which maximizes
the (conditional) likelihood of the data Dl. A Bayesian approach would place a
prior on the linear function and compute the posterior distribution. A MAP ap-
proximation to Bayesian Gaussian process classification (e.g. [102]), also called
generalized penalized maximum likelihood, can be seen as logistic regression in a
feature space (see e.g. [37]). In such purely diagnostic settings, unlabeled data
cannot help narrowing our belief in the latent function, see subsection 1.3.2.
Anderson [3] circumvents this problem by choosing a parameterization which is
mixed from the diagnostic logistic regression setting and the sampling paradigm
situation. Let c = 2. The only assumption is that log(P (x|1)/P (x|2)) = βT x.
Then, P (x|1) = exp(βT x)P (x|2) and P (x) = (π1 exp(βT x) + 1− π1)P (x|2),
where π1 = P{t = 1}. He now chooses the parameters β, π1 and P (x|2) to
maximize the likelihood of both Dl and the unlabeled data Du, subject to the
constraints that P (x|1) and P (x|2) are distributions (i.e. sum to 1). For finite
X , this problem can be transformed into an unconstrained optimization w.r.t.
the parameters β, π1, using Lagrange multipliers. For a continuous input vari-
able x, Anderson advocates using the form of P (x|2) derived for the “finite X”
case, although this is not a smooth function. While this algorithm is interesting,
it is rather restricted by the assumption of a linear logit. It is not clear how to
generalize it to the much more powerful case of logistic regression in a feature
space. Furthermore, for small samples and continuous x, the form of P (x|2)
obtained by non-penalized ML is inadequate. The idea of “mixing” diagnostic
and generative techniques is probably represented in a more satisfying way in
the scheme suggested in subsection 2.3 as an extension of the algorithm of Miller
and Uyar [60].

Murray and Titterington (see [93], example 4.3.11) suggest an ad hoc procedure.
Namely, they use the labeled data available for each class to obtain kernel-based
estimates of the class-conditional densities P (x|t). Then, they fix these estimates
and use EM to maximize the likelihood of both Dl and Du w.r.t. the mixing
coefficients (i.e. the parameters representing πt = P (t)) only.21 This procedure
is robust, however does not make a lot of use of the unlabeled data. If Dl is
small, the kernel-based estimates of the P (x|t) will be poor, and even if Du can

21EM w.r.t. the mixing coefficients only always converges to a unique global optimum. It is
essentially a variant of the Blahut-Arimoto algorithm to compute the rate distortion function
which is important for quantization, see [20].
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be used to obtain better values for the mixing coefficients, this is not likely to
rescue the final discrimination. The method is valuable if Dl is rather large, but
the proportions of sample points from the different classes in Dl do not reflect
the true mixing coefficients.

Shahshahani and Landgrebe [85] provide an analysis aimed towards the general
question whether unlabeled data can help in classification, based on methods
originating in asymptotic maximum-likelihood theory. Their argumentation is
somewhat unclear and has been criticized by various other authors (e.g. [66],
[105]). They do not define model classes and seem to confuse asymptotic and
finite-sample terms. While it is true that there are strong consistency argu-
ments for estimators like maximum-likelihood which hold asymptotically, inde-
pendently of the model class, characteristics of the models are crucial in the
finite-sample case. Even worse, if we want to talk about the labeled-unlabeled
problem, the labeled dataset Dl is small. The assumption that one can find
unbiased estimators in this case is very unrealistic. Clearly one can come up
with methods that reduce the variance of an estimator by employing unlabeled
data, but there is no reason to believe that such modifications will work without
introducing new bias. It is quite obvious that information from different sources
(here: Dl and Du) about the latent model parameter adds up. It is less obvi-
ous how to construct a model family and a learning algorithm such that the
information of Du about θ , conditioned on the choice of the model family, is
non-zero, and the algorithm makes significant use of this information without
introducing new bias. For example (as also pointed out in [105]), in the standard
generative model for diagnostic classification, the information of unlabeled data
about the latent discriminant is zero, whether measured asymptotically or on a
finite sample (see subsection 1.3.2). The parametric approach adopted in [85] is
the straightforward EM algorithm (see subsection 2.2) suggested e.g. in [59].

Another analysis of the problem which also employs Fisher information tech-
niques, is given in [105]. In this paper, the models and the data generation
process are carefully defined to avoid confusions, such as arise from [85]. For di-
agnostic methods, the authors show that under the standard generative model,
unlabeled data cannot help. We have already commented on this point in sub-
section 1.3.2. For generative methods, the conclusion is that unlabeled data
always helps. This is true under the assumptions made in the paper. However,
the analysis draws on asymptotic concepts. The Fisher information character-
izes the minimal asymptotic variance of an (unbiased) estimator only, and the
maximum-likelihood estimator is typically only asymptotically unbiased. Apply-
ing such concepts to the case where Dl is small cannot lead to strong conclusions.
The authors present some interesting empirical evidence concerning the perfor-
mance of transduction algorithms (discussed below in subsection 3.7) on a text
categorization task. These results indicate that transduction algorithms might
suffer from instability (or robustness) problems similar to those mentioned in
the context of the EM algorithm (see subsection 2.2). The paper also deals with
active learning scenarios, which are out of the scope of our review.

In [15], the labeled-unlabeled problem is analyzed starting from a very strong



3 LITERATURE REVIEW 31

assumption, namely that we are capable of identifying all class distributions
P (x|t) exactly, using unlabeled data Du only. Even if m = |Du| =∞, it is not
clear how this should be achieved by an (unsupervised) learning procedure. First
of all, the authors mention that (trivially) classification based on unlabeled data
only is not possible. Even if we have identified all the class regions, we cannot
deduce “which is which” without any label information. They then continue to
show that if we have identified all the class regions, the optimal error probability
for n labeled samples converges towards the Bayes error exponentially fast in n.
Although the authors propose to address the more realistic case of finite m in a
subsequent paper, we are not aware of such work in the moment. Given as such,
the paper motivates the approach mentioned in subsection 2.1, namely to use
a strong unsupervised technique to identify all class regions (or all connected
parts of class regions), based on Du only. The authors show that, once this
task is achieved, labeling these parts is fairly easy (in terms of the size of Dl

required). However, their assumptions are too strong to be met in practice. It
would be more interesting to investigate the value of labeled samples under the
much weaker assumption that only the marginal P (x) is identifiable.

3.2 Expectation-maximization on a joint density model

We have decided to classify “solutions” of this kind as baseline methods only
(see subsections 2.2,2.3), partly because filling in missing information by EM
is a standard technique, partly because running EM on most labeled-unlabeled
problem instances does not work well enough empirically to be called a solu-
tion.22

The work of Miller and Uyar [60] has already been discussed in subsection 2.3.
The authors suggest, as a variant, to treat the class label t as a second latent
variable alongside the separator k (the data distribution would be definitive
(or clamped) on the points from Dl, see subsection 2.2.1), and to apply EM to
both. An effect of this variation is to make the lower bound of the EM criterion
on the marginal log likelihood worse, however both variants come with the
same guarantee of convergence into a local maximum of the marginal likelihood.
On the architecture proposed by Miller and Uyar, we would expect them to
exhibit comparable performance, indeed this is what the authors find in their
experiments. The latent label variant might be advantageous when extending
this architecture, as suggested in subsection 2.3.

Nigam et al [66] present a case study which addresses the question whether
unlabeled data can help to improve a Naive Bayes text classifier in the case of
small Dl.

23 They use EM on a joint model, as discussed in subsection 2.2, as
well as two simple extensions. First, they suggest weighting the two sums in

22As mentioned at the beginning of section 2, beating a purely supervised technique based
on small Dl is not sufficient to conclude that a method succeeds in solving the problem.

23The Naive Bayes assumption proposes models for text pages under which all words on a
page are conditionally independent, given the class label of the page.
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the joint log likelihood (6), corresponding to Dl and Du respectively, unequally.
While it is reasonable to treat points from Dl and Du differently, simply because
otherwise we run the risk that the much more informative labeled points are
dominated by the sheer amount of available unlabeled points, and while intro-
ducing a weighting factor in the joint log likelihood is straightforward, this mod-
ification is not a probabilistic one (the modified criterion is not a log likelihood
function anymore), and the weighting factor has to be chosen using heuristics
(using cross-validation for this purpose is unwise since Dl is very small). The
other extension, namely modeling each class by more than one center, can be
seen as a special case of the EM technique discussed in subsection 2.3. We have
already criticized the use of standard EM to attack the labeled-unlabeled prob-
lem in subsection 2.2. This critique applies nicely to the setting discussed in
[66], since the Naive Bayes assumption leads to extremely poor models for the
class-conditional distributions. However, the paper is not intended as to provide
genuinely new solutions, and given that, its merits are considerable in that it
clarifies joint model EM techniques, notes problems related with these tech-
niques, provides an extensive case study and contains a very detailed section on
related work. A later paper [65] extends the case study, including more robust
EM variants (see subsection 3.3).

In [56], the authors try to combine an EM algorithm on a joint probability model
(see [66] and subsection 2.2) with an active learning strategy, namely the query-
by-committee (QBC) algorithm ([84], see also [30] and subsection 4.1), to attack
an instance of the labeled-unlabeled problem in text classification. The idea is
to overcome stability problems of standard EM by injecting unlabeled points
one at a time. Given a large pool of unlabeled data, the authors initialize EM by
training on the labeled data only. They then use a criterion derived from QBC to
select a few “most informative” points among the unlabeled ones, transfer them
(together with their latent labels) into the EM dataset and rerun EM. This is
iterated until some convergence criterion is met. While the combination of EM
and active learning is a very original idea, we found the particular realization of
this idea presented in [56] somewhat distorted by the use of a host of heuristic
intermediates between QBC and EM. For example, the criterion used to value
the informativeness of an unlabeled text page is obtained by multiplying the
QBC criterion with a heuristic measure for the density of P (x) around a doc-
ument. And the QBC criterion is somewhat distorted, in the following sense:
the basic idea of QBC is to select query points x so as to maximally reduce
variance of the discriminant ensemble represented by the posterior distribution
given by the data observed so far. On a fixed x, this variance can be measured
by sampling a fixed number of discriminants from the posterior and evaluating
them on x. McCallum and Nigam [56] also produce such a sample, but then
they run EM to convergence starting from each parameter vector in the sample,
and replace the initial by the final, converged vector. It is not clear to us at
all if the committee based on this set of parameter vectors fulfils requirements
to estimate variance, as is done in QBC. In their experiments, the authors are
surprised to find that this “distorted” version of QBC does not improve upon
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the much more efficient undistorted variant followed by a single EM run. The
authors find that the proposed method outperforms standard EM on the same
joint model family (see [66]). It would be interesting to compare the active selec-
tion method with other robust variants of EM (e.g. see end of subsection 2.2.1,
also “self-training” in [65], see subsection 3.3).

3.3 Co-Training algorithms

Co-Training is a learning paradigm which has recently been proposed in [11] to
address problems where strong structural prior knowledge is available. It has
been mentioned in subsection 2.4 that Co-Training can be seen as Bayesian
inference, and the basic Co-Training algorithm as a robust variant of EM to
compute an MAP approximation to Bayesian inference, if the assumption of the
“compatibility” of the target concept with the input distribution is encoded via
conditional priors to attain an input-dependent regularization (see subsection
1.3.3). We refer to [83] for details.

Co-Training is a simple (yet very effective) idea, therefore it does not come as a
surprise that related ideas have been used in earlier work on unsupervised learn-
ing. We begin by reviewing some of this work. Becker and Hinton [5] propose the
IMAX strategy to learn coherence structure in data. Quoting [6], the approach
is “to maximize some measure of agreement between the outputs of two groups
of units which receive inputs physically separated in space, time or modality
(. . . ). This forces the units to extract features which are coherent across the dif-
ferent input sources”. The latter claim seems reasonable, given that the model
families are carefully regularized, although we are not aware of theoretical work
backing it. For simplicity, let us focus on the example of detecting shift in ran-
dom dot stereograms. Here, x ∈ G2×d

2 , G2 = {0, 1}. If s ∈ Z denotes a small,
unknown offset, a point x is sampled as follows: the first row is drawn from
the product of d Bernoulli variables with p = 1/2. The second row is the same
as the first, but shifted by s positions.24 In a strong sense, the only coherence
between examples sharing the same s is exactly the amount of this shift. Now
imagine two model classes {Pi(t|x, θi)}, i = 1, 2. t ranges over a finite set whose
size is chosen a-priori, although it is possible to learn this size from data using
a sort of second-level inference (we skip this for simplicity). The idea is that
models from class i only get to see a particular part of each point x, defined
by a window Wi = (li, ri), 1 ≤ li < ri ≤ d. To be specific, models from class i
are fed by [x]i = (xjk)j=1...2,k=li...ri

, where x = (xjk)j,k. The two windows are
non-overlapping and usually do not cover the whole range 1 . . . d. For each exam-
ple drawn as detailed above, the particular amount of shift is coherent between
these two views on the point. Both models classes are appropriately regular-
ized, e.g. using Occam priors. The goal is to learn models θ1, θ2 which identify
the shift present in each particular pattern, i.e. group examples into the same

24If s is generally small compared to d, it does not really matter what we do at the margins,
but let us say for simplicity that the first row is rotated by s positions to form the second, i.e.
the free space at the one end is filled with the elements pushed out at the other end.
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cluster t if they exhibit the same amount of shift. Becker and Hinton showed
that this task can be solved in an unsupervised manner, by maximizing the
sample mutual information between the outputs of two units, one from each of
the model classes. To be specific, for θ1, θ2 define the random variables t1, t2 to
have the joint distribution P (t1, t2|θ1, θ2) = Ex[P1(t1|x, θ1)P2(t2|x, θ2)], where
the expectation over x is w.r.t. the empirical distribution given by the dataset.
The marginals are P (ti|θi) = Ex[Pi(ti|x, θi)]. The sample mutual information,
or the “IMAX criterion”, is then defined as

I(t1, t2|θ1, θ2) = Et1,t2

[

log
P (t1, t2|θ1, θ2)

P (t1|θ1)P (t2|θ2)

]

, (14)

where the expectation is over P (t1, t2|θ1, θ2). Note that this criterion is mini-
mal if t1, t2 are independent, maximal if they are deterministically related, e.g.
identical. The IMAX strategy is to maximize the criterion, given an appropriate
regularization on the two model classes. If regularization is done using Occam
priors P (θi), one could for example maximize the sum of the IMAX criterion
and the both log priors. The work of de Sa [23] is related in that we train two
families of models (logistic regression models in her work), each being fed by a
different view on examples. These views are different in modality, an example
would be sound and lip images in order to decode speech. The models are seen
as hard discriminants, and the system is trained to minimize the fraction of
training examples on which the two units disagree. This is suboptimal for lo-
gistic regression models, since the confidence information given by these “soft”
estimators is neglected.

We think that a thorough theoretical analysis of IMAX and related schemes is
very difficult. However, we can give some intuitive ideas why they might work.
Learning regularities (like class identity, coherence, . . . ) from a restricted view
on examples is conceptually easier than from a complete representation. This is
partly due to limited data, with which spaces of lower dimension can be covered
easier, partly due to our (present) inability to construct good model families
for high-dimensional data25, partly due simply to limited computing resources.
Therefore, if a certain coherence is exhibited (almost) as clearly in a restricted
view as it is in a complete representation, and using this coherence pays off
strongly in an attempt to efficiently encode the data (see section 1), then it is
much more likely that a common learning scheme discovers this coherence on
the restricted view, even if trained in an unsupervised manner. Now, by linking
the units operating on different views, e.g. in the IMAX fashion, the discovered
information is instantly passed to the “partner model”, in much the same way as
a teacher passes information to a student in a supervised learning scheme. This
is a particularly nice example of Occam’s razor to drive unsupervised learning.
As soon as one of the units discovers a means to exploit (part of) the coherence
in the data, this is, simply by its potential to compress the data drastically,

25We (at least, we!) do not even have a good understanding of how simple families of
distributions, such as rather small mixtures of Gaussians, behave in high-dimensional spaces,
in the sense that we do not clearly understand how they combine their volumes to fit data.
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taken for “reliable truth” which can be passed to partners in a teacher-student
manner. Note that if the discovered “coherence” is spurious, i.e. the “student”
cannot detect it using its own view, its inability, within its own “regularized
simplicity”, to synchronize with the teacher can in turn influence the teacher to
give up on the idea or to assign a lower importance to it.

The work discussed so far in this subsection could be used to attack the labeled-
unlabeled problem as follows: suppose we have some prior knowledge about a
particular coherence which should hold between examples of the same class, but
(at least to a certain degree) not across class boundaries. Such coherences are of
course strongly dependent on the representation (the “features”) of examples.
A simple means to find such coherence is to look for different views (different
in modality) on the examples, e.g. coming from physically different information
sources. Another idea is to identify groups of transformations acting on the
representation x of examples which (most probably) are invariant w.r.t. class
identity (this idea is very important in fields dealing with object recognition
in images, see subsection 4.3). Given such coherence information, we can try
to find different views on our examples which fulfil the following criteria: they
should be “as different as possible”, e.g. coming from different physical sources.
Ideally, they should be conditionally independent, given the class identity of
the example, i.e. the only information shared between them should be about
the class label. They should also be aimed towards exhibiting the particular
coherence clearly in isolation. Ideally, although each of the views only describes
part of the information contained in an example, one should be able to learn
the particular coherence from only this view on examples “essentially as easy
as” from complete representations. For example, the shift in random dot stere-
ograms, as discussed above, is represented to the same degree in the full matrix
x and in a windowed part of it. Given all this prior work, we can run IMAX or
the algorithm of de Sa, using model classes and regularizations of our choice, to
learn a soft partitioning of the example space in an unsupervised manner, using
Du as training data. Afterwards, we use the labeled data Dl to assign clusters
to classes. This is related to the general scheme discussed in subsection 2.1. The
relations to Co-Training are discussed further below in this subsection.

The Co-Training paradigm was introduced by Blum and Mitchell [11], see also
[63],[83]. The idea is to exploit a particularly strong kind of coherence (in the
sense discussed above), namely the notion of compatibility between different
views on an example x. We write x = (x(1), x(2)) ∈ X = X(1)×X(2). Blum and
Mitchell are interested in classification of Web pages, they suggest to describe
a Web page from two different views: a representation of the words on the
page, and a representation of the words in all hyperlinks pointing to the page.
Note that if a classification system makes sense, within-class coherence between
examples should be learnable from each of these views in isolation. A hypothesis
θ on X is compatible with the input distribution P (x) if there are hypotheses

θ(1), θ(2) on X(1), X(2) respectively, such that for any x = (x(1), x(2)) from the

support of P (x) (i.e. P (x) > 0) we have that θ, θ(1) and θ
(2) predict the same

class label on x, x(1) and x(2) respectively. The compatibility assumption of
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Co-Training restricts the latent hypothesis θ to be compatible with the (latent)
input distribution P (x). Given this assumption, Blum and Mitchell suggest
a simple algorithm to learn the classification using a small labeled dataset Dl

together with a large unlabeled one, Du. This works by updating a set of labeled
data, Dw, and hypotheses θ

(1), θ(2) on X(1), X(2) respectively. θ
(1) and θ

(2) are
fitted to Dw, and are ideally error-free on this set. Initially, Dw = Dl. One now
injects new points from Du into Dw sequentially, by labeling them using one of
the θ(j) and retraining the other on the augmented Dw. The roles of “teacher”

and “student” are alternated between θ(1) and θ(2) after each injection. This
algorithm can easily be understood as an instance of the robust EM scheme
on diagnostic models, described in subsection 2.4. The notion of compatibility
between the views is encoded in a conditional prior P (θ|µ). Instead of a model
for the input distribution, we estimate its support only, which we refer to as
µ here. We then set P (θ|µ) = 0 for all θ which are not compatible with the
support µ. A detailed derivation of Co-Training as a variant of diagnostic EM
can be found in [83]. Blum and Mitchell also give some interesting theoretical
analysis of Co-Training. Unfortunately, they employ the very strong assumption
that the views on x are conditionally independent, given the class label. It would
be very interesting to get theoretical insight into cases with weaker assumptions.

Both IMAX-like schemes and Co-Training employ a feature split and coherence
between the different views to learn from unlabeled data Du. The coherence
is a kind of redundancy in unlabeled examples, and this redundancy is useful
information towards a meaningful grouping of the examples. However, there are
important differences. IMAX and related schemes are purely unsupervised, while
Co-Training leads to supervised methods. IMAX is designed to learn a grouping
which corresponds to the coherence which is expected, by prior knowledge, to
hold between the different views on examples. If t denotes the corresponding
grouping variable, IMAX requires the views on x to be selected such that they
are conditionally independent, or at least only weakly conditionally dependent,
given t. If this does not hold, IMAX will probably learn a different grouping, or
fail to learn a meaningful grouping at all. For example, if the two windows in
the random dot stereograms setting (discussed above) overlap, IMAX might fail
because of low-order conditional dependencies (given t) between the views26. In
Co-Training, we use a feature split which is chosen such that coherence between
the views is compatible with class identity. However, this split is used merely
as a sort of “information bridge” between unlabeled data and our belief in the
latent hypothesis θ, not as essential characteristic of the grouping induced by
θ. While unlabeled data can be used most effectively if the views on x are
conditionally independent or only weakly conditionally dependent, given t, we
would expect that Du can boost the performance, compared to classification
based on Dl alone, given somewhat weaker assumptions.

Collins and Singer [19] apply the Co-Training paradigm to the problem of named
entity classification. Here, one is interested in classifying entities which are

26Thanks to Chris Williams for pointing this out.
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uniquely represented by names. The classification system would be, for exam-
ple, persons, cities and companies. Although the correspondence is one-to-one, it
cannot be represented by a small system of simple rules. One therefore augments
the description of the entity by features which can be extracted automatically
from samples in which the entities occur. An example would be to extract the
context of the name in text pages in which the names occur. Another idea is to
look at the concrete spelling of the name. It is clear that one can find different
views on the named entities satisfying the Co-Training requirements. The most
interesting part of the paper is the development of co-boosting, namely an ex-
tension of the very powerful AdaBoost algorithm (see [29], [73]) for supervised
classification to attack the labeled-unlabeled problem. This extension is surpris-
ingly simple, yet very elegant, and the algorithm could prove very competitive
among existing labeled-unlabeled algorithms. However, as the authors report, it
suffers in principle from the same robustness problems than EM (see subsection
2.2) or existing transduction algorithms (see subsection 3.7). The algorithm was
in some cases fooled by apparent simplicity in the structure of the unlabeled
data and exhibited large bias, although the information in the labeled data could
have been used to detect the failure.

Nigam and Ghani [65] present a case study comparing standard EM (see sub-
section 2.2, also [66]), basic Co-Training (as suggested in [11]) and some robust
EM variants (see end of subsection 2.2.1), partly on data from natural sources,
partly on artificially created datasets. The task is again text classification. This
paper is very valuable as comparative study and contains some interesting ideas
of how to increase the robustness of standard EM or how to combine the “best of
both worlds” (Co-Training and EM employing class-conditional models). How-
ever, the authors confuse some points. First of all, they do not realize that
basic Co-Training is a form of (diagnostic) EM, see subsection 2.4. Therefore,
if they compare Co-Training against versions of generative EM (i.e. EM em-
ploying class-conditional models) which try to make use of the feature split
prior knowledge27, this has more the notion of comparing the diagnostic versus
the sampling paradigm for the labeled-unlabeled problem. Second, they criticize
“EM — the algorithm with a strong probabilistic foundation” ([65], section 6.2),
because it performs worst in their experiments. They do not realize that their
“best performer”, an algorithm they call “self-training” (see end of subsection
2.2.1), is just another version of EM, based on the same strong probabilistic
foundation than the worst-performing standard batch EM. This foundation is
detailed in subsection 2.2.1.

Goldman and Zhou [36] propose an algorithm to address the labeled-unlabeled
problem which is related to Co-Training. It does not employ a feature split
(or different views on the examples), but incorporates two very different model
classes. At any time, the current discriminant is represented by two models, one
from each class. The models are initially chosen by training on Dl only. The
algorithm then works by, in turn, identifying points among the remaining ones

27The authors call this variant “co-EM”.
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in Du on which one of the models predicts very confidently, and adding them
to Dl together with the predicted pseudo-label. On the positive side, the paper
addresses some important robustness issues, such as the danger of accumulating
“classification noise” in Dl by incorporating a certain number of incorrectly
labeled points from Du. The authors propose safeguards against these issues
which seem rather conservative to us. Our problem with this paper is that
the authors apply a host of tests from classical statistics, sometimes testing
hypotheses against each other which are conditioned on completely different
events (such as different partitions of the input space — their model classes
are classification trees). We do not think that the assumptions on which these
classical tests are based really hold in all the different situations the tests are
applied here. A concrete weakness seems to be the frequent use of 10-fold cross-
validation using the labeled data Dl. If n = |Dl| is rather small, cross-validation
exhibits high variance and is not very useful for model selection, especially if it is
used very frequently to address all sorts of different modeling questions. In short,
the idea to employ very different model classes instead of a feature split, if this
is supported by prior knowledge, is interesting and should be investigated28, but
the particular algorithm suggested in [36] should probably be shaved a bit under
Occam’s razor. Note that Seeger [83] proposes a generalization of Co-Training
in which the issues that Goldman and Zhou attack heuristically, are dealt with
in a principled Bayesian way. We have not checked whether this approach is
feasible for the architecture of Goldman and Zhou.

3.4 Adaptive regularization criteria

The basic idea behind adaptive regularization criteria is that criteria to be mini-
mized in supervised settings, like generalization error or expected loss, involve an
expectation over the (unknown) input distribution P (x). Simply stated, making
mistakes in regions where P (x) is large, hurts more (in terms of these criteria)
than mistakes in regions of low density of P (x). The overfitting problem is likely
to arise if a complex model is fitted to sparse data. When we “fit a complex
model to data”, what we really do is we choose, among all the functions (or re-
lations) this model is able to represent, one which is compatible with the data.
Since the model is complex, it usually can represent a large number of functions
which are all compatible with the data, but show very different behaviour away
from the data. Our criterion gives us no further rules or constraints of how to
choose among these, and a random choice is likely to generalize badly to un-
seen data. Regularization based on Occam’s razor gives us an additional rule:
prefer simple over complex functions. The concrete meanings of “simple” and
“complex” of course depend on the task and on available prior knowledge. The
point to be made in this subsection is, however, that the Occam assumption of
simplicity should really only be enforced in regions where input points x are

28It is related to “learning how to learn” or multitask learning, see subsection 4.2.



3 LITERATURE REVIEW 39

likely to be found.29 In other words, regularization backed by Occam’s razor
should be dependent on the input distribution P (x), see subsection 1.3.3.

Schuurmans [78] captures this kind of input dependence by defining a natural
metric between hypotheses. Given a symmetric loss function l on T × T (recall
that T is the set of possible values for the target t), the expected loss of a hypoth-
esis h : X → T is d(h, P (t|x)) = Ex[Et∼P (t|x)[l(h(x), t)]]. This suggests the defi-
nition of a natural metric between hypothesis g, h by d(g, h) = Ex[l(g(x), h(x))].
Now, if we are given an hypothesis space H and define Hext = H∪ {P (t|x)}, it
is easy to show that if l is a pseudometric on T × T (as is the case for common
loss functions like squared error in regression estimation or zero-one loss in clas-
sification), d, as defined above, is a pseudometric on Hext, in particular d fulfils
the triangle inequality. Now, suppose we construct a hierarchy H1 ⊂ H2 ⊂ . . .
of increasing complexity, and within each Hi we select hi ∈ Hi which best fits
the data Dl. Then, by the triangle inequality, we must have

d(hi, hj) ≤ d(hi, P (t|x)) + d(hj , P (t|x)) (15)

for any i < j. Schuurmans argues that one can estimate the left-hand side
fairly accurately, given a large unlabeled sample Du, while the expected losses
on the right-hand side are estimated using Dl. Overfitting occurs if these em-
pirical losses are grossly different from the true expected losses, and in this
case the former are almost always strong underestimates of the latter. There-
fore, once inequality (15) is violated after plugging the estimates in place of the
true, unknown quantities, we can conclude that overfitting has occured. Schu-
urmans proposes a model selection procedure in which we select hypotheses
hj ∈ Hj , j = 1, 2, . . . , until the estimated version of (15) is violated for some
i < j. The procedure then outputs hj−1. Empirical results are promising in the
case of regression estimation with polynomials. However, the technique might
still exhibit overfitting, simply because the triangle inequality (15) is usually far
from tight. An extension of this strategy, called ADJ, attempts a first-order bias
correction between the pseudometric d and its estimated version, say d̂. In a later
paper [79], Schuurmans and Southey get rid of the a-priori hierarchy and focus
on criteria which are additive or multiplicative combinations of the empirical
loss d̂(h, P (t|x)) and a penalty. They then propose penalties based on the idea
that overfitting of h can sometimes be detected by comparing, for some fixed
origin function φ, the distances d(h, φ) (which can be estimated reliably using

29It is not our plan to go into discussions about foundations of Occam’s razor here. Some
people think Occam’s razor is backed by evolutionary theories in which complex structures
evolve from very simple initial conditions by accumulation of many small random changes
together with selection processes. In this context, simple solutions to a problem are more
likely to be found than complicated ones, given that the sequence of selection processes which
have been active during the evolution of the solution is not too unusual. Evolution of such
solutions is, however, conditioned on the particular situation surrounding the problem, since
this situation creates the selection processes which give evolution a non-random direction. For
example, human cells work very effectively and in many aspects surprisingly simple, but only
given that the temperature lies within a narrow range. In conclusion, “simplicity” has to be
graded conditioned on the situation which the particular task is expected to be in.
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Du) and d̂(h, φ) (estimated based on the input points of Dl only). It is impor-
tant that φ is chosen a-priori, without having seen any data. The penalties can
be motivated nicely if φ = P (t|x), while such a choice is of course unrealistic.
The motivation gets somewhat weaker in the case where φ is chosen arbitrar-
ily. Empirical results on a polynomial regression estimation task show that the
method is very competitive, while results on classification are less convincing.
It is interesting that, empirically for regression estimation, a quite aggressive
multiplicative penalty outperforms an additive penalty based on the same idea,
since most regularization strategies currently in use (including Bayesian MAP
estimation) employ additive penalties. We further note that the additive cri-
terion in [79], as applied to regression estimation with squared-error loss, has
already been suggested in [16]. However, Cataltepe et al [16] do not give a very
convincing theoretical motivation.

To conclude, adaptive regularization criteria are based on the notion of input-
dependent regularization (see subsection 1.3.3 and [83]). While the criteria sug-
gested in [78], [79] are reported to work well on regression estimation tasks,
the reported results for classification are less promising. In the latter, the infor-
mation each labels contains about the latent function is less directly accessible
than in regression estimation. It is also not clear how to inject available prior
knowledge into the procedures suggested in [79], but we are very interested in
following up this very recent line of research.

3.5 The Fisher kernel

The Fisher kernel, as proposed in [46], is the first general and principled at-
tempt to exploit information from a generative model fitted to the input dis-
tribution P (x) in one of the most powerful currently available classes of dis-
criminative classifiers, namely kernel methods such as Gaussian processes (e.g.
[103],[100],[54]) or Support Vector machines (e.g. [99],[13]). In a nutshell, kernel
methods are diagnostic schemes (see subsection 1.3.2) in which the prior distri-
bution over the latent function30 is a Gaussian process, specified by a positive
definite covariance kernel (e.g. [40]). The covariance kernel induces a “natural”
distance in a feature space, and the Fisher kernel attempts to adapt this distance
in a highly genuine and interesting way to information about the distribution
of input points, drawn from a model fitted to P (x). One of the main difficulties
in constructing adaptive kernels is that they need to fulfil the requirement of
positive definiteness, i.e. that they can be seen as inner products in some linear
space (e.g. [40]). Finding decent kernels on “unusual” (but very important) input
spaces X (such as spaces of variable-length sequences or of discrete structures)
is challenging, and not many general solutions are available (e.g. [40]). But even
in the case X = R

d it seems questionable to employ families of standard kernels
on highly specific tasks (as is done usually) where labeled data Dl is sparse,

30In the two-class case (i.e. |T | = 2), the latent function represents the log-ratio between
the two classes at each point � , also called the logit.
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simply because the kernel encodes our prior knowledge about the task, and the
standard kernels available offer few, rather vague possibilities for doing so. In a
sense, when running kernel methods together with standard kernels, we ignore
the (probabilistic) geometry of X in the same way as if we employ standard
distances like squared-error or impose uncorrelated Gaussian noise in situations
where we should know better (see e.g. [90]).

The naive Fisher kernel is

K(x(1), x(2)) = ∇θ log P (x(1)|θ)T F−1∇θ log P (x(2)|θ), (16)

where {P (x|θ)} is a model family used to fit P (x). If θ̂ denotes a maximum

likelihood estimate based on Du, the gradients are evaluated at θ̂, and F denotes
the Fisher information matrix, given by

F = E
x∼P (x|θ̂)

[

∇θ log P (x|θ)∇θ log P (x|θ)T
]

, (17)

where again the gradients are evaluated at θ̂ . By exponential embedding, one
can construct a family of infinitely divisible kernels (see e.g. [40] for these terms)
based on the naive Fisher kernel. Several motivations have been given for the
Fisher kernel (see [46],[45]), none of them are easily accessible or in the scope
of this report. Probably the most direct line goes via an information-theoretic
perspective, given by the authors of [46] in an unpublished workshop talk. This
motivation is picked up and extended in recent, ongoing work by the author (see
[82]). There, a number of ways are suggested of how one might improve upon
the basic Fisher kernel, although these are not yet sufficiently tested empirically.
The Fisher kernel has been applied successfully to discrimination between pro-
tein families ([46], [44]), where the proteins are represented by their amino acid
sequence and families are fitted using hidden Markov models (HMM). It has also
been applied to document retrieval [42]. Attempts to apply the Fisher kernel
to the case X = R

d, where P (x) is fitted by a Gaussian mixture, are reported
to have failed so far (e.g. [90]). Whether this is a problem of the way Fisher
kernels make use of the generative information, or more to do with the nature
of the Fisher kernel being a very crude approximation to an information score,
the latter still being sensible for mixture models, is unclear so far. In [82], sug-
gestions towards more accurate approximations of the underlying (intractable)
information score in case of mixture models will be given.

To conclude, the Fisher kernel covers new ground in that it is a general tech-
nique of using information from generative models within diagnostic classifica-
tion schemes, as opposed to the straightforward scheme dictated by the sampling
paradigm, in which all classes have to be modeled separately (see subsection
1.3.1). While in the case X = R

d, diagnostic methods often outperform genera-
tive methods by far, the latter are still the primary option in cases where X can-
not be feasibly imbedded into an R

d (e.g. X consists of variable-length sequences,
for example in speech recognition or BioInformatics tasks). Support Vector (or
Gaussian process) classification, together with a Fisher kernel, can outperform a
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generative scheme (using comparable modeling efforts) significantly, as has been
demonstrated in [44]. The claim of the authors in [46], namely that the Fisher
kernel consistently outperforms an “equivalent” generative scheme, can only be
proved under certain strong assumptions (not made very clear in the paper)
which often do not hold in practice. The geometry of feature spaces induced by
kernels is imperfectly understood so far, although some work has been done in
this direction (e.g. [12]). Since kernel methods are essentially linear machines in
these feature spaces, understanding properties of this geometry might be valu-
able for encoding available prior knowledge about a task (e.g. [77]). Haussler
[40] gives a comprehensive introduction to the problems of kernel design and
suggests general methods to construct kernels for “unusual” X (e.g. containing
discrete structures) which are different from the Fisher kernel.

We finally remark that the Fisher kernel can be seen as an instance of regular-
ization dependent on the input distribution (see subsection 1.3.3). Details can
be found in [83].

3.6 Restricted Bayes Optimal Classification

Tong and Koller [94] suggest a general framework for combining generative and
diagnostic methods for classification, which differs from Bayesian analysis with
conditional priors (see subsection 1.3.3). The usual framework for regularized
discrimination uses a loss function L(h(x), t) (where h(x) is a hypothesis) and
a regularization functional R(h), both mapping to the positive real axis. R is
used to enforce characteristics of hypotheses that we a-priori believe in, by pe-
nalizing hypotheses violating these characteristics with larger values. According
to Occam’s razor (see section 1), many regularization functionals actually pe-
nalize complicated hypotheses31. The idea is now to select a hypothesis which
minimizes the tradeoff

EPemp
[L(h(x), t)] + λR(h) =

1

n

n
∑

i=1

L(h(xi), ti) + λR(h), (18)

where Pemp(x, t) = n−1
∑

i δ((x, t), (xi, ti)) denotes the empirical distribution
of the data Dl, and λ is some tradeoff parameter, e.g. chosen by cross-validation.
Examples of this framework include Support Vector and MAP Gaussian process
classification. In general, the MAP approximation to Bayesian discrimination
(see subsection 2.4) falls into this class.

For restricted Bayes optimal classification, Tong and Koller use a generative
method to estimate the joint data distribution P (x, t) from the complete ob-
served data Dl, Du. Call the estimate P̂ (x, t). Now, instead of minimizing (18),
they suggest to minimize

E
P̂

[L(h(x), t)] + λR(h). (19)

31However, it seems to be frequently overlooked by some researchers criticizing the “subjec-
tivity” of Bayesian priors, and preferring Occam regularization, that the notion of “complex-
ity” depends very much on the task, i.e. on the prior knowledge we have about it.
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In other words, they replace the empirical loss by the expected loss under the
joint estimate P̂ . They prove some interesting theorems, giving yet another
interpretation to maximum margin hyperplanes, a generalization of which is
Support Vector classification (e.g. [99]). Namely, suppose we estimate P (x|t)
by Parzen Windows with Gaussian kernels, i.e. by the sum of radial Gaussians
centered on the points xi of Dl, with common width σ. For a given σ > 0, let
hσ be the hyperplane in X which attains the lowest error E

P̂ (x,t|σ)[h(x) 6= t].

This amounts to using the zero-one loss L(h(x), t) = I{h(x)6=t}. Then they show
that for σ → 0, hσ converges to the maximum margin hyperplane, i.e. the one
hyperplane which classifies the data Dl correctly and lies most distant from the
convex hulls of positive and negative points (in two-class classification).

We can compare this framework directly with the MAP approximation to
Bayesian analysis with conditional priors. There, we employ the negative log
likelihood loss L(h(x), t) = − logP (t|x, h). Standard supervised MAP classifi-
cation then amounts to minimizing (19) with R(h) = − logP (h), where P (h)
denotes the prior distribution for h. Let us now assume that we model the input
distribution P (x) by P (x|µ), and that we employ conditional priors P (h|µ)
(see subsection 1.3.3). Then, it is easy to show that MAP within this modified
data generation model amounts to minimizing (19) with

R(h) = − log

∫

P (h|µ)P (µ|Du, Xl) dµ. (20)

In others words, while restricted Bayes optimal classification modifies the em-
pirical loss part in (19) based on a generative model fitted to the input data, in
MAP with conditional priors we modify the regularization functional, i.e. the
“effective” prior. Note that if the labeled dataset Dl is small, we would not
expect that changing the loss part in (19) has a major effect on the final choice,
as is somehow reflected in the experimental results reported in [94].

3.7 Transduction

Transductive inference, as opposed to inductive inference, is a principle which
has been introduced into learning theory by Vapnik (see [97],[99]). Suppose we
are given a labeled training set Dl as well as a set of test points Du,32 and we
are required to predict the labels of the test points. The traditional way is to
propose the existence of a latent function, linking training and test points via
marginal dependence, then infer this function (or a posterior distribution) by
induction and the latent labels by deduction (in most cases, by simple evaluation
of the function). However, Vapnik’s principle is that in order to solve a problem,
one should not come up with subproblems which are harder than the whole, and
transduction, i.e. estimating the test labels directly from Dl and Du, is at least

32In the original formulation of transduction, the test points are the only additional points
we have from P ( � ). Later algorithms consider the more realistic case where the test set is
only a subset of Du.
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not harder than induction to infer the latent function. From a philosophical
viewpoint, this principle leading to transductive inference is very appealing.

Vapnik [99] goes on to try to prove PAC bounds specifically tailored for the
transduction case. The technical details are messy, but the broad idea is to view
the whole set of input points (from Dl and Du) as a basic pool from which
n = |Dl| points are drawn at random and without replacement. These points
are labeled then, i.i.d. according to P (t|x). The points remaining in the pool
form Du. One now can employ concentration inequalities on the multinomial
distribution and other common tools from Vapnik-Chervonenkis (VC) theory
to derive large deviation bounds between the empirical error on Dl and the
empirical error on Du. We find it rather difficult to compare these bounds with
the tightest VC “induction” bounds known so far.

From these transduction bounds, Vapnik derives an algorithmic scheme for
transduction in an attempt to transfer the notion of large margin discrimination
from supervised learning to the transduction case. In case of binary classification
(T = {−1, +1}) with linear discriminants (w, b), ‖w‖ = 1, the scheme works as
follows. Let Tu = {tn+1, . . . , tn+m} denote the latent labels on the points in Du.
For a discriminant (w, b), we define the artificial empirical margin (ae-margin)
as

ρart(w, b) = max
Tu

min
i=1,...,n+m

ti(w
T xi + b). (21)

Let us suppose, for simplicity, that there exists a discriminant for which the
ae-margin is positive, a necessary condition for this is that Dl is linearly separa-
ble. In words, the ae-margin is the largest empirical margin the discriminant can
attain on any completion of the data Dl, Du. It is not larger than the empirical
margin (e-margin) on Dl, which is defined ρ(w, b) = mini=1,...,n ti(w

T xi + b).
Vapnik’s transduction scheme in this case is to choose a discriminant (w, b)
which maximizes the ae-margin. This should be compared to Vapnik’s induction
scheme, in which we choose (w, b) to maximize the e-margin. While the e-margin
has an intuitive interpretation as sort of an estimator of the (true) margin (be-
ing Et,x[ty(x)], where y(x) is the discriminant, in our case y(x) = wT x + b),
with the latter obviously closely related to the generalization error, we do not
know of such a link between the ae-margin and the generalization error.

Bennett et al [7] suggest a variant of Vapnik’s scheme for the case of linear
discriminants (i.e. SVM). They focus on a variant of SVM which employs
the 1-norm ‖w‖1 =

∑

j |wj | for penalization (instead of the Euclidean norm
‖w‖2 = ‖w‖). On purely supervised tasks, this variant has been found to per-
form similarly to Vapnik’s original linear SVM. In this setting, the optimization
over the discriminants and the latent labels can be computed by mixed-integer
programming. This is interesting, since a straightforward implementation of
Vapnik’s transduction scheme is exponential in m = |Du|, and we know of no
efficient realization. However, even the algorithm based on mixed-integer pro-
gramming does not scale well with m, for example on several of the datasets
tested in [7], subsamples of size 50 were used instead of the full Du. Experiments
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presented in [7] show significant improvements over using induction on Dl only,
on about a third of the tasks tested. However, the experimental design is some-
what unusual, for example they choose the usually very important scaling (or
variance) parameter C using a heuristic which depends on n + m only, instead
of adapting it to the data. In [24], the authors suggest a more efficient variant,
using a nonconvex quadratic problem, local solutions of which can be found by
block-coordinate descent algorithms. The most substantial drawback is, how-
ever, that the scheme does not seem to be “kernelizable”, i.e. the algorithm
cannot be used together with a feature space mapping. Joachims [49] presents
a greedy approximative implementation of Vapnik’s transduction scheme, again
for the case of linear discriminants (or SVM). The algorithm is not guaranteed
(or expected) to find the true optimum and can get stuck in poor local op-
tima. However, it runs much faster than the algorithm of [7], especially if Du is
large, furthermore it can be used with nonlinear kernels. The author presents
experiments on text classification tasks.

Jaakkola et al [45],[43] suggest an interesting transduction algorithm within
their minimum relative entropy (MRE) discrimination framework. Several au-
thors have tried to relate discriminative classifiers like the SVM to diagnostic
Bayesian prediction with Gaussian processes. This is problematic because the
loss function used in Support Vector classification (SVC) is not a proper noise
model, it cannot be normalized (e.g. [81]). One way around this problem is to
regard SVC as an approximation to Gaussian process classification with an un-
usual noise model. Another, probably more satisfying way is to drop the idea
that SVC is doing Bayesian inference at all, then try to find a paradigm (which
is not the Bayesian one) of which SVC is a natural member. The usual derivation
of SVC via margin constraints points towards the maximum entropy (ME) prin-
ciple (e.g. [20]) which has long been used in parallel to the Bayesian paradigm
to induce distributions which are in some way constrained on observed data.
If we combine the ME principle, originating from Statistical Physics, with the
Bayesian idea of a prior, we arrive at the minimum relative entropy (MRE)
principle (e.g. [20]). The authors of [45] apply MRE to large margin discrimi-
nation and show how SVC arises as a special case. The advantages of this view
include that within MRE, there are (as within the Bayesian paradigm) natu-
ral ways to handle missing data. Transduction within MRE discrimination is
straightforward, exploiting the fact that latent labels do not marginalize out
contrary to the diagnostic Bayesian case with regularization independent of the
input distribution (see subsection 2.4). In other words, the symmetry w.r.t. the
latent labels is broken by the drive towards large margin even on points from
Du. MRE transduction resembles diagnostic EM, as discussed in subsection 2.4,
and comes with similar convergence guarantees to local optima. Preliminary
experiments in [45] on a task where splice sites during DNA transcription have
to be predicted, show promising results. However, their algorithm is a trans-
duction algorithm aiming to maximize an artificial empirical margin, therefore
builds on the same theoretical foundation as Vapnik’s scheme discussed above.
It will be interesting to compare their algorithm to diagnostic EM on Bayesian
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settings employing priors on the latent functions which are conditioned on the
input distribution. The MRE formulation makes it possible to consider hybrids
(as has been remarked in [45]), in which the unlabeled dataset Du is split into
two subsets, one of them used with latent labels in the transduction algorithm,
the other one to narrow down the prior on latent functions. We also refer to
Jebara and Jaakkola [48] and the Conditional EM algorithm [47] for recent work
in this exciting line of research.

3.7.1 A subjective critique of SLT transductive inference

A discussion of the theory behind transduction in statistical learning theory
(SLT) (see [99]) is out of the scope of this paper. To be honest, we feel some-
what confused by Vapnik’s arguments, and although much of this confusion is
probably due to our own ignorance of computational or statistical learning the-
ory, it seems to be shared (to a certain degree) by many other people working
in the field of the labeled-unlabeled problem. Therefore, if in the following we
put forward our uneasiness about some aspects of SLT transduction, we might
be wrong or unfair on certain points, and we would be happy to get into dis-
cussions about such. On the other hand, we are quite certain about one thing:
if realizable SLT transduction offers significant advantages over SLT induction
(within the PAC framework used there, see subsection 1.3.3), and if this can be
proven theoretically, these advantages and their foundations have to be made
much more clear and transparent in publications, otherwise transduction will
probably remain academic and be regarded with doubts by the majority of
researchers.

First of all, diagnostic prediction on finite data needs regularization, and the
favourite way to do this is to impose the existence of a latent function, then to
propose a model family (or, in SLT terms, a hypothesis class) for this function
as well as a prior distribution which penalizes complex functions by giving them
small volume (see subsection 1.3.2). In fact, when dealing with the problem of
how to formulize the connection between training and test points, we do not see
any way to get around the assumption of a latent function and the modeling
thereof based on prior knowledge, also SLT transduction needs to employ this
step. Now given these assumptions, the Bayesian way of inferring information
about the latent function “inductively” by computing the posterior process, then
predicting the test labels “deductively” by computing the predictive distribu-
tion, is exactly the same as what might be called “Bayesian transduction”. It is
just a convenient way to write the expectation over the predictive distribution.
Any information about the input distribution P (x), not only the test points,
can help in diagnostic Bayesian schemes if the latent function and the input
distribution (seen as random variables) are not a-priori independent under the
generative model, as has been discussed in 1.3.3. This, however, has nothing to
do with the assumption that “Bayesian transduction” is easier than the way
over induction.
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SLT transduction comes from a frequentist viewpoint where induction means
picking one “best” function, and deduction means evaluating it at test points33.
It is possible that in this context, transduction is easier than the way over
induction and can consistently outperform the latter, however this might simply
be due to the fact that the latter is invalid (or at least inaccurate) as a way of
inference in the first place.

Vapnik tries to motivate SLT transduction by presenting bounds specifically
tailored for the transduction setting. While reading the formidable book [98],
we have been fascinated by the way Vapnik presents his results for inductive in-
ference. He starts from philosophical principles about the nature of learning and
induction, derives PAC bounds and complexity measures from these principles
using sophisticated statistical techniques and then infers algorithmic schemes
guided by the bounds. However, this way of presentation works less well in
the transduction case. Although it is difficult to compare Vapnik’s transduc-
tion bounds to the best known VC “induction” bounds34, we do not see why
the former should be significantly tighter than the latter, especially in the case
m = |Du| � n which is most important in practice. In fact, the argument that
transduction is easier than the way via induction, gets weak in the case m� n,
and the distinction between transduction and induction vanishes for m → ∞.
Also, using information about the input distribution is expected to be most ef-
fective if the labeled data is sparse. In this case, the transduction as well as the
induction bounds are usually very far from being tight, sometimes even trivial.

Some authors (e.g. [105]) have criticized that while there is a connection between
the true margin (as defined above in this subsection) and the generalization error
of a discriminant, and VC theory on supervised settings uses this link together
with the fact that the e-margin is an estimator of the true margin, there is no
such motivation for the ae-margin. Especially in the case m � n we run the
risk that a discriminant which maximizes the ae-margin has a much smaller
e-margin (on Dl) than other choices. Even worse, it is likely for large m that
no discriminant achieves positive ae-margin, even if Dl is separable by some
function in the hypothesis class, and in this case Vapnik suggests using a “soft
ae-margin” variant, trading margin violations versus margin size. Although it is
evident that a tradeoff between “believing the unlabeled data” and “believing
the labeled data” (the observed labels are noisy quantities) has to be faced
in order to solve the labeled-unlabeled problem, we are not convinced by the
publications presently known to us that this tradeoff can reliably be based on a

33It is interesting to note that one of the architectures most frequently discussed in SLT
publications, namely the Support Vector machine (SVM), can be understood as special case
of minimum relative entropy (MRE) discrimination (see discussion above in this subsection),
within which induction means computing a MRE distribution over functions conditioned on
the data, somewhat parallel to the Bayesian posterior distribution, and deduction is equivalent
to Bayesian prediction, but with the posterior replaced by the MRE distribution.

34To us, non-experts however, these different bounds employ quite similar techniques. For
example, there exists an induction bound (see [26]) which proceeds via a double sample, such
that the original and the “ghost” sample have very different sizes. This seems to be very close
to the situation from where a transduction bound would start.
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soft ae-margin. Further research in this direction might, however, put the (soft)
ae-margin on a basis as solid as the (soft) e-margin in supervised learning.

Finally, we note that Vapnik’s transduction scheme seems to be quite similar in
spirit to a class of estimation methods discussed e.g. in [93] (end of section 4.3.4).
In these so-called clustering methods, the labels of the points in Du are treated as
parameters rather than latent variables. The method then consists of maximizing
the likelihood of Dl, Du w.r.t. model parameters and labels on Du. It is quite
obvious that such a procedure will exhibit bias, and indeed this problem has
been pointed out by several authors (see citations in [93]), in some cases this ML
estimator is not even asymptotically consistent. It has been reported that the
method behaves better in the context of robust estimators, so one could speculate
that it might be more suitable for large-margin discrimination. However, citing
from [93], “a basic flaw in this clustering method for parameter estimation is
the treatment of the [. . . ] [labels on Du] as if they were parameters, rather than
treating them as missing random variables”. In this sense, the approach of [45]
might exhibit less bias than Vapnik’s scheme in some situations, although this
issue clearly needs to be looked after in greater detail.

4 Related problems

In this section, we briefly discuss some problems related to the labeled-unlabeled
task and mention some work which has been done on these. This review is less
detailed than the one presented in section 3 and is by no means exhaustive. The
reason for discussing work on related problems is of course that we feel that
many ideas from this work might be successfully applied in algorithms for the
labeled-unlabeled problem.

The most trivially related problems are supervised and unsupervised learning.
We have already discussed these large classes in subsection 1.1. A very prominent
project for Bayesian unsupervised learning is AutoClass (see [38],[17]), it might
be used for a straightforward implementation of baseline methods discussed in
subsection 2.1. We found the discussion in [86] of quantization (probably the
most important special case of unsupervised learning) in the context of source
compression and rate distortion theory very helpful.

4.1 Active learning

In (pool-based) active learning of classification, one is given a pool Di of input
points sampled i.i.d. from P (x). One also has access to an oracle, producing
t ∼ P (t|x) upon the input x, and the labels produced by different calls to
the oracle are conditionally independent. The goal is the same as in supervised
classification (see subsection 1.1). Of course, any algorithm for the labeled-
unlabeled problem can be used for active learning: simply pick n points from
Di at random, label them using the oracle to form Dl and collect the remaining



4 RELATED PROBLEMS 49

points in Di to form Du. However, the declared goal of active learning is to
outperform such schemes. We have the freedom to call the oracle selectively on
points from Di, therefore by focusing early on the “most informative” points we
might narrow down our belief in the (latent) relationship between x and t very
fast, i.e. by using only a small number of calls to the oracle. We remark that
some authors have considered non-pool-based active learning, in which one does
not have access to a sample from P (x). We focus on pool-based active learning
(also called query filtering) for several reasons. Non-pool-based active learning
has no obvious connections to the labeled-unlabeled problem. Within the PAC
framework, it has been shown that the ability to actively query for labels cannot
be of any significant advantage if one does not have access to a sample from
P (x). Furthermore, in practice, it might be unexpectedly difficult to produce
a sample from P (t|x) if P (x) is very small35. All these points are discussed in
detail in [30], section 1.

MacKay [55] discusses Bayesian active learning for multi-layer perceptrons.
Cohn et al [18] introduce the general problem, then focus on joint density mod-
els of the kind discussed in [35] (see also [38] and subsection 2.2). A very general
query filtering algorithm is query by committee (QBC) (see [84], also [30]), which
has already been mentioned in subsection 3.2. QBC is sequential in nature, i.e.
the pool has the character of a stream. For each incoming x, one has to decide
either to label it and place it in Dl, or to discard it. In the latter case, x may not
be used again at a later time. Similar to most sequential learning (or filtering)
algorithms, QBC maintains and updates a belief in (i.e. a distribution over) the
latent function conditioned on the data seen so far, this belief can be seen as
approximation to the optimal belief, namely the Bayesian posterior distribution.
QBC judges “informativeness” of an example x by the (expected) amount of
variance which would be removed in the belief if we conditioned it on x and
its label. This can be estimated by sampling a committee of discriminants from
the current belief, evaluating the predictions on x for all committee members
and compute some measure of disagreement between these predictions. For ex-
ample, if the committee consists of only two discriminants, we could employ a
symmetrized variant of the relative entropy between the predictive distributions
of the discriminants. It is then a matter of algorithmic design taste to derive a
criterion for “use or discard”, based on this measure, e.g. a threshold criterion
with the threshold being annealed over time. The algorithm is stopped whenever
it discards a certain (large) number of points in a row (under a small threshold).

We can speculate about how to use active learning ideas in the labeled-unlabeled
problem context. For example, in subsection 2.1, we suggested starting with an
unsupervised learning technique, then somehow “inject” the labeled points. It
might be advantageous to inject the points in Dl in an ordering suggested by
active learning “informativeness” criteria.

35Suppose you use a human expert to label images supposed to represent hand-written
digits. For an � with very small P ( � ), the true P (t| � ) might have rather low entropy (w.r.t.
t), but the bitmap � is most probably a mess of pixels which the expert will not be able to
associate with any of the digits.
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4.2 Coaching. Learning how to learn

The coaching problem is analyzed in [89]. The goal is to infer the probabilistic
relationship x 7→ t, for example to estimate the regression Et∼P (t|x)[t]. Suppose
we have a third variable z , and the three variables are distributed according
to the unknown law P (x, t, z). We are given a complete i.i.d. sample Dl from
this law, but since examples of z are assumed to be difficult or expensive to
collect, we are forced to predict t from x alone in the future. A trivial approach
towards coaching would be to discard the examples from z entirely and to
employ a standard supervised algorithm. The authors of [89] ask if and how one
can do better, using the knowledge contained in the z examples. They call z

a coaching variable, by its potential ability to coach the estimation of x 7→ t.
First of all, it is clear that the z sample cannot help if t and z are conditionally
independent given x. Otherwise, z contains information about t given x, and
the nature of this observation can be learned from the common sample.

Tibshirani and Hinton propose two different coaching schemes. Mixture coaching
builds upon the representation

P (t|x) =

∫

P (t|x, z)P (z |x) dz . (22)

Now, if t and z are dependent given x, P (t|x, z) will be quite different for
different values of z . Therefore it seems reasonable to try to learn a partitioning
of z-space and to fit experts locally to the regression on each partition. We
furthermore need to learn the conditional distributions over the z partition
given x. The algorithm suggested by the authors is essentially a mixture of
experts (see [51]) where the choice of expert is observed on the training set. The
other scheme, response coaching, builds on P (t|x) =

∫

P (t, z |x) dz . The idea is
to train a model to jointly predict t and z given x. A convient way to achieve this
is to use a class of factorized models P (t, z |x, θ) = P (t|x, θ0, θ1)P (z |x, θ0, θ2).
The conditional dependence of t and z is represented by the shared parameter
vector θ0. An example would be to use regression trees for t and z which share
the same partition θ0 of x-space. The art is to choose the common and separate
parameters and the parameter priors (i.e. the regularization) guided by available
prior knowledge or assumptions.

Response coaching can be seen as a special case of the problem of learning how
to learn or multitask learning (e.g. [74],[4], [14],[88],[62]). The relationship x 7→ z

is a second task which is learned together with the primary one in an attempt
to employ information flow through latent, shared variables. A very general
approach to this problem is suggested in [67] (the author refers to the problem
as “family discovery”). Here, the model family {P (x|θ) |θ ∈ Θ}, Θ ⊂ R

p is
assumed to be a smooth, low-dimensional manifold embedded in R

p (this view on
model families comes from information geometry, see e.g. [1],[64]). The task is to
learn the prior P (θ) which enforces this assumption, from multiple tasks. In this
work, the manifold is modeled by connecting locally linear patches using kernel
smoothing. Alternatively, the generative topographic mapping (GTM) (see [9],
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also subsection 2.1), as a probabilistic generative modeling approach to manifold
learning, could be considered in this context. Another promising approach, as
suggested in [62], is to use the multiple task data to learn a covariance kernel
for Gaussian process (or Support Vector) classification (see subsection 3.5).

The relation between the labeled-unlabeled problem and the coaching or learn-
ing how to learn problem is not a strong one. In multitask learning, of which
coaching is a special case, we try to grasp information which is shared, on a
low level, between the tasks, this can be seen as prior learning in a hierarchical
Bayesian setting (e.g. [4],[62]). We have already pointed out that we think that
prior knowledge, whether available through human insight or learned from other
sources, is crucial for solutions to the labeled-unlabeled problem, and learning
priors by combining related tasks might be useful in this context. We come back
to learning how to learn in subsection 4.3, when we relate it to another method
for prior learning.

4.3 Transfer of knowledge learned from a related task

Learning how to learn (as discussed in subsection 4.2) is a (largely) data-driven
way to learn prior distributions for a task. The assumption is that related tasks
share a common (low-level) basis. Therefore, given related tasks, among them
the one we are really interested in, we might gain information about this common
basis by learning to solve them all together, using models which share parame-
ters at a low level, together with a well-chosen regularization which forces the
learning algorithm to make use of these shared parameters effectively. We can
then employ this information as prior knowledge for the primary task.

Another approach to prior learning employs a lot more human insight into
the nature of the primary task. This insight is used to choose a convenient
representation to encode the prior knowledge, and to select related tasks which
we believe share much in their nature with the primary task, so that the same
representation of prior knowledge applies. Given this structure, it is usually
easy to learn the free parameters in the representation from related tasks and
then simply plug them into an architecture for the primary one. A concrete
example for a handwritten signs recognition task is given in [61]. There, the
generative assumption is that an observation is created by mapping a (latent)
reference image by a (latent) transformation, and each class has a small number
of reference images. Given a large number of observations from the same class,
it is possible to learn good reference images in a MAP fashion, the authors use
a simple hillclimbing approach for multiple alignment they call congealing. It is
also possible to learn a (posterior) distribution over transformations, conditioned
on the class, by applying techniques like kernel smoothing. The authors use this
distribution as prior over transformations when dealing with another class for
which only very few examples are available. For example, if only one example
of the new class is available, they take this example as a reference image for
the class, then create an artificial dataset by sampling transformations from the
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(learned) prior and applying them to the reference image.

A motivation for learning priors in the context of the labeled-unlabeled problem
has already been given in subsection 4.2. For the methods discussed in the
present subsection, we need a large labeled dataset for a related task. The reason
for this is that our goal is to learn priors which are very strong in the following
sense. In the example above, even transformations which deform the image
significantly have a chance to get a high a-priori weight, if they are supported
by the data. Learning a good representation of a class from a single example is
possible only if such strong invariance knowledge is available.

5 Caveats and tradeoffs

In this section we discuss some issues we think are important to be addressed
when dealing with the labeled-unlabeled problem. Most of them have popped
up frequently in the text above, and we use this section to collect and relate
them. They include some more or less obvious caveats as well as tradeoffs that
have to be faced. We think that much more insight into these issues need to
be gained, probably on model tasks. Such insight may have a big payoff for
algorithms dealing with the problem.

5.1 Labels as missing data

Formally, we can treat labels on points from Du in the labeled-unlabeled problem
as missing data. If we compare these to other kinds of missing data, such as
missing or uncertain attribute values, we find very important differences. First
of all, while missing attribute values are more or less a nuisance which should
be marginalized out because of lack of information in the data, labels are the
essential target. Our whole job is to predict the labels, while nuisance attributes
are never the target for prediction. Second, if we talk about a missing attribute,
we usually mean an attribute which is missing or uncertain only in a rather
small fraction of the examples in the dataset. If an attribute is missing in the
large majority of examples, one should really consider not to include it at all in
the representation of examples, thereby making the model building task easier
and the learning process easier to control (see discussion of IMAX in subsection
3.3). However, in interesting instances of the labeled-unlabeled problem we have
that a lot more labels are missing than given.

The special character of a label as latent variable raises the question of how
to value the information provided by labels, as compared to the information
provided by an input point. Any sensible valuation will of course depend on the
current belief in the unknown relationship P (x, t). For example, Castelli and
Cover ([15], see also subsection 3.1) show that if we know all the class distribu-
tions P (x|t), labels have “exponential value” (w.r.t. reducing the generalization
error towards the Bayes error), but such a concrete belief can usually not be
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gained in practice. Suppose our goal would be to learn a (soft) partitioning of
X (into a reasonably small number of clusters) such that with high probability
none of the clusters is cut by a class boundary. Clearly, this is only slightly
easier than solving the labeled-unlabeled problem. We could apply an unsuper-
vised technique to this problem, training on Du only, and one could argue that
in this context the role of labels (i.e. of Dl) is to point out possible flaws in the
present (soft) partitioning. In this context, a label can only be valued in con-
junction with other labels, and if unlabeled and labeled data suggest different
partitionings in a local area, we have to find a way to conciliate between them.

The question about how to value labeled data against (abundant) unlabeled data
is far from being well understood. For example, we could derive a smoothed-
out estimate of P (t|x) from Dl alone which would at least capture some of
the label information, then treat this estimate (or belief) as one basic “unit”
of information to be injected into unsupervised clustering. On the other hand,
we could value each element from Dl on its own, conditioned on our belief
about P (x, t) gained so far. The latter approach is clearly much more flexible,
but also more “slippery”. If we associate a high value with elements from Dl

which change our belief in the relationship most drastically, we run the risk of
not being robust to outliers and classification noise. If we prefer such elements
from Dl which are most compatible with our belief so far, we may not be able to
correct major inaccuracies in our belief, simply because we do not trust the label
information which can help us to do so. This is a tradeoff between robustness
and information gain.

We face a similar tradeoff if we start from training on the labeled data, then
inject points from Du together with pseudo-labels. If we inject a point whose
label is confidently predicted using the current belief, the injection does not
provide much new information and will therefore not lead to more than a minor
change in the belief. The operation may be considered robust. On the other hand,
injecting a point whose label is quite uncertain (but not completely random)
given the current belief, leads to a phase in the learning process in which two (or
more) quite different alternatives are tested against each other, this phase has
the potential to change the belief significantly, but the risk of a wrong update is
higher. However, the operation might result in a much higher information gain.

5.2 Diagnostic versus generative methods

Suppose we use model classes {P (x|t, θ)} which are faithful for the problem
at hand, i.e. the class-conditional distributions are indeed members of these
classes, with latent θ . Furthermore assume that in the limit of |Du| = m→∞,
the class-conditional distributions can be identified using Du only, this is the
assumption made by Castelli and Cover [15]. In this case, we can always employ
a generative architecture using the faithful model classes, together with standard
EM or one of its variants (see subsection 2.2.1) to circumvent poor local maxima
of the likelihood. However, this approach can exhibit severe drawbacks when
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applied to non-toy problems. To be faithful, the model classes together with the
regularization (given by P (θ)) would have to be very broad, and the posterior
belief would narrow down sufficiently only for very large m. We might not have
a large enough Du available, and even if unlabeled data is abundant, the cost
of dealing with large Du and searching through broad model classes (for the
MAP solution) might be much higher than we can tolerate. In order to be able
to make the method work efficiently, we might have to narrow down the model
classes and/or tighten the regularization, in which case we risk to run into severe
robustness problems. Namely, if the true relation P (x, t) is far from what we a-
priori believe to be possible, our method might fit a simple structure supported
as well by the priors as by the abundant unlabeled data, which however is likely
to be quite different from P (x, t).

Diagnostic methods model P (t|x) directly, without wasting resources on model-
ing the class distributions. While generative methods also fit an “induced” model
to P (t|x), derived from the class models via Bayes’ formula, this model comes
with heavy requirements towards resources like training data and computing
time, and often many of these resources are wasted on training aspects of the
class models which do not affect the “induced” model significantly. However, di-
agnostic methods neglect information about P (x) and focus on maximizing the
conditional likelihood of the (labeled) data, which might be harmful if Dl is small.
This distinction between generative and diagnostic methods can be made clear
by comparing the diagnostic mixture-of-experts architecture (see [51]) against an
extension of the generative method proposed in [60], as discussed in subsection
2.3. We make use of the terminology defined there. Both methods make use of
the divide-and-conquer principle, in that they construct a soft partitioning of
the input space X and fit experts which estimate P (t|x) locally. The diagnostic
architecture achieves a soft partitioning of X using a gating network36 which is a
diagnostic model of P (k|x), and the whole architecture (i.e. experts and gating
network) is trained to maximize the conditional likelihood of the data. There-
fore, the architecture will divide up its resources (here: the “simple” experts,
being logistic regression models for P (t|x)) to achieve a good discrimination of
the data. For example, we would expect the gating network to “position” the
experts along the true decision boundaries between classes, so that if the experts
locally fit the boundary well, the total mixture gives a decent estimate of P (t|x)
globally. On the other hand, if m � n, the generative architecture partitions
X largely by fitting a mixture to P (x). If the component models P (x|k, θ) are
unimodal (e.g. Gaussian), most of them will fit clusters in Du. This means that
the architecture tends to position the experts in the middle of such clusters,
generally far from the decision boundaries between classes. It can be argued
that this positioning is not a very good divide-and-conquer strategy towards
improved discrimination.

By using regularization depending on the input distribution (see subsection
1.3.3), we can in principle make use of unlabeled data in diagnostic architec-

36Or a hierarchy of such, in case of the more powerful hierarchical mixture-of-experts, see
[51].
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tures. This invariably requires that we model the input distribution P (x), there-
fore apart from the difficult task to construct sensible conditional priors for θ

(notation from subsection 1.3.3) based on prior knowledge, we also face a trade-
off of how to distribute resources between training the diagnostic models and
the models for P (x). Furthermore, when constructing the conditional priors, we
can enforce prior assumptions to various degrees of strength, and this induces a
weighting of information from Dl against such from Du in the final prediction.
Again, we face a tradeoff between robustness (weak a-priori influence of P (x)
on the belief in θ) and information gain from Du (strong a-priori influence of
P (x) on the belief in θ).

5.3 The sampling assumption

The generative assumption for Dl, Du is detailed in subsection 1.2. It is equiv-
alent to the one used in the context of transduction (see subsection 3.7). First
sample n + m points i.i.d. from P (x). Then, pick n points from this pool at
random and without replacement, label these points and put them in Dl. The
remaining pool becomes Du.

While this assumption is fulfilled or at least reasonable for many real-world
tasks, we note that it might be violated in certain settings. For example, in situ-
ations where labeled data is sparse because the process of labeling input points
is very expensive, it is often not reasonable to assume that the input points to be
labeled in the end (to form Dl) are picked at random from a large pool. Often,
they are selected to be somewhat representative, where “representativeness” is
judged using fluffily defined measures based on insight into the problem.

In some cases it may be possible to incorporate the selection process into the
generative model. In most situations, however, we will stick with the standard
i.i.d. generative assumption even at the risk of ignoring a bias in the sample Dl.
We can try to use valuation rules (see subsection 5.1) in order to alleviate this
bias. For example, if we knew characteristics of the selection process for Dl, we
could apply them to resample Du, i.e. inject more representative points earlier.

6 Conclusions

With respect to some key aspects, the labeled-unlabeled problem lies in the
middle between well-founded areas. The problem itself is situated somewhere
between unsupervised and supervised learning. It is our opinion that prior knowl-
edge is crucial for a labeled-unlabeled method, but the roles of prior knowledge in
unsupervised and supervised learning are very different, as discussed in subsec-
tion 1.2. Supervised learning can be quite robust against false or inaccurate prior
knowledge, whereas solutions delivered by unsupervised methods very much de-
pend on the encoded prior knowledge. In the labeled-unlabeled problem, we
expect robustness to a certain degree, although the sparseness of Dl and the
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abundance of unlabeled data makes usage of unsupervised techniques almost
obligatory.

There are two basic paradigms for supervised learning, the diagnostic and the
sampling one (see subsection 1.3). The significances of these paradigms for the
labeled-unlabeled problem have been discussed in subsection 5.2. In order to
make use of unlabeled data in diagnostic methods, input-dependent regulariza-
tion and therefore, to a certain degree, modeling of (aspects of) the input distri-
bution is necessary (see subsection 1.3.3). Again, we think it is most promising
to combine methods from the diagnostic and the sampling paradigm, i.e. to em-
ploy both diagnostic and generative model families in one architecture, in order
to attack the labeled-unlabeled problem.

We think that the role of the class label as latent variable is a very special
and intricate one (see subsection 5.1), and therefore in general we cannot treat
the labeled-unlabeled problem in the same way as other common problems of
missing or uncertain data. We believe that prior knowledge is of central im-
portance, although the role it plays for a method might strongly vary between
solutions (and tasks). Although powerful ways to encode prior knowledge have
been proposed in the context of unsupervised learning, genuinely new “inter-
faces” towards supervised methods have to be found, either to “inject” label
information into an unsupervised setting, or to adapt the distance of a super-
vised method using information about the input distribution, or to do some-
thing “in between”. Also, methods of learning priors (see subsections 4.2 and
4.3) and ideas of using redundant representations of examples, such that the
kind of redundancy is strongly linked to class identity (see subsection 3.3), may
be applicable successfully.
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