UNIVERSITY OF KAISERSLAUTERN

Department of Mathematics

T2

ct =(0,1,-2)
2 =(0,-2,1)

Multicriteria Optimization

Dr. Matthias Ehrgott






Preface

Life is about decisions. Decisions, no matter if taken by a group or an individual, involve several
conflicting objectives. The observation that real world problems have to be solved optimally
according to criteria, which prohibit an ,;ideal“ solution — optimal for each decisionmaker under
each of the criteria considered —, has led to the development of multicriteria optimization.
From its first roots, which where laid by Pareto at the end of the 19th century the discilpine
has prospered and grown, especially during the last three decades. Today, many decision
support systems incorporate methods to deal with conflicting objectives. The foundation for
such systems is a mathematical theory of optimaztion under multiple objectives.

With this manuscript, which is based on lectures I taught in the winter semester 1998/99 at the
University of Kaiserslautern, I intend to give an introduction to and overview of this fascinating
field of mathematics. I tried to present theoretical questions such as existence of solutions as
well as methodological issues and hope the reader finds the balance not too heavily on one side.
The interested reader should be able to find classical results as well as up to date research. The
text is accompanied by exercises, which hopefully help to deepen students’ understanding of
the topic.

I am indebted to the many researchers in the field, on whose work the lectures and manuscripts
are based. Also, I would like to thank the students who followed my class and to my colleagues
of the working group. They contributed with their questions and comments. Last but not
least my gratitude goes to Stefan Zimmermann, whose diligence and aptitude in preparing the

manuscript was enormous.

Matthias Ehrgott
April 1999
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Chapter 1

Introduction

1.1 Optimization with Multiple Criteria

An optimization problem is to choose among a set of ,alternatives“ an ,,optimal one“. Opti-

mality refers to certain criteria, according to which the quality of the alternatives is measured.

Example 1.1. To decide which new car to buy you consider a VW Golf, an Opel Astra,

a Ford Mondeo and a Toyota Avensis. The decision will be made according to price (—

cheap), engine efficiency (i.e. oo — low) and horsepower (— high). Here you have 4
alternatives and 3 criteria.
Alternatives
VW Opel Ford Toyota
Price (TDM) 31 29 30 27
Criteria 15— 72 70 75 7.8
horsepower (HP) 90 75 80 75

Which is the best alternative ?

Note that with each one of the 3 criteria a decision is easy.

Example 1.2. For the construction of a water dam an electrical power plant is interested in
maximizing storage capacity while at the same time minimizing water loss due to evaporation
and construction cost. The decision has to take into account man months devoted to the
construction, the mean radius of the lake, and respect certain constraints such as minimal
strength of the dam. Here, the set of alternatives (possible dams) is a whole continuum
and the criteria are functions of the decision variables to be maximized or minimized. The

criteria are conflicting: the minima of each criterion are not optimal for others.

Optimization problems with a countable number of alternatives are called discrete, others

continuous.



Example 1.3. Two criteria and one decision variable

fil) =vVz+1,  fole) =2 -4z +5 (1.1)
. Iwnzl{)l “(fi(2), f2(=)) (1.2)
fi, fo
7_

Figure 1.1: Objective Functions of Example 1.3

What are the ,minima* ?
(Again for each function individually the problem is easy: z; = 0 for f; and zo = 2 for f,

are the minimizers.)

Pareto, 1906:

» We will say that the members of a collectivity enjoy maximum ophelimity in a certain position
when it is impossible to find a way of moving from that position very slightly in such
a manner that the ophelimity enjoyed by each of the individuals of that collectivity
increases or decreases. That is to say, any small displacement in departing from that
position necessarily has the effect of increasing the ophelimity which certain individuals enjoy,

anf decreasing that which others enjoy, of being agreeable to some and disagreeable to others.“

Consequence: In Example 1.1 all alternatives enjoy ,,maximum ophelimity“, in Example 1.3
all points in [0, 2] (in [0, 2] one of the functions is increasing, the other decreasing). These are

called today Pareto optimal solutions of a multiple criteria optimization problem.

1.2 Decision Spaces and Objective (Criterion) Space

Let us consider Example 1.1 again with price and efficiency only. We can illustrate this in a

two-dimensional coordinate system:
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Figure 1.2: Criterion Space in Example 1.1

Here, it is easy to see that Opel and Toyota are Pareto optimal choices. (Both Ford and VW

are more expensive and less efficient than Opel.)

We call X = {VW, Opel, Ford, Toyota} the feasible set (set of alternatives) of the optimiza-
tion problem. Denote the price by fi, the efficiency by f» then f; : X — R are criteria or

objective functions and the optimization problem is

»min  (fi(2), f2()) - (1.3)

EAS

The image of X under f = (fi, f2) is f(X).

For Example 1.3 we have

X={zeR:z>0} as feasible set (1.4)
fi(z) = V1 +z, fo(z) = 2% —4z +5  as objective functions. (1.5)

Sowecanusexz = (f1)? —1toget fo=((f1)? =12 +4—-4-(f1)2+5=(f1)*—6-(f1)2 + 10
to obtain a picture similar to that for Example 1.1:
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Figure 1.3: Criterion Space in Example 1.3



Pareto optimal solutions [0, 2] correspond to values of f; in [1,+/3].
In this problem the feasible set X C R, the decision space, and f(X) C R? the objective
(criterion) space. Our first drawing for Example 1.3 is in decision space, the second in criterion

space.

The image of Pareto optimal points:

fa(z)

r - T T T —
-1.0 —0.5 0.5 1.0 1.5’1\2.0 3.0 35 40 45 fi(z)

Figure 1.4: Efficient Points in Example 1.3
There is no other point y € f(X) such that y! < fi(z) and y? < fa(x) for any z € [0,2]:
(f1(z), f2(z)) is called an efficient point.

The set of all efficient points is the image of the set of Pareto optimal points under the objective

function.

The objective space is very useful in multicriteria optimization. However, figures like above are

usually not available.

In the examples we have many Pareto optimal solutions. What is their use for finding an

»optimal decision“ ?

1.3 Notions of Optimality

A multicriteria optimization problem can be written as

9 min “ (fl(x)a B 7fQ(x))
subject to x € X

(1.6)

But what does ,minimize“ really mean ?

We have discovered Pareto optimality before. Any z which is not Pareto optimal cannot
represent an optimal decision, because 3T € X f;(Z) < fi(z) V i and strict inequality at

least once.

In some cases there will be a ranking among the objectives. E.g. for Example 1.1, the price
might be more important than engine efficiency, this more than horsepower. Then the criterion

vectors (f1(x), f2(z), f3(x)) are compared lexicographically and one would want to solve

lexmin(f(x)) (1.7)

zeX

Result: 2* = Toyota is the unique optimal solution



When in Example 1.3 the objectives measure some negative impacts of a decision (to be mini-

mized) one might not want to accept a high value of one for a low one of the other.

It is then more useful to minimize the worst of the two, e.g. in Example 1.3

min max fi(z) (1.8)

fo(z) =2® — 4z 45

Result: z* =~ 1.285.

T T 1T T T T T T T T T T T T
14\234567‘”

*

xr

Figure 1.5: Min Max Solution for Example 1.3

The meaning of ,min“ is defined, if we fix an ordering on the objective space. The different

possibilities arise from the fact that for n > 2 there is no relation satisfying the axioms of order

on R™. Therefore weaker definitions of orderings have to be used.

1.4 Orderings and Cones

A binary relation ~ on a set A is a subset of M x M.

Definition 1.1. A binary relation ~ on A is called

- reflexiveif Vae A

an~a

- irreflexiveif Va€ A a+a

- symmetricif Va,be A

a~b = b~a

- asymmetricif Va,be A a~b = b+a

- antisymmetricif Va,b€e A a~b and b~a = a=0»

- transitive if Va,b€ A a~b and b~c = a~c

- mnegatively transitiveif Va,be A afbandbtc — aic

- connectedif Va,be A : a#b = a~b or b~a

- strongly connected (total) if Va,be A a~b or b~a



Definition 1.2. A binary relation ~ on a set A is

e an equivalence relation if it is reflexive, symmetric and transitive.
e a preorder (quasiorder) if it is reflexive and transitive; (A, <) is called a preordered
set.

Two relations are associated with <:
- x<y <= z=xy and yAzx

- x~y <= z=xy and y<=z

Proposition 1.1. Let < be a preorder on A. Then < is irreflexive and transitive and ~ is

an equivalence relation.

Proof: ~ is reflexive because < is. ~ is symmetric by definition.
Let x ~y and y ~ 2.
— r3y=z — 32
—— T~ Z
= 2Ry —= 23z
< is irreflexive by definition.
Suppose z <y, y <z — <y <z — z < 2. To show that x < z suppose z < z. But

z 2y = 2z <y (transitivity) é Contradiction ! = 2z 4z = z<z.

d
Proposition 1.2. An asymmetric relation is irreflexive. A transitive, irreflexive relation is
asymmetric.
Proof: Exercise 3.
O
Definition 1.3. A binary relation < on A is
e a total preorder if it is reflexive, transitive and connected
e a total order if it is an antisymmetric total preorder
e a strict weak order if it is asymmetric and negatively transitive
Proposition 1.3. If < is a total preorder an A, then the associated relation < is a strict
weak order.
If < is a strict weak order on A, then < defined by
xSy < eitherx<yor(zAy and y£x)
is s total preorder.
Proof: Let < be a total preorder. Then < is irreflexive and transitive (Proposition 1.1) and

hence asymmetric (Proposition 1.2).

For negative transitivity show z Ay, y Az = z £ z.

So take z,y,z = < z and show z < yory < 2. Suppose z Ay — y<zory <z
because < is total. In both cases —= y <z. v

Let < be a strict weak order on A. < is reflexive by definition.

For transitivity consider the following cases:



1) z<y,yAzand z£Ay. Then z < 2.
Otherwise x A zand 2z Ay = = Ay écontradiction! = <z = =2

2) Ay, yAxandy <z Then z < z.
Otherwise z A zandy Az = y £z fcontradiction! = <2 = =2

3) zALy, yAr,yLz, 24y = zAzandz Ar = x <2
4) z<yandy<z.
Ifx Az:bysaymmetryandz <y —= yAzx = yA=z écontradiction! =

T<2z2 = X2

Connectedness: z,y € A z#y. Thenx <yory<zor (z Ay and y £Az) = =z =<

Yy or y > x.
(|
Definition 1.4. A binary relation < is called
e partial order if it is reflexive, transitive and antisymmetric.
e strict partial order if it is asymmetric and transitive (irreflexive and transitive).
Some orderings in R":
Let z,y € R™". We say
<y if z;<y; i=1,...,n weak componentwise order (1.9)
<y if z;<y; i=1,...,nx#y componentwise order (1.10)
ey if zi<y, i=1,...,n strict componentwise order (1.11)

The properties of orderings (especially in R* (R?)) can be interpreted geometrically using cones.
Definition 1.5. A subset K C R" is called cone, if
VeeK and VAeR A>0 ArekK. (1.12)

Example 1.4. K={zeR :z; >0}

frs f2 fis f2
e 5
A 4
3_ .................................. 3_ ...............
k=R 1 S
2 27 K
T L P 14
I ..-I. - .i. - I ..I. - .I. . .\ I T T T T T T
-1 1 2 3 4 5 6 ¥ 1 1 2 3 4 5 6
14 14

Figure 1.6: Illustration of Two Cones

For any set M C R” and A € R we denote by AM = {Az : z € M}, especially —M = {—z :
z € M}.



Definition 1.6. A cone K is called
e nontrivial, if 0 € K, K # {0} and K # R".

e convex, if dz1+(1—-Nz2€ K Vuz,z0€ K, VO<A<L
e pointed,if t € K = -z ¢ K,ie. KN(-K) C {0}

Remark. If K is a cone then K is convex if V z1,22 € K 1 +x2 € K. (Note that
Az1 € K, (1 — M)z € K, therefore closedness of K under addition is sufficient).

Given a binary relation < on R", we can define a set K< = {y — z : < y}, loosely speaking

the ,set of nonnegative elements.
If < is a relation compatible with scalar multiplication, i.e. for x <y and A >0 Az < Ay, we
have the following result.

Proposition 1.4. K< is a cone.

Proof: Letue Kx = u=y—zforsomez,y e R" = <y = I )\y =
AMy—z)= ueK<z VA>0.

Example 1.5. Weak componentwise order in R™.

z<y = ;<y; Vi = y;i—2;>20 Vi = Kc={z€eR":2; >0} =R}.

We know that < is a partial order. How do the properties of orderings translate to properties

of K7

Theorem 1.5. Let < be a relation on R™ that is compatible with scalar multiplication for
A> 0. Then
a) = is reflexive = 0¢€ K<

b) = is transitive = K< is convex

c) = is antisymmetric = K< is pointed

a) Sisreflexive = z<2zV2zeR" = z—z=0¢€ K<
b) Letu,ve K = u—-0€K<, 0-ve-Ksx = 0=<u, —v=<0.
transitivity = —v<u = u—(-v) =u+v € K = K convex.
c) Supposeu=y—zr€K<iand —-u=r—y€ K<, u#0 = z<yandy<zbutz#y
é Contradiction !
O

On the other hand, we can use a cone to define an ordering, which is compatible with scalar

multiplication.

Let K be a cone. Define < by z<gy < y—z € K.



Proposition 1.6. Let K be a cone. Then <k is compatible with scalar multiplication and

addition in R™. Furthermore:

a) 0€ K = =<k is reflexive

b) K convex —> <k is transitive

¢) K pointed = <k is antisymmetric
Proof: Let z,y,z€ R* and A >0 € R

r2ky = y—-z2z€K = My—2)€e K = Ar < \y
= y—zr=W+2)—(r+2)€e K = z+2=<3ky+2

a) LetzeR* = 2—2=0€ K = z=<xx

b) Letz <gy, y<xk2z = y—z €K, z2—y€ K convexity = y—x+z2—y=2—1x€

K = <=z

c) Letz,yeR*", 2 <k y, y2xkr = y—-z€K, z—-yeK = y—ze KN(—-K) =

{0} = y=2
O
Note. We will only consider orderings which are compatible with scalar multiplication and
addition.
1.5 Classification
By the choice of an ordering < on R"™, we can define the meaning of ,min“ in
» Min “ f(.fl?) =, min “ (fl(x)a 5fQ('CE)) (113)

zeX zeX

We have seen that objective vectors y = f(z), z € X are not always compared in objective
space (i.e. R¥) directly.

In Example 1.3 we have also considered

i i 1.14
iy s £() e

We have used a mapping 6 : R?> — R from objective space R? to R, where the min in equation

(1.14) is actually defined. This mapping is called the model map.



The elements of a multicriteria optimization problem (MCOP) are:
— the feasible set X
— the objective functions (f1,... , fQ) data

— the objective space R¥
— an ordered set (RF, <)

— a model map 6§ providing the link between objective space and ordered set

Thus (X, f,R?)/0/(RP, <) completely describes a multicriteria optimization problem.

Example 1.6.
Pareto — m>ilg(\/;c +1, 22 -4z + 1) (1.15)
x_

Here X = {z: 2z >0} = Ry is the feasible set

f=(f1,f2) = Wz +1, 22 — 4z + 1) is the objective function
R? = R? is the objective space

0(y) =y model map, denoted id, the identity mapping

(RF, <) = (R%,<) ordered set

Thus (1.15) is

Ry, f,R?)/id/(R?, <) (1.16)

Example 1.7. If we have a ranking of objectives as described earlier we compare objective
vectors lexicographically.
Let 2,y € RY. Then = <jex y if 3k, 1<k<Qst.zj=y; i=1,...,k—1and z < ys.
If X = {VW, Opel, Ford, Toyota} is the set of alternatives, fi is price, f> is engine efficiency,
f3 is horsepower, we define 6(y) = (y1,y2, —y3). Note that higher horsepower is prefered to
lower.

The problem is
(X) f7 IR3)/0/(IR37<lex) (117)

Definition 1.7. z* € X is called an optimal solution of an MCOP (X, f,R?)/6/(RF, <)

if there is no x # z* such that

0(f(z)) 2 6(f(z")) (1.18)

For an optimal solution z*, f(z*) is called an optimal value for the MCOP.

Remark.

1) Since we are often dealing with orderings which are not total, a positive definition of

optimality, like §(f(2*)) X 8(f(z)) V z € X is not possible.

2) For special choices of § and (RF, <) specific names for optimal solutions and values are

commonly used.



Example 1.8. With the choices (Ry,f,R?)/id/(R?,<) the optimality definition reads:
A = # x* such that f(z) < f(z*), i.e. fi(z) < fi(z*), and f(z) # f(«*). This is Pareto

optimality as introduced before.

Example 1.9. For (X, f,R%)/(y1,y2, —¥3)/(R®,<1ex) z* € X is an optimal solution if

dreX,z#a" st (f1(2), fo(2),—f3(2)) <iex (f1(27), f2(z"), — f3(a"))

We will often speak generally of MCOP in the sense of Pareto or lexicographic optimality, not

using any information on problem data.

Definition 1.8. A multicriteria optimization class (MCO class) is the set of all

MCOP with the same model map and ordered set, and denoted by
/0/(R”,<). (1.19)

So, ®/id/(R?, <) will denote the class of all MCOP, where optimality is understood as Pareto

optimality.

1.6 Exercises to Chapter 1
1. Consider the problem
,min “ (fi(z), fa(z)) subject to z € [-1,1]

where

A@) =V5—22, flo)=2.

2

Nlustrate the problem in decision and objective space and determine the Pareto set and

the efficient set.

2. Consider the following relations on IR™:

z<y <<= z;<y; t=1,...,n
r<y <= x;<y; i=1,...,n and z#y
Ly &= z;<y; 1=1,...,n

Which of the properties listed in Definition 1.1 do these relations have?
3. Prove the following statements

a) An asymmetric relation is irreflexive.
b) A transitive and irreflexive relation is asymmetric.
c) A negatively transitive and asymmetric relation is transitive.

d) A transitive, irreflexive and connected relation is negatively transitive.



4. a) Determine the cones related to the (strict, weak) component-wise order, the lexico-

graphic and the max-order on IR?.
b) Give an example of a non-convex cone and list the properties of the related order.

¢) A cone K is called acute, if there exists an open halfspace H, = {x € R" : (z,a) > 0}

such that ¢/lK C H,. Is a pointed cone always acute ? What about a convex cone ?



Chapter 2

Pareto Optimality and Efficiency

Much of the material in this and the following chapter is based on the two books [GN90] and
[SNT85].

2.1 Pareto Optimal and Efficient Points
We consider problems of the class o/id/(R%, <) here:

Pareto — min(fi(z), ... , fo(z))
subject to z € X

(2.1)

Definition 2.1. A point z* € X is called Pareto optimal, if there is no z € X such that
f(@) < f(z*). If z* is Pareto optimal f(x*) is called efficient. Both z* and f(z*) are also
called nondominated.

If z',2? € X and f(z!) < f(2?) we say 7' dominates x> and f(z') dominates f(z?).
The set of all Pareto optimal z* € X is Xp,,. Let Y = f(X). The set of all efficient
points y = f(z*) € Y is Yog.

These names are not unique in literature !

For two sets A,B we denote A+ B={a+b:a€ A, be B} .

Remark. Equivalent Definitions: z* is Pareto optimal if
1) FreX fi(2) < fi@"), i=1,...,Q and

fi(x) < fj(z*) for some j e {l,...,Q}
2) #zeXst f(z)— fla*) € —RY \ {0}
3) f(a) - f(a*) e RO\ {-RI\{0}} Ve e X
4) f(X)N(f(z*) - RY) = {f(=*)}
5) B 1) € FX)\{f@@)} st (@) € fla*) — RS

6) f(z) < f(z*) for some z € X = f(z) = f(z*)

13
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F(X) = @)

Defs 1),4) and 5) Defs 2) and 3)

Figure 2.1: Tllustration of Definition 2.1

The first questions we discuss are the existence and the properties of the sets Xp,r and Yeg.

Example 2.1.

X={(z1,m2) ER?:-1<z <1, —\/—22+1<22<0 for

—/—22+1< 25 <0 for

f(z1,22) = (21, 22) — min

Z2

Z1

-3
Figure 2.2: Feasible Set of Example 2.1

Yer = 0, even though f is continuous.
If we take

X={(21,72) eR?: -1< 3 <1, 29 =0 for
-2 +1<2, <0 for
-/ +1<2,<0 for

—1§a:1§0
0<$1Sl}

2131:—].
1<z <0



P

-3
Figure 2.3: Feasible Set of Example 2.1

Now Yeg = {(Bl), (_01) }, a disconnected set.

We shall first discuss Yeg. For the following discussion Y may just be a subset of RY. For a
multicriteria optimization problem Y = f(X).

Let Y CRY. Let Yeg={y €Y : Ay €Y, ¢ <y}, in particular Yoz C Y.
Proposition 2.1. Yer = Y + ]Rf)eg

Proof: ~ Trivial if Y = 0.

Assume Y # (. First, assume y € (Y + ]Rg)efr, but y ¢ Yesr.

Ify¢Y = Jy' €eYand0#de R$ s.t. y =y'+d;sincey’ € Y+R$ = y ¢ (Y+]R$)eﬁ‘

é Contradiction !

IfyeY = Fy € Yeg s.t. y’<y,letd:y—y'(€R$\{0}) = y=y'+d = y¢

Y + Rf)eﬂ é Contradiction !

Hence in either case y € Yeg.

Second, assume y € Yo but y ¢ (Y + Rf)eg

= 3y €V +R? withy—y' =d' € R? \ {0}

= ¢y =y" +d" withy" €Y, d" € R

= y=y'+d =y"+(d +d")=y"+dwithd# 0= y ¢ Ve é Contradiction !
——

er\{0}
Hence y € (Y + Rf)eg.



Interpretation: We only need to look at the ,lower left sector” of Y.

Q
+R?

Figure 2.4: ,lower left sector” of YV

Furthermore, efficient points cannot lie everywhere in Y:
Proposition 2.2. Y CY (boundary of Y)

Proof: Let y € Yog. Suppose y ¢ dY.
= y€intY = 3 ¢ — neighbourhood U(y,¢) of y s.t. U(y,e) =y + U(0,e) C Y.
Letd#0, d€ RY = IA>0st. MdeU0,e) = y+AdeY with \d € RS \ {0}
= y ¢ Yem é Contradiction !

Corollary 2.3. If Y isopen — Yeg=0. If Y—}-Rf is open —> Yeg = 0.
Some algebra of Yeg:
Proposition 2.4.  (Yi + Ya)er C Y, + Ya,

Proof:  Let y € (Y1 + Ya)es
= y=1u4y1+y2forsomey; €Y1, y2 €Y
suppose y1 ¢ Y1, = Jy' €Yy, d€ H&g\{O} st.yur =y +d = y =y +y2+dwith
Y+ €Y1+Ys = y ¢ (Y1 +Yo)er é Contradiction !
Analogously y> € Yair = 41 +¥2 € Vi + Yoo,

Proposition 2.5. (@ Y)er = - Yesr, where a € R, a > 0.

Proof: Exercise 8.

In order to prove an existence result for efficient points we need Zorn’s Lemma.

Definition 2.2. A set M is inductively ordered, if every totally ordered subset of M (a

chain) has a lower bound. The ordering on M is reflexive and transitive.



Lemma 2.6 (Zorn’s Lemma). Let M be a set on which a reflexive, transitive relation <
is given, and such that M is inductively ordered, then M contains a minimal element m,

i.e.
m € M, m=Im = m=Im (2.3)

Theorem 2.7. Suppose Y # 0 and I y° € Y s.t. the section Y’ = {y € Y :y <y°} =
(y° — H@fg) NY is compact. Then Yog # 0.

Figure 2.5: (y° — Rﬁ) ny, y° - Rf

Proof: Let Y° be a ,,compact section“. Let {y*, a € A} be a chain in Y.
(A chain is a totally ordered subset of a partially ordered set.)
We prove that {y*} has a lower bound.
Let B := {a C A: |a|] < oo}. Suppose a € B = y* = inf{y® : a € a} exists and
y? € YO because {y®} is a chain and a is finite.
Consider all sets Y, := (y* — ]Rf) NY. Obviously Y, C Y° and Y, are compact (Rg is
closed). Furthermore, if a € B, i.e. finite [\ Y, # 0 because it contains y°.

aca

By compactness of Y it follows () Y, # 0
acA

= 3y e N @ -RYNYO
aEA
= y'<y* Vaecd
= y' € Y% is a lower bound of {y* : « € A}, which is therefore inductively ordered.
Hence Y contains a minimal element y*. We show that y* € Yeg.
Otherwise there would exist y € Y, 5 # y*
FEW -RHNY Cc @ -R¢ -R)NY =4 -RY)NY — RY
contradicting minimality of y* for Y.

O

Another existence result does not use a compact section but a condition on Y which is similar

to the finite subcover property of compact sets.



Definition 2.3. Y C R¥ is called Rf -semicompact if every open cover of Y of the form

{(y* —ng)c :y* €Y, a € A} has a finite subcover. This means: Y C |J (y® —Rf)c =
acA

ImeN ag,...,anm st. Y C U(y‘“—Rﬁ).
i=1

Note that (y* — Rf)c is open, and the complement of y* — Rg.
Theorem 2.8. IfY #0 s Rf -semicompact then Yeg # 0.

Proof: We show that Y is inductively ordered and apply Zorn’s Lemma.
Assume Y is not inductively ordered
= 3 totally ordered subset (chain) of Y, Y = {y® : @ € A} which has no lower bound.
= N -R)nY)=0
(As igethe proof of Theorem 2.7, any element in this intersection would be a lower bound
of Y.)
= VyeY Fy*ey st y¢ya—R$
Since y® — Rf is closed = {(y* — Rg)c :a € A} is an open cover of Y.
Also: y* — Rﬁ C y"‘l — ng — y* < yal
= The sets of the cover are totally ordered by inclusion because Y is a chain. 1)
Y is Rﬂ—semicompact = 3 finite subcover of {(y* — Rﬁ)c ta € A} (2)
(1), (2) = 3 single y* € Y such that ¥ C (y* — R)°
This implies y* <y* Vae A = y*¢Y é Contradiction !

= Y is inductively ordered. As in the proof of Theorem 2.7 we conclude Yeg # 0.

4 (ya—Rf)Cforachain{ya:aEA}

Figure 2.6: (y* — Rf)c
It is usually not easy to check Rf -semicompactness. A weaker result is obtained if we use the
stronger assumption of Rf—compactness.
Definition 2.4. Y C R¥ is called Rf-compact, if VyeY (y— Rf) NY is compact.

Proposition 2.9. IfY is ]Rf -compact then'Y 1is Rf -semicompact.



Proof: Let {(y* — Rg)c :y* €Y, a € A} be an open cover of Y. For arbitrary y® € Y take
{W*—RE):y* €Y, a€ 4, a#a'} (2.4)

This is an open cover of (y* — Rﬁ) NY, a compact set (by definition).
= (2.4) must contain a finite subcover of (y* — Rg) NY, together with (y® — Rf)c we

have a finite cover of Y.

O
Corollary 2.10. IfY C R is nonempty and Rf -compact, then Yog # 0.
Proof: Theorem 2.8 and Proposition 2.9.

O
Note. The condition of Rg -compactness can be replaced by Rg -closedness and Rg -bounded-

ness, which are generalizations of closedness and boundedness. For closed convex sets Y it
can be shown that the conditions of Theorem 2.7, Corollary 2.10 and ]Rf—closedness and

RE -boundedness coincide.

We now consider existence of Xp,;.
Definition 2.5. A function f: R® — R? is said to be Rf—semicontinuous if
Fry-RY)={zeR" :y— f(z) eR}} (25)

is closed for all y € R9.

(The preimage of translated negative orthants is closed).

Lemma 2.11. f:R* - R9 is RE -semicontinuous if and only if f; : R — R are lower
semicontinuous Vi=1,...,Q.
Proof: Exercise 9.
O

Proposition 2.12. Let X C R™ be nonempty and compact, f : R* — R? be ]Rf -semicon-
tinuous. Then'Y = f(X) is Rg -semicompact.

Proof: Let {(y* — ]Rf)c :y® €Y, a € A} be an open cover of Y. By ng—semicontinuity of
f = {f"(wy*- ]Rg)c) :y* €Y, a € A} is an open cover of X.
X is compact. = 3 finite subcover of X
—> The image of this subcover is a finite subcover of Y — Yis Rf semicompact.
O

Theorem 2.13. Let X C RQ be nonempty, compact. Let f be Rf -semicontinuous. Then
XPar # 0

Proof: Theorem 2.8, Proposition 2.12.



Remark. All results presented here are still valid, if Rg is replaced by a convex, pointed,
nontrivial, closed cone K. Closedness is not required if (y — cl K) is used instead of (y — K)

everywhere.

2.2 Weak and Strict Pareto Optimal Points

Definition 2.6. A point z* € X is called weakly Pareto optimal if there is no x € X
such that f(z) < f(z*), i.e. fi(x) < filx*) Vi. y* = f(z*) is called weakly efficient.
A point z* € X is called strictly Pareto optimal if there is no z € X, z # z* such that
f(z) < f(z*). y* = f(z*) is called strictly efficient.
The weak (strict) Pareto optimal and efficient sets are denoted Xy _par (Xs-par) and Yy eff (Ysefr),

respectively.

Remark.
o Yier CYer C Yoo, Xspar C Xpar C Xw-Par

e Equivalent definitions:
y* € Yoo <= Ay eY :y* —ycintRY
= (y*-ntRY)NY =0

o z* € Xypar < z* € Xpay and [{z: f(z) = f(z*)} =1
In fact, strictly efficient points can only be defined in the context of multicriteria opti-

mization problems, not for Y alone.

Theorem 2.14 (Existence of weakly efficient points).
Let 0 #Y C R? be compact. Then Yy g # 0.

Proof: Suppose Yyet =0. = VyeY Iy €Y st. y€ey +int Rg
= Yc U (¢ +intRY)
y'eM
Therefore we have an open cover of Y.

By compactness —> 3 finite subcover

Y C ij(yi +int RY) (2.6)
i=1
= Vi=1,...,k 31<j<k y' €y +intRS.
In other words Vi 3j:yf < yt.
By transitivity = 3 i* and a chain of inequalities s.t. ¢ < y"! < ... L yim Ly é
Contradiction !

O

Remark. Note that Zorn’s Lemma was not needed here. Compactness is enough ! The
important difference is that in Theorems 2.7 and 2.8 we deal with sets y — Rﬁ which are

closed. Here we have sets y — int ]Rf which are open. (Note that y ¢ y — int ng)



Corollary 2.15. Let X C R™ be compact and f : R* — R continuous, then Xy._pa: 7 0.

Proof: Follows from Theorem 2.13 and Xp,r C Xy-par Or from Theorem 2.14 and the fact
that f(X) is compact for compact X.
O

The inclusion Yeg C Yy e is strict, in general the latter may be nonempty even if Y is not

compact.

Example 2.2. YV ={(y1,y2) €ER% : 0<y1 <1, 0<ys <1}. Then Yeg =0, Yy =
(0,1) x {0}.

- Yw—eff

Figure 2.7: Empty Efficient Set

If we close the square Y = {(y1,y2) € B2 : 0 < y; < 1} we get Yeg = {0}, Yiewr =
{(y1,92) 191 =0 or y» =0}.

Y2

2 = Yw—eﬂ
® Yoff

14—

1 591

Figure 2.8: Efficient and Weakly Efficient Points

Xpar, Xs.par and Xy._par can be characterized geometrically. To do that we need level sets and

level curves of functions.

Definition 2.7. Let f: X > R, X CR” and 7 € X. Then
Lf((@) ={zeX : f(z) < [f(@)} (2.7)
is called the level set of x for f.
L-f(@) ={re X : f(x) =@} (2.8)
is called the level curve of T for f.

Example 2.3.  f(z1,22) =27+ 23. Let 7 = (3,4) =
L<f(@) = {(z1,22) : o+ 25 <25}, L_f((@)={(21,22) : 2] +a3 =25}



f(zlz z2)

» 25

T2

Figure 2.9: Level Set and Level Curve in Example 2.3

X1

For a multicriteria problem we consider the level sets / curves of Z for all fi,... , fg. Obviously

L_(fi() C L<(f;(Z)) and z € L_(f;(Z)) Vi=1,...,Q.
Strict level sets are L. (f(Z)) = L<(f(Z)) \ L=(f(Z)).

Consider the situation:

Figure 2.10: Level Sets

Can T be Pareto optimal ?

No ! We can move into the intersection of both level sets and find points which are better with

respect to both f; and f>. T is not even weakly Pareto optimal.

Formally we can state: [EHK'97]

Theorem 2.16. Let * € X, yq := fq(z*) then

a) z* is strictly Pareto optimal if and only if

Q
M L) = (o)

g=1
b) z* is Pareto optimal if and only if
Q
N <o) = () L=(v0)
g=1

¢) z* is weakly Pareto optimal if and only if

Q
ﬂ L<(yy) =0

(2.10)

(2.11)



Proof:
a) x* is strictly Pareto optimal
— PreX, x4z st. f(z) < f(z¥)
< PzreX, z#z* st f(z) < fy(@*) Vg=1,...,Q
—
—

Q
PrzeX, z#z* st. z€ ) L<(yq)

Q
N L<(yq) = {="}
g=1

b) z* is Pareto optimal

< Pz eX, st (fi(x) < f(@*) Vg=1,...,Q and f;(z) < fj(z*) for some j)

— PreX, st (z€ 6L<(yq) and 3j:x € L (y;))
— L) = ) L()

c) z* is weakly Pareto optimal
— PzreX:f(z)< f(z*) Vg=1,...,Q

Q
< fzeX:z€e () L(yy)
q=1

Q
— ﬂ1 L<(yqy) = 0.
q:

O

Example 2.4.  Consider the points z' = (}), 2% = (}), 2* = (}). Find a point z* € R?
such that the sum of weighted squared distances of * to #’ is minimal.

Two weights for each x? are given:

3
file) = Zw 1 —21)? + (2} — 22)?) (2.12)

fl(ilf) = 1- ) (1—:11'1) +(4—l’1)2+(1—.’L’2)2+(4—£B2)2+(4—$2)2

(
= 2-(1-m)’+@d—-21)* + (1 —22)* +2- (4 — 22)?

I
Do

(1 =2z +22) + (16 — 8xy + 22) + (1 — 2y + 22) + 2- (16 — 8y + 22)

= 3. (z} — 4z + x3 — 629) + 51

fol@) = 2-(Q-21)* + (1 —22)*) +1- (1 —21)” + (4 —22)*) +4- (4= 21)* + (4 — 22)*)
= 3-(Q-z)?’+4-d—21)* +2-(1 —x2)® +5- (4 —25)?
= 3-(1-2z1+2})+4-(16 -8z +23) +2- (1 — 2z +23) +5- (16 — 825 + 23)
= 7-(xf—§$1+x2—ﬁx2)+149

7

We want to know if z = (2, 2) is Pareto optimal. So we check the level sets and level curves:

f1(2,2) = 3-(2f —4x; +25 —62) +51=3-(4—8+4—-12)+51=15

44
f2(2,2) 7 (33'1—§a:1-4-z'2 73:2)-1-149:7 (4—7—76+4—8—78)+149 41



L_(fi(2,2) = {e€R® : fi(z)=15}

filz) =15 <= 3-(2? —4dx; +22 —622)+51=15
= (2} -4z, + 23 —622)+17=5
= (21 -2+ (22 -3)2+4=5
= (11224 (r2-3)?2=1

= L_(fi(2,2)={z R : (21 —2) + (22— 3)> =1}

38 44

fae) =41 = T-(af - o +a3 - 7332) + 149 =41
19,5 22, 89
— (m 7) + (@2 7) =1
19 22 89
= L_(f2(2,2)) = {m eR? : (2 — 7)2 ¥ (2 — 7)2 _ E}

This is a circle around (%, %) with radius —V789.

2 2

In Figure 2.11 we see that () L<(fi(2,2)) # () L=(fi(2,2)) because the disks intersect in
=1 =1

a region.

Let us check (2, 3):

f1(2,3) = 3-(z] —4z1 425 —633) +51=3-(4—8+9—18) + 51 =12
1 2
44 132
f2(2,3) = 7-(x§—3—78m1+x§—7x2)+149=7-(4—776+9—T)+149=32

L_(fi(23) = {s€R® : fi(a)=12}

fi(z) =12 3- (2 — 42y + 23 — 6x2) +51 =12
(3 —4z) + 23 — 632) + 17 =4

(£ —2)2 + (22 —3)> +4=4

1111

(x1 —2)>+ (z2—3)>=0

= L_(f1(2,3))={z€R : (z1 —2)*+ (22 — 3)? = 0}

, 44
frw) =32 = 7-(af - ?-’EI + 23 — w2) +149 = 32
19, 22, @
= (= 7)+(x 7)_49
— 19 22 26
L_(f2(2,3)) = {m eR? : (2 — 7)2 ¥ (2 — 7)2 _ E}

This is a circle around (12, 22) with radius ¥2°.

We have to check if L_(f1(2,3)) N L_(£2(2,3)) = L<(f1(2,3)) N L<(f2(2,3)).
But for z = (2,3) L_(f1(2,3)) ={(2,3)}. Then L<(fi(2,3)) is only one point. The radius
of L<(f2(2,3)) is @. Thus (3) is not Pareto optimal, (3) is Pareto optimal.



IR ACX )

0 T L L L
0 1 2 3 4 5 T1

Figure 2.11: Location Problem of Example 2.4

L-(f1(2,2)) = L=(15)

— circle around (2, 3) with radius 1
L_(f1(2,3)) = L_(12) —» circle around (2,3) with radius 0
—

19 22 vV
L_(f2(2,2)) = L_(41) circle around (79, 7) with radius 789

19 22 V2
L_(f2(2,3)) = L=(32) — circle around (79, 7) with radius Tﬁ

Theorem 2.16 shows that sometimes not all the criteria are needed to see if a point z is weakly

i<Q

or strictly Pareto optimal: once (| L<(fi(z*)) is empty it will remain so, if intersected with
i=1

more level sets.

Let P C {1,...,Q} and denote by f¥ the objective function vector that only contains criteria
f]', J e P.
Corollary 2.17. Let P C{1,...,Q}. Then

a) If z is weakly Pareto optimal for (X, fP,RIP1)/id/(RIP!, <) it is also weakly Pareto
optimal for (X, f,R?)/id/(R9, ).

b) If x is strictly Pareto optimal for (X, f¥,RIP)/id/(RIP!, <) it is also strictly Pareto
optimal for (X, f,R?)/id/(R?, <).

Stronger results can be obtained for convex functions. So suppose that X C R” is convex and
that f; : R — R are convex. This implies that all level sets are convex. Convex analysis has

an important theorem concerning the intersection of convex sets: [Hel23]

Theorem 2.18 (Helly, 1923). Let Cy,...,Cqg C R™ be conver sets (Q > n). Then
Q n+1

Ci # 0 if and only if for all collections of n + 1 sets Cy,, ... ,Cy, ., holds ( Ci; # 0.
=1 =1

k2

Q n+1
In other words: (| C; = 0 if and only if 3 {i1,... ,inq1} C{L,...,Q}st. () Ci; =0.
i=1 j=1
Putting this result and Corollary 2.17 together we get, if we take as C; = L<(fi(z)):
Proposition 2.19. Consider the problem (X, f,R?)/id/(R?, <), where X C R™ is convez,
fi : R* — R are convexr and ) > n. Then x* € X is weakly Pareto optimal if and
only if 3 P C {1,...,Q}, 0 < |P| < n+ 1 such that =* is weakly Pareto optimal for

(X, 7, RPN /id/(RP], <).



In other words: Xy.pa:(f) = U Xy-par(fF).
PC{1,...,Q}
|P|<n+1
It is even possible to describe Xy -par(f) in terms of Pareto optimal points of subproblems for

fF. These results are from [MB94].

Proposition 2.20. Xypar(f) = U Xpar(fF), for fi continuous, conver, X convez.
PC{17"' 7Q}
P£)
Proof:

a), D% Takez € X, v ¢ Xyprar(f) = JT€X fi(T) < fi(z) Vi=1,...,Q0 =
z ¢ Xpar(fF) VPC{1,...,Q}

b) , C“ Takez € X, z ¢ U Xpar(fF)
Pc{1,...,Q}
— 2 ¢ Xpa(f). Let P={L,...,Q}

— i € P, 1 € X s.t. fil(ml) < fil(a:), f,’((El) < f,(.Z'), i ;ﬁ i1. Let P = P\ {21}

Now for I > 1 and P, = {1,...,Q} \ {é1,-.. ,4} suppose we found z; s.t. fi(z;) <

filx) Vie {1:1,. .. ,il} and fi(x;) < fi(x) Vi€ P.

Since z ¢ Xpar(fpl) = d441 € B %41 € X st f,’l+1(fl+1) < fi,+1($) and

fi($l+1) < f,(.’l?) V i € P;. Then for Ti+1 = Az + (1 - )\)El+1, A E (0, 1)

o fi(ziy1) < fi(z) Vi € {i1,... 4} for small (1 — X) by continuity of f;.

hd fit+1 (xl-i-l) < )‘fiz+1 (.CE[) + (1 - )‘)fil+1 (El-i-l) < )‘fil+1 (Z‘) + (1 - )‘)fiz+1 (.’L‘) = fil+1 (SE)
by convexity and induction-hypothesis.

o filxip1) <fi(x)Vi€e Py ={1,...,Q}\ {i1,-.. ,4+1} by convexity.

After @ steps we have found z¢g such that fi(zg) < fi(z) Vi=1,...,Q ie. z ¢

Xw—Par(f)-

Proposition 2.20 can be combined with Helly’s Theorem again, to obtain

Theorem 2.21. For convex X, convex and continuous f;:

Xoral)= U XealfD) (2.13)

PC{L,...,Q}
1<|P|<nti

Proof: We need only consider () > n + 1 and only prove ,, C “.

Take z € X, = ¢ U Xpar(fF)
1<|P[<n+1
et JC{L,...,Q}, J#0, |J| <n+1

= z¢ U Xpar(f7). By Proposition 2.20 = z ¢ Xy.par(f7).
IcJ
= dz;€X st fj(xJ) < f](.’lf) Vield (2.14)

Now for i € {1,...,Q} define

Ci=conv{zy : JC{1,...,Q}, J#0, |[J|[<n+1,i€eJ}



By (2.14) fi(zs) < fi(z) foreach J C {1,...,Q}, 1 <|J|<n+1, i€ J.

Furthermore by convexity

fia") < filz) V' €C; (2.15)
Also for fixed J : N Ci D {z,}, ie. ) Ci # 0. By Helly’s Theorem — 3 z* €
ieJ ieJ

A Ci and by (2.15) fi(z*) < fi(z), thus z ¢ Xy par(f).
=1

1=

2.3 Properly Pareto Optimal / Efficient Points

Within the set Xp,,, it is possible to trade off improvements of one objective for worse values

of another. However these trade-offs may be unbounded.

Example 2.5. Y =X ={(z1,22) € R : (2;-1)2+(22-12) <1,0< 2, <1,0< 25 <1}

0 0.5 1
Figure 2.12: Properly Efficient Point

Yor = {(y,12) €Y : (1~ 1+ (2~ 12 =1},
The closer you move from y* to (1,0) the smaller is the decrease of y» per unit increase of

Y1, it actually tends to infinity.

Definition 2.8 (Geoffrion, 1968, [Geo68]). z* € X is called properly Pareto opti-
mal, if it is Pareto optimal and if 3 M >0 s.t. Vi and z € X satisfying f;(z) < fi(z*)
= 3j st. fi(z*) < fi(x) and

y* = f(x*) is called properly efficient.
Thus, the trade-offs are bounded for properly efficient points.

Example 2.6. In the above Example 2.5 consider the point y* = (1,0). To show that it is

not properly efficient we have to prove

VM >0 3Fie{l,2} 3z eXwith fi(z) < fia*) st L > M Vst fi@) >



fi@™).

So choose z with ;1 =1 —¢ and 22 = 1 — /1 — £2.

(Thus (z1 —1)2+(za —1)2=1,ie. x € X and 1 <z}, 2 > 25 so i=1, j=2).
Then

fila*) = file)  1-(1-¢) _ c .
fi@—fi@) 1-Vi-e2 1-+Ji-2 = . (2.17)

Properly Pareto optimal points are related to the solution of a scalarized problem:
Q
Let A\;, 2 =1,...,Q be nonnegative weights for the objectives s.t. >, A\; = 1. Then consider

i=1
the problem

man/\ fi(z (2.18)

zeX

The following theorems are from [Geo68].

Theorem 2.22. Let \; >0, i=1,...,Q. If z* is an optimal solution of (2.18) then z* is
properly Pareto optimal.

Proof: ~ To show that z* is Pareto optimal consider ' € X with f(z') < f(z*)
Q Q
= > ANifi(z") < Y Aifi(z*) (by positivity of A\;’s), a contradiction.
i=1 i=1

)‘J

To show that z* is properly Pareto optimal let M := (Q — 1) max %

i,j
Suppose that z* is not properly Pareto optimal

= 34, Iz € X st fi(z) < fi(z")
fi(z®) = fi(x) > M - (f;(z) — f;(«")) for all j such that f;(z") < f;()

= fi(z*) — fi(x) > EA]‘(JCJ‘(.T]) — fj(z*)) V j # i by the choice of M.
QA_il’ J‘gﬁ:i

=" N(fil@") - filz)) > D Ni(fi(@) = fi(e))

j#i
= Nfil@) = Nfil@) > DN fi) = DN fi(aY)

J#i J#i
= Nfilz®) + ) NFi@) > Nifi(@) + > i fi(@)

J#i Jj#i

Q Q
= Z i fi(z™) > Z Aifi(z) f Contradiction.

The natural question is, whether this condition is also necessary. This is not true in general.



f
6] Mfi+dafa =c

T T
0 1 2 3 4 5 6 fi

Figure 2.13: Properly Pareto Optimal y € Yo

y € Yorr, properly Pareto optimal but not optimal for (2.18).

Theorem 2.23. Let X C R™ be convex and f; : X — R be convex. Then x* € X is properly
Pareto optimal if and only if x* is optimal for (2.18).

Proof:
, <= “ Theorem 2.22.

, = “ Let z* be a properly Pareto optimal point
= 3 M > 0 such that V i the system

fi(z) < fi(z")

(2.19)
fi(@) + M- fi(z) < filz®) + M - fj(z*) Vj#i
has no solution.

A property of convex functions implies that for the i-th such system there 3 )\;- >0,j5=

Q
L...,Q, ) Ay=1 Vi st. Vz€X holds:
i=1

Xifi(z) + 3 Nj(fi(@) + M - f5(2)) 2 Xifi(2*) + 3 N (filz™) + M - f;(z*))

JFi J#i
J#i J#i J#i J#i

Q . ) Q .
Jj=1 J#i Jj=1 J#i
S 4@ M DXL 2 L) + M T )
JFT JF
Summing over i:
Q Q ) Q Q )
= ;fi(ﬂv) + M- 33 N fiz) > ;fi(w*)+M' 2. 2 N fi(er) VrzeX

i=1j#i =1 j#i

Q . Q .
= Y (U+M-D X)file) > 2 (1+M-D> X)fj(@*) VzeX
=1 J#i =1 i
)\i >\i

Norming the A; to 1 yields the result.



Theorem 2.24. S C R" convez, h; : R — R convex, i =1,... ,m. If there is no solution

z€S st hiz)<0 Vi=1,...,mthen IX; >0, DX =1 st

i=1

> Aihi(@) >0 VYzeS (2.20)

i=1
See e.g. [Man69, p.65].
Geoffrion is not the only one who introduced properly Pareto optimal points. To look at other

definitions, we have to introduce two more cones:

Definition 2.9. Let Y CR? andy €Y.

a) The tangent cone of Y at y is

Ty(y):={deR® : It €R y* €V st.y¥ >y, tr- (y* —y) = d} (2.21)

b) The conical hull of Y is

cone(Y):{a-y:aZO,yEY}:Ua-Y (2.22)
a>0

Example 2.7.

54 54

4 4

3 coneY 3 y+ Ty (y)

2 Y 2

i | y

1+ 1+

0 —r = 0 —T =
0 1 2 3 4 5 0 1 2 3 4 5

Figure 2.14: Conical Hull and Tangent Cone

Proposition 2.25.

a) Ty(y) is a closed cone.

b) IfY is convex then Ty (y) = cl(cone(Y —y)), which is a closed convex cone.
Proof:

a) Note that 0 € int Ty (y) (take y* = y V k) and Ty (y) is indeed a cone: For a > 0, d €
Ty(y) = a-d€ Ty(y). Just take « - ¢ instead of tg.
To see that it is closed take a sequence {d;} C Ty (y), y €Y, s.t. di — d.
V13 sequences {y"*}, {t; 1} as in the definition.
For fixed [ 3 k; s.t.

~] =

0 (™" =) — dil| < (2.23)

Now if I — oo the sequence ., (y'"% —y) — d i.e. d € Ty (y).



b) Let Y be convex, y € Y. By definition, it is obvious that cl(cone(Y — y)) is a closed
convex cone.
»Ty (y) C cl(cone(Y —y))«
Let deTy(y) = 3Itp,y* : th-Wr—-y)—od v
N/

€a(Y—y)
R cl(cone(Y - y)) C TY(y) ¢

Ty (y) is closed, so only show cone(Y —y) C Ty (y).

Letdecone(Y —y) = d=a- -y —-y), a>0,y €Y.

So define y* :=(1—)y+ 41y €Y, tr=a-k>0

=t (¥ —y) = - (A-py+3y) = k- (5ry+1y)—y) = a-(k-1y+y' —k-y) =
a-(y' —y)

So " 2yt (W —y) o»d = deTy(y).

O
Definition 2.10.
a) (Borwein, 1977, [Bor77])
Z € X is called properly Pareto optimal if
Ty ze(f(#) N (-RY) = {0} (2.24)
b) (Benson, 1979, [Ben79])
Z € X is called properly Pareto optimal if
cl(cone(Y +RY — f(2))) N (-R?) = {0} (2.25)

As we observed in Proposition 2.25 it is immediate from the definitions of conical hulls and

tangent cones that
Ty za(f(#)) C cl(cone(Y + RY — f(4))) (2.26)
so the latter definition is stronger.

Theorem 2.26.

a) If & is properly Pareto optimal in Benson’s sense, it is also properly Pareto optimal in

Borwein’s sense.
b) If X is convex and f; : R* — R are convex then both definitions coincide.

Proof: Immediate from Proposition 2.25.

O

Example 2.8. Consider X = {(w1,72) : 2} + 23 <1}, fi(z) = 71, fo(x) = z5. Then
(=1,0), (0,—1) are Pareto optimal, but not properly Pareto optimal in the sense of Borwein

(and thus not in the sense of Benson).



L) T (LL0)
| Tv(=1,0) N (=R?) = {(y1,42) €R : 51 =0, y» <0}

Ty(—1,0) = {(y1,92) €K : y1 >0} (2.27)

Figure 2.15: Benson’s Proper Efficiency

Are proper Pareto optimal points in Benson’s or Borwein’s sense always Pareto optimal ?

Proposition 2.27. If & is properly Pareto optimal in the sense of Borwein, then I is also

Pareto optimal.

Proof: Exercise 17.

Note. In these definitions, Rg can be replaced by an arbitrary closed convex cone K.

Theorem 2.28. Z 1is properly Pareto optimal in the sense of Geoffrion (Definition 2.8) if

and only if it is properly Pareto optimal in the sense of Benson.

Proof:

” : [43
Suppose & is Pareto optimal, but not Benson-properly Pareto optimal

=  30#dec(cone(Y +RY — f(2))) N (-RY)

Wlog assume dy < =1, d; <0, i = 2,...,Q (otherwise reorder components of f, rescale
d). So there are sequences t; € Ry \ {0}, z¥F € X, r* € RS s.t. ty-(f(ak)+rF - f(2)) =
d.

After choosing a subsequence we can assume that Q = {i € {1,...,Q} : fi(z*) > f;(2)}
is the same for all k£ and nonempty (% is Pareto optimal).

Let M >0 = dko st. Vk>ko

fila*) = fu@) < —ﬁ (2.28)

and fz(xk) - fz(:i.) < _2.]\14tk (229)




1
2. Mty

= VieQ Vk>k 0<fi(a*)—fi(8) <

L@ - A6 | P _
ﬁmﬂ—ﬁ@)>x%;—M (2.30)

—> & is not properly Pareto optimal in Geoffrin’s sense.

” = [43
Suppose & is Pareto optimal, but not properly Pareto optimal in the sense of Geoffrion.
Let My > 0 be an unbounded sequence of positive real numbers. Wlog we assume that

V My 3zkeX st. fi(z*) < f1(2) and

f1(#) = f1(=*)
filz*) = fi(2)

Again, choosing a subsequence we can assume

>M, Yie{2,...,Q} st fi(z") > fi(2) (2.31)

Q={ie{l,...,Q} : filz") > fi(3)} (2.32)

is constant for all ¥ and nonempty.
Define ¢t := (f1(2) — fl(l'k))_l = t,>0VE.
0 i=1,4i€eQq
Define r¥ := Q
fi(®) = fi(z¥) else
= r*eR?

=-1 =1
ti- (fi@®) +rf = fi(@) { =0 21, i¢0 (2.33)
€(0,M") ,ieQ
If we use d; = kli_}m te - (fi(a®) +rF — fi(2))
= di=-1,di=0,i#1,i¢Q,di=0ieQ (M — o)
d = (-1,0,...,0) € cl(cone(f(X) + RY — f(2))) N (-RY)
O

Despite Theorem 2.28, Benson’s proper efficiency is more general than Geoffrion’s, because it

still can be used when a closed convex cone K is used as ordering cone of R? instead of Rf.

In multicriteria optimization we will often encounter problems, where X is given explicitely as

X={zeR" : (g1(z),...,9m(z)) <0} (2.34)

Let us assume that f;, 1 =1,...,Q and g;, j = 1,... ,m are continuously differentiable and
consider

min f(z) (2.35)

zeX



Definition 2.11 (Kuhn + Tucker, 1951, [KT51]).

A solution Z € X is called properly Pareto optimal if it is Pareto optimal, and if there

isno h € R® s.t.

(Vfi@),h) <0 VYi=1,...,Q (2.36)
(Vfi(£),h) <0 for some % (2.37)
and  (Vg;(8),h) <0 VjeJ(@) ={j : g;(&) =0} (2.38)

Theorem 2.29. If & is properly Pareto optimal in the sense of Kuhn-Tucker there exist

A €RQ, X\ eR™ such that

Q m
i)y D wVE@E) +D A Vgi(E) =0 (2.39)
i=1 j=1
i) > Ajgi(d) =0 (2.40)
j=1
i) >0, A>0 (2.41)
Proof: Z is properly Pareto optimal

= FheR" st.

(Vfi(#),h)y <0 Vi=1,...,Q (2.42)
(Vfi=(2),h) <0 for some 7* (2.43)
and (Vg;(£),h) <0 VjeJ@) (2.44)

We use Tucker’s Theorem of the alternative to get u; >0 i=1,...,Q, j\j >0 jeJ@)
s.t.

Q
D V@) + Y AVe;(#) =0 (2.45)

jeJ(@)

Letting ;\j =0 Vje{l,...,Q}\ J(Z), the proof is completed.

Theorem 2.30 (Tucker’s Theorem of the alternative). [Man69, p.25]

Let B,C and D be Q xn, k xn and o X n matrices. Then either
a) Bz <0, Cx <0, Dz =0 has a solution x € R

or b) Bly; + Clys + Dly3 =0, y; > 0, ya > 0 has a solution y1, y2, Y3

but never both.

Proof:  See [Man69, p.29].



Remark. Consider

in Theorem 2.29.

Under additional assumptions, we can show that a properly Pareto optimal point in Geoffrion’s

sense is properly Pareto optimal in Kuhn-Tucker’s sense.

Definition 2.12. A differentiable MOP satisfies the KT constraint qualification at £ € X
if VheR" st. (Vgj(&),hy <0 VjeJ@& 3It>0,a function § :[0,¢] - R", and
a>0 st. 000)=%, g@t) <0 6(0)=ah.

Theorem 2.31. If o differentiable MOP satisfies the KT constraint qualification at T and
Z is Geoffrion properly Pareto optimal then it is KT properly Pareto optimal.

Proof: Suppose & is Pareto optimal, but not KT properly Pareto optimal.
= JheR” st. (wlog)

(Vfi(2),h) <0 (2.46)
(Vf(E),R) <0 Vi=2,...,Q (2.47)
(Vg;(#),h) <0V je (&) (2.48)

Using the function # from the constraint qualification we take a sequence {t;} — 0, and if

necessary a subsequence s.t.

Q={i : filb(tr)) > fi(2)} (2.49)
is constant. Since for i € Q
fi(0(tr)) — fi(2) = te(V fi(2), ah) + o(tr) > 0

and (Vfi(z),h) <0 (2.50)
= (Vfi(Z),ah) =0

But since (Vf1(%),h) <0

— [1(@) = [1(0(t)) _ —(Vfi(),ah) + %:)

(
fi0(t)) = fi(®)  (Vfi(2), ah) + 2

tr

(2.51)

—> £ is not Geoffrion properly Pareto optimal.



Let us summarize the definitions of proper Pareto optimality:

2.26 b) Defined for closed
i 2.26 a) convex cone K
convexity
z€eX
II 2.28
K = RQ
——Geoffrion e
reX
2.31 _
: convexity
constraint
qualification 3.13
_
K =RY

Kuhn-Tucker

zeX={zeR" : g(z) <0}

In order to derive further results on properly Pareto optimal points and on topological proper-

ties, we have to investigate weighted sum scalarizations in greater detail.

2.4 Exercises to Chapter 2

5. Prove, or give a counterexample to the converse inclusion in Proposition 2.4.

6. Given a cone K C R” and the related order <x we say y* € Y is K-efficient if Ay €
Y, y #y* st. y* € y— K. Let Ky, K> be two cones in R*. K; C Ks. Then if y* is
K-efficient it is also K -efficient. Tllustrate this ,large cone - fewer efficient points“ result

graphically.

7. Let f: R® — R be the criteria in a multi-criteria optimization problem. Show that any

optimal solution z* of the problem

lexmi e
exmin(f1(2),.... , fq(2))
is Pareto optimal.
8. Prove that (aY)eg = a(Yeg) where Y C R™ is a nonempty set and « > 0.

9. Show that a function f : R* — R? is ]Rg—semicontinuous if and only if f; : R* — R are

lower semicontinuous Vi =1,...,Q.
fi : R* — Ris called lower semicontinuous if f;(z*) < liminf f;(z) = [, where [ satisfies
T—T*

Ve>0 3U(z*e)

st. f(x)>l—-¢ VzeU(z*e) and
JzeU(z*e) f(z)<l+e

—~~



10.

11.

12.

13.

14.

15.

Let Y C R™ be a convex set. The recession cone (or asymptotic cone) of Y, Y, is defined

as
Yo:={deR":Jyst.y+adeY Va>0}
i.e. the set of directions in which Y extends infinitely.

a) Show that Y is bounded if and only if Y, = {0}.

b) Let Y = {(y1,92) € R? : yo > y?}. Determine Y.
A set Y C R” is called

e R? -closed, if Y + R} is closed and

¢ R} -bounded, if Y, N (=R} ) = {0}.
Give examples of sets Y C R? that are

o R? -compact, R -bounded, not R% -closed.

o R2 -bounded, R? -closed, not R? -compact.

Prove the following existence result.
Let § # Y C R? such that Y is Rf—compact. Show that Yy ex # 0.

(Do not use Corollary 2.10 and the fact that Yeg C Yy-efr)

Recall the definition of K-efficiency from Exercise 6:

y* €Y is K-efficient if Ay* €Y st. y ey + K.

Verify that Proposition 2.1 is still true if K is a pointed, convex cone. Give examples that
the inclusion Yk e C (Y + K)k.efr is not true when K is not pointed and when K is not
convex.

Let [a,b] C R be a compact interval.

Suppose that f; : R — R are convex Vi=1,...,Q.

Let

&™ = min {a:e[a,b]: fi(z) = min f,-(x)} and

z€[a,b]

M = max{x € [a,b] : fi(z) = min fi(x)}.

z€[a,b]

Using Theorem 2.16 show that

Xpar = | min 2M, max z™|U| max 2™, min 2M
i=1,...,Q i=1,...,Q i=1,...,Q i=1,...,Q
Xw-Par = min ", max zM
i=1,...,Q i=1,...,Q

Use the result of Exercise 14 to give an example of a problem with X C R where X p,, C

Xpar C Xy-par, With strict inclusions. Use 2 or 3 objective functions.



16.

17.

18.

19.

20.

Let X = {z € R:z >0} and fi(z) = €“,
L 0<z<5

fol@y=4 "
(z—52+§ z>5

Using the result of Exercise 14, determine Xp,,. Which of these points are strictly Pareto
optimal ? Can you prove a sufficient condition on f for x € R to be a strictly Pareto

optimal point of n}}nR f(x) ? Derive a conjecture from the example and try to prove it.
zeXC
Show that if £ is properly Pareto optimal in the sense of Borwein, then Z is Pareto optimal.

Consider the following example:

z={(z1,22) ER’ 131+ 22 >0} U {(z1,22) € R 1237 > 1}

U {(z1,72) ER® 125 > 1}

With f1 (.TC) = I, fz(x) = T3.
Show that x = 0 is properly Pareto optimal in the sense of Borwein, but not in the sense

of Benson.
Consider the problem

min  [(z1 —2)? + (22 — 1)%, 27 + (22 — 3)?]

st. gi(w) = 22-22<0
g2(r) = m+x2—-2<0
g3(r) = -2 <0

Use the conditions of Theorem 2.29 to find at least one candidate for a properly Pareto

optimal point & (in the sense of Kuhn-Tucker). Try to determine all.

Consider an MOP mi§ f(z) with Q objectives. Add a new objective f@*!. Is the Pareto
AS

set of the new problem bigger, smaller or the same than that of the original problem ?



Chapter 3

Weighted Sum Scalarization

In this chapter we will investigate to what extent an MOP

min(fl(x)a s ,fQ(EE))

zeX

can be solved by solving scalarized problems of the type
Q
min > X; fi(z)

TEX £
=1

In terms of our classification, this problem is written as

where (), -) denotes the scalar product in R?.

(3.1)

(3.2)

Again, we will focus on the objective space Y. We shall see the relations between solutions of

scalarized problems and Yeg, Yy. e and properly efficient points.

Let Y C R9. For a fixed A € R? we denote by

Opt(A\,Y):={y" €Y : (A\y") = inf (\,y)}

inf
yey

Opt(A,Y)

44 A
Opt()\,Y)

g {y : (\,y) = const.}
0 i LA S R e R
0 2 4 6 8 10 12

Figure 3.1: Opt(),Y)

39

(3.4)



It is obvious that we can assume |[A|| = 1, usually > \; = 1, A; > 0. As we already know,
sometimes we have to assume that all A; > 0. So we distinguish:

S¥)= U Opt(AY)= U Opt(A,Y) (3.5)
A€intRY %>XI>=01
and So¥)= U Opt(\Y)=
AeRF\{0}
Obviously S(Y) C So(Y).

S

U Opt(A,Y)
X >0
Z}\iZI

3.1 Scalarization and Efficiency
Theorem 3.1.

S(Y) CYeq.
Proof:

Assume y* € S(Y) = HAER& Ai >0 s.t.
Suppose yf ¢ Yer = Jy' €Yy >y}

Q
Aiy; <
i=1
Vi=1,.
= \Niy! > Ay} and strict inequality for one i, since A; > 0.
—N E
i

Q Q
Ayl > D0 Ay é Contradiction.
=1 i=1

Q
Aili
— =1
, @ and strict inequality for one .

Theorem 3.2.

Yerr C So(Y) when Y is an Rg -convex set.

O
In order to prove this result, we need a separation theorem.
Theorem 3.3.

Let S1,S5 C R9 be nonempty convex sets. Then I z* € RO s.t.

inf (z,x*) > sup {z,z*)
z€S1 z€Sy

and sup (z,z*) > inf (z,z*)

TEST

TESs
with normal x*.

(3.7

(3.8)
if and only if ri(S1)Nri(Sse) = 0. S1 and Sy are said to be properly separated by a hyperplane
Remark.

dimension dim(S;) < Q.

ri(S;) is the relative interior of S;, i.e. the interior in the space of appropriate

(z,z*) =0

Sa

Figure 3.2: Properly Separated S; and S,



Proof of Theorem 3.2. Lety* € Yog = y* € (Y—I—Rﬁ)eH = (Y—I—Rg —y*)ﬂ(—ﬂkﬁ) = {0}.
Both sets are convex and the intersection of their relative interior is empty.

By Theorem 3.3 3 XA € R¥ s.t.
Ay+d—y")>0>(y,—d) VyeY, deR}, d €]

Now (A, —d') <0 Vd € Rf = X; >0 (choose d' = (0,...,0,1,0,...,0)).
On the other hand

(My+d—y*) >0 implies (take d = 0)

Ny) > (Ay*) Vyey

= y* € Opt(A,Y) C So(Y).

So for (Rf—) convex sets, we have the inclusions
S(Y) C Yer C So(Y). (3.9

It is possible to find examples where both inclusions are strict, see the Exercise 22.

Theorem 3.1 can be extended by the following Proposition.
Proposition 3.4. If y* is the unique element in Opt(\,Y) for some A € ]Rf then y* € Yeg.

Proof: Exercise 22.
O

In the next two sections we will discuss which subset / superset of Yog is described by S(Y)

respectively So(Y).

3.2 Scalarization and Weak / Proper Efficiency
Theorem 3.5. So(Y) C Yyet-

Proof: Let A € R , Z)\ =1, \; > 0and y* € Opt(\,Y).

— E/\zy@ < E/\zyz VyeY.

Supposey ¢Y eg = Jy*eY vy <y’ Vi

= E Aiyh < Z Ayl since 34 : A; >0 é Contradiction
i=1 i=1

For convex sets we can prove the converse inclusion.

Theorem 3.6. IfY is ng -conver Yy.er = So(Y).



Proof: We only have to show Yy eg C So(Y).
We observe that Yy e C (Y + int ng)w_eg. (Proof is the same as that of Proposition 2.1)
Soif y* € Voot = (Y +intRY —y*)N(—intRE) = 0.

~ S
~~

convex

Therefore we can proceed exactly as in the proof of Theorem 3.2 to get A € IR? S.t.

Q Q
D oAyr <) iy Vyev.
i=1 i=1

(Note that the 0’s in the choices of d',d in the proof of Theorem 3.2 can be replaced by
arbitrary small €.)

O

We will now deal with properly Pareto optimal points in the sense of Benson / Geoffrion and

denote the set of properly efficient points by Y e

From Theorems 2.22 and 2.28 we immediately derive

Corollary 3.7. S(Y) C Y,.en-

As a generalization of Theorem 2.23 we can show the converse inclusion for IR? —convex sets.
Note that if X is convex and all f; are convex then ¥ = f(X) is a convex set.

Theorem 3.8. IfY is IRSE -conver Ypex C S(Y).

Proof: Let y* € Yj.cq-
= cl(cone(Y + RS —y*)) N (-RY) = {0}.
From Proposition 2.25 cl(cone(Y + ]R? —y*)) is a closed convex cone.

We show 3 A € int RE s.t.
(\,d) >0 VYde cl(cone(Y +RY —y*)) = K (3.10)
Then, since Y — y* C cl(cone(Y + ]Rf — y*)) we especially get
Ay-y") 20 VyeY
= Ay =y VyeY
= y*eSY)
Proof of the claim (3.10):
Assume no such A exists. Since both int Rf and K :={peR" : (ud) >0 Vde K}

are convex sets we apply Theorem 3.3 again to get z* € Rf, z*#0and f €R s.t.
(*,uy < B \'/,ueintRf
(x*,;)>B VpekK°
Using d = M\d', A = oo we get 5 = 0.
= (z*,p) <0 V,ueinthf
= zF <0 Vi (use,uz(s,...,e,},a,...ﬁ),5—>0)

=  z* e -RY\ {0} (3.11)



Let K :={z€R" : (z,u) >0 Vpe K}, weshow K° CclK =K.

Then, since
* e K% = z* €K (3.12)

Finally (3.11), (3.12) = z* € K N (—]R?), z*#0 é Contradiction
Therefore the desired \ exists in (3.10).
Proof of K° C clK = K:

Let z € R", z ¢ K. Using Theorem 3.3 once more we get zg € R”, z9 # 0, a € R with
(d,m9) >a Vde K and (z,79) < a. Then0 € K —= a <0 = (z,z0) < 0. Taking
d=MXd', A\ = oo weget (d,zo) >0 Vde K = 1z € K°.

So {(z,7¢) < 0 implies = ¢ K% hence K C K.

O
Example 3.1. Y = {(y1,92) : ¥> + 92 < 1}
Yveﬁ‘z {(y17y2) : y% +y% = ]-7 U1 S 07 Y2 S 0}
Yoo = Yer \ {(5), (%))}
Y Y
Yerr Ypeff
Figure 3.3: Yeg and Yy, e
But (—1,0) and (0, —1) are unique solutions of
in A A 3.13
2%1{/1 1Y1 + A2y ( )
for A = (1,0) and A = (0, 1), respectively, and therefore contained in Ye.
Our results up to now are
S(Y) C Yp_eﬁ‘ and So(Y) CYyerr (314)
in general and
S(Y) = Yperr C Yer C Yyyer = So(Y) (3.15)

when Y is Rf—convex.

Therefore, a characterization of Y is not possible. But we can show that Y}, g is dense in Yeg.

Theorem 3.9. IfY #0 is Rf -closed and Rﬁ -convex we have

S(Y) C Yo C A S(Y) = Yo (3.16)



Proof: The only inclusion we have to show is Yeg C cl S(Y).
Since Yeg = (Y + Rﬁ)eff and S(Y)=S(Y + ng), we only prove it for a closed convex Y.
Wlog we use § = 0 € Yoq.
Case 1: Y is compact convex.
Choose X € int Rf and C(g) :== el + ]Rf for e > 0.
If ¢ is sufficiently small  C(g) N B(0,1) is nonempty. So both Y and C(¢) N B are

nonempty, convex compact.

B(0,1)

Figure 3.4: Illustration of the Proof of Theorem 3.9

Applying the Sion-Kakutani minimax Theorem 3.10 we get the existence of y(e) € YV
and A\e) € C(e) N B(0,1) such that

A y(e)) < (Me),y(e)) < (ule),y) YyeY VAeCl(e)NB(0,1) (3.17)

Theorem 3.10 (Minimax Theorem of Sion-Kakutani).
Let C, D C R™ be nonempty compact convex sets and ® : C' x D — R be a continuous

mapping s.t. ®(-,y) is convex ¥V y € D and ®(x,-) is concave ¥V x € C. Then

magr iy ¥e.0) = mig s ®(e.y) 9

Proof: See [SW70, p.232].

We use C = C(e)N B(0,1), D=Y,and & = (-,-).

From (3.17) using 0 €Y = {(\y(e) <0 VAeC()NB

Y is compact = 3 sequence e¥ = 0 s.t. {y*} = {y(e")} >y YV if k — oo.
For any A € intRf NB(0,1) F£>0 s.t.

AeC()NB(0,1) Ve<z = (\y*) <0

for k large enough.

Therefore (A,7) <0 VA €intR¢ = 7€ —RY.

So 7 <0 but since § =0 € Yog we get y = 0.

Now we showg =g =0€clS(Y).

So let \F := % € int RY NGB(0,1) where A(e*) is the A associated with ¥ and y(e*)
to satisfy (3.17).



Therefore we have (A\¥ y(e*)) < (A\F y) Vy €Y ie. y*F =y(eF) c Opt(\F,Y) C S(Y)
since 7 = lim y* consequently § =7 € c1 S(Y).

Case 2: Y is closed convex (not necessarily compact)
Again let § = 0 € Yeg.
Y N B(0,1) is nonempty, convex compact, 0 € (Y N B(0,1))es-
Case 1 = I {N\} C inth, [IAF|] = 1 and y* € Opt(\¥, Y N B), y* — 0.
We show that y* € Opt(A*,Y"), which completes the proof.

N

3

2_

Y
yk
[ = N T T
-2 Q ¥ 2 3 4
B(0,1)
)

Figure 3.5: Illustration of the Proof of Theorem 3.9

Note that for k large enough y* € int B (since y* — 0) and suppose Iy’ € Y (A\F,y') <
(A5, %)

= ay' + (1 — a)y* € Y N B for sufficiently small o

= A\ ay + (1 —a)y*) = a0k, y") + (1 — a)(NF, %) < (A*,y*) contradicting y* €

Opt(AF,Y).
O
Example 3.2. [ABB53]
The inclusion cl Y, C Yo is not always satisfied.
V'i={(1,92,93): (1 = 1)+ (32— 1)* =1, 1 <1, 2 <1, y3 = 1}
Y = conv(Y' U {(1,0,0)})
113_ y2_ Y3 Yo
2 ]
Y
1
r T I T r T
1 2 Y1 Al U

Figure 3.6: The Set Y in Example 3.2



Y is closed, convex ¢ = (1,0,1) ¢ Yo because (1,0,0) < §. From Theorem 3.8 Y, e =
S(Y).
We show that for all 7 € Y’ with 7y <1, 7y <1, T € Y, enr.
Let 7= (1-cosf,1—sinf,1) for 0<O< 7%
p=(1—a)(cosh,sinb,0)+ a(0,0,1) 0<a<l sopé€ int]Rf
Let’s look at {(u,y — 7) y=(1-cosf',1—sinf',1), 0<6 <%

(u,y—7) = (1—a)[cosb(cosf — cosf') + sinf(sinf — sin§')]
= (1-a)(1— (cosfcosb' +sinhsinh")) (3.19)
= (1-—a)(1—cos(d—6")) >0

(1,(1,0,00—7) = (1—a)[cos’d —sinf(1 —sinb)] —

= (1—a)(l-sinf)—a >0 forsmalla« (3.20)

So by convex combinations of (3.19) and (3.20) we get (u,y—7) >0 Vy €Y andy € S(Y).

Furthermore, for § — 0 we get 7 — ¢ which is therefore in ¢l S(Y).

To conclude this section, we present some results of the Kuhn-Tucker type.
We already have Theorem 2.29, necessary conditions for KT proper efficiency and Theorem
2.31 (Geoffrion = KT under the constraint qualification).

An immediate consequence:

Corollary 3.11. If & is properly Pareto optimal in Geoffrion’s sense and the KT constraint
qualification is satisfied at & then the condition of Theorem 2.29 holds.

For the missing link in the relations of proper Pareto optimality definitions, we use the single

objective Kuhn-Tucker optimality conditions.

Theorem 3.12. Let f,g; : R* — R be convez, continuously differentiable functions and

suppose that 3 2 € X, b\ > 0 such that

V() + é A\;Vg(#) =0 (3.21)
i 3jg;(#) = 0 (3.22)

then & is a locally, thus globally, optimal solution of rré1§ f(z), where X = {z € R"

9j(x) <0, j=1,...,m}.

Proof:  See e.g. [BSS93].

Q
Using f = Y. fi;fi(&) we have the following result:
i=1



Theorem 3.13. Let X ={z € R" : gj(x) <0 Vj=1,...,m}. Assume f;,g; : R* - R

are convez, continuously differentiable functions and for € X 3 >0, A >0 s.t.

Q mo
_2:1 WV fi(Z) + Z:l A;Vyg; ()=0 (3.23)
i= ji=

]:

then & is properly Pareto optimal in the sense of Geoffrion.
Q R
Proof: Let f = Y ;Vfi(x), which is convex. By Theorem 3.12 & is an optimal solution
i=1

Q
of Irél§ > ifi(x). Since i; >0 Vi =1,...,Q by Theorem 2.23 % is properly Pareto
T i=1
optimal in the sense of Geoffrion.

O

Corollary 3.14. Let fi,g; : R* — R be convez, continuously differentiable functions and
suppose T is properly Pareto optimal in the sense of Kuhn-Tucker. Then Z is properly Pareto

optimal in the sense of Geoffrion.

Proof: Theorem 2.29 and Theorem 3.13.

Finally, we can discuss KT conditions for weak Pareto optimality.

Theorem 3.15. Suppose that the KT constraint qualification is satisfied at & € X. Then
if & is weakly Pareto optimal there exists i € R® and AER™ s.t.

Q m
D) DMV Y Nigi(#) =0 (3.25)
i=1 j=1
i) D Xjgi(@) =0 (3.26)
j=1
W) >0, A>0 (3.27)

Proof:  Let & € Xy.par- We show 3 h such that

(Vfi(2),h) <0 Vi=1,...,Q

(3.28)
(Vg;(#),h) <0  VjeJ@) :={j:g;(&) =0}

Suppose that such an h € R™ exists.

From the KT constraint qualification 3 continuously differentiable 6 : [0,%] — R" such that
8(0) = z, g(6(t)) <0, 6'(0) = ah, a > 0. Since fi(8(t)) = fi(&) + t(Vfi(£),ah) + 6(t) and
using (Vfi(Z),h) <0

= fi(6(t)) < fi(#) Vi=1,...,Q and for t sufficiently small, which contradicts & €
Xw-Par-

It remains to show that (3.28) implies the conditions. To that end we use Motzkin’s Theorem

of the alternative.



Theorem 3.16. Let B,C,D be @ xn, kxn and 0 X n matrices, respectively. Then

either
a) Bz« 0, Czx<0, Dz=0 has a solution z € R" (3.29)
or b) Biy'+C'?®+ D'y® =0 has a solution y' >0, y> >0 (3.30)

Proof: See [Man69, p.28].

O
Vfi(#)
Therefore, using B = , C = (ng(:?:))jeJ(i) , D=0,8=nh, y' =4, y2 =
Viq(#)
5\, y® =0 in the proof of Theorem 3.15 completes the proof.
O

Corollary 3.17. Under the conditions of Theorem 3.15 and the additional assumption that

all functions are convex 1), ii), i) in 8.15 are sufficient for & to be weakly Pareto optimal.

Proof: ~ By Theorem 3.15 (3.25) - (3.27) imply that & is optimal for rrél§ > i fi(x).
x
Since fi € Rg \ {0} this implies f(£) € Opt(f, f(X)). By Theorem 3.5 we get f(&) €
So(Y) CYyer = % € Xu.par-
O

We close the section by examples showing that Geoffrion’s and Kuhn-Tucker’s definitions are

something different.

Example 3.3 (Kuhn-Tucker, but not Geoffrion).
X={zeR:2>0} fila)=-2> fol&)=2> fo=(-f)

wleo

ISH
I

[en]

fi f2 fa
1 4 4
-1 1 2 ¥ )l _
14 2 2
_2 1- 1-
_3_ | T T | T | | T | T ‘ T T |
| -1 1 27 3 -2 -1 | 1 h
4 14 14

Figure 3.7: Objective Functions of Example 3.3

Kuhn-Tucker:

Vi = =2z Vfa(23) = 0
sz = 3.%'2 sz(

IS
S—r
Il
o



Choose ji; = fi2 =1, ) = 0 which satisfies the conditions.
Not Geoffrion:
Lete >0

[1(&) = fu(e) _ 0+¢€2 _ 110)00

fole) = fo(@) &2 -0

™

Example 3.4 (Geoffrion, but not Kuhn-Tucker).

Exercise 25.

3.3 Connectedness of Y.z and Xp,;

Y. not connected Y. connected

Figure 3.8: Connectedness of Yeg

Connectedness is especially important for finding a best compromise solution: The whole sets

Yot/ Xpar can be searched by moving slightly from a given point.

Definition 3.1. A C R is called not connected if it can be written as A = A; U A,,
with clA; N A2 = A; Ncl A = (), equivalently A is not connected if 3 open sets Oy, 05
s.t.ACOluOg,AﬂOlgé(i),ArWOg;é@,AﬂOlﬂng(Z).

Otherwise, A is called connected.
We use some facts about connected sets stated below.

Lemma 3.18.
a) If A is connected and A C B C cl A then B is connected.

b) If{A; : i €I} is a family of connected sets with (| A; # 0 then |J A; is connected.
13 i€l

Now we consider Opt(\,Y) and S(Y).
From Theorem 3.9 we know S(Y) C Yex C clS(Y). We prove connectedness of S(Y) in the

case that Y is compact.
Proposition 3.19. If Y is compact convex then S(Y) is connected.

Proof: Suppose S(Y) is not connected.
— 3 opensets ¥1,Ys s.t. ;iNSY) #0,i=1,2, Y1nY,NnSY)=0, S¥)CYiUYs.
Let M; := {A €intR? : Opt(\,Y)NY; #0}, i =1,2.



We know that Opt(),Y) is connected (it is convex and every convex set is connected).
= M;={AeintR? : Opt(\,Y)CVi}, i=1,2
= MiNM,=0.
But since Y; N S(Y) # @ we also have M; N inth #0,i=1,2
and from S(Y) C Y1 UY> follows int IRE C My U M, (indeed, it’s equality)
By Lemma 3.20 M; are open —> int Rf is not connected. é Contradiction
O

Lemma 3.20. M; ={\ €int Rf : S(Y) CY;} in the proof of Proposition 3.19 are open.

Proof: We will show it for M;.
If M, is not open — 3 = M; and \* € intng \ My =M, k>1 st. LY
Let y* € Opt(\*,Y), k> 1.
So we can assume (taking a subsequence if necessary) that y* — § € Y, § € Opt(},Y)
[otherwise 3y’ € Y s.t (A, y') < (\,9) so by continuity we would have (\,y') < (AF,y*) for
sufficiently large k, contradicting y* € Opt(A*,Y)]
Now we have y* € Opt(A*,Y) c YanNS(Y)and ViNYaNSY) =0, soyk e Y VE>1.

Since Yy is closed = § = limy* € Y* or § ¢ Y7 contradicting \ € M;.

Theorem 3.21 (Naccache, 1978, [Nac78]).

If Y is closed, convex and Rf -compact then Y is connected.

Proof: Choose d € int Rf and define y(a) =a-d, a € R.
Claim: VyeR? Ja>0 st. y€yla)— ]Rg. If this is not true we have two convex sets
{y—ad : a>0}and —Rf which can be separated (Theorem 3.3).

/y

{y—ad:a>0}

vio) 9.+

Figure 3.9: Illustration of the Proof of Theorem 3.21

= JAeRY\ {0} s.t.

MNy—ad)>0 Va>0
(A-d)<0 VdeR}

= (\d)>0 Vd e IRSE, especially (X, d) > 0 because d € int ]Rg.

Then (A, y — ad) < 0 for « sufficiently large, a contradiction to the first inequality.



= Especially for y € Yoz we can choose & >0 s.t. y € y(&) — Rf.

= (y(8) —R) N Yer # 0.

Denote E(a) := [(y(a) — D) N Y]eg.

The claim above implies that Yeg = U E(a).

Because (y(a) — D)NY is compacg,zzsing Theorem 3.9 for E(a), Proposition 3.19 and

Lemma 3.18 a) we get that E(«) is connected.

But noting that E(a) D E(&) for a > a, i.e. r>] E(a) = E(&) # 0 we have expressed Yo
a>é

as union of a family of connected sets with nonempty intersection. Lemma 3.18 b) = Y

is connected.

Figure 3.10: Illustration of the Proof of Theorem 3.21

Let us now turn to Xy par- We shall show that X, par is connected under convexity assumptions.

Let X C R™ be convex and compact and f; : R — R be convex. We will use Theorem 3.6

(Yi-et = So(Y)) and the following fact:

Lemma 3.22. Let f : R* — R be convex on the closed convex X. Then the set {x € X

f(z) = inf f(x)} is closed and conver.
zeX
We also need a theorem providing a result on connectedness of preimages of sets.

Theorem 3.23. Let VCR*, W C R® s.t. V is compact and W is connected, and let
g:V xW — R be continuous. Denote by X (w) = argmin{g(v,w) : v € V}. If X(w) is

connected ¥ w € W then |J X(w) is connected.
weWw

Proof: ~ See [War83].

Theorem 3.24. Let X be a compact convex set and assume f; : R* — R are convex. Then

Xw-Par 1S connected.



Proof: Since f; are continuous and X is compact, Y = f(X) is compact.

Using Theorem 3.6 we have Yot = So(Y), in terms of f this means

Q Q
Xy-Par = U {z* : Z)\z’fi(ﬂf*) < Z/\ifi(x) VzeX}
=1 =

Q
AeRY

U xm

Q
pYS: 3

Noting that (A, f(x)) is continuous on Rf x X, Rf is connected, X is compact, and that by
Lemma 3.22 X () is nonempty and convex (hence connected) we can apply Theorem 3.23

to get: Xy-par is connected.

O
Remark. The proof works in the same way to see that Xp,. is connected under the same
assumptions, if we take into account Theorem 3.9.
Obviously, Theorem 3.24 has consequences for Yy .-efr/ Yesr-
Corollary 3.25. If X is convex compact and f; : R* — R are convex then Yeg and Yy e
are connected.
Proof: The image of a connected set under a continuous mapping is connected.
O

3.4 Exercises to Chapter 3

21. Prove that if Y is closed then ¢l S(Y) C Sp(Y).
Hint: Choose sequences Mg, y* s.t. y* € Opt(\,Y) and show that A\, — A and y* — §

with § € Opt(\,Y), A > 0.

22. Prove Proposition 3.4, i.e. show that if y* is the unique member of Opt(A,Y") for some
A € RS \ {0} then y* € Veg.

23. Give one example of a set for each of the following situations:

i) S(Y) C Yer C So(Y) with both inclusions strict.
ii) Denote by S{(Y) = {y' €Y : ¢ is the unique member of Opt(\,Y), A € Rf \{0}}
SEY)USHY) = Yer = So(Y)

24. Let Y = {(y1,92) : 47 +y3 <1} and K = {(y1,92) = 92 < 3u1 }-

a) Show that § = (—1,0) is properly efficient in Benson’s sense,
ie. (cl(cone(Y + K —9))) N (—K) = {0}.

b) Show that § € Opt(A,Y) for a A ¢ int R? and check that this A € K*° = {u :
(u,d) >0 Vde K}.



Conclusion: Proper Pareto optimality is related to scalarisation with vectors in K*°.

25. Let
X = {(x1,22) ER’: =21 <0, =22 <0, (21 — 1)° + 2, <0}
fi(x) = =31 —222+3
folz) = —x1—3z3+1

Graph X and Y = f(X). Show that & = (1,0) is properly Pareto optimal in Geoffrion’s

sense, but not in Kuhn-Tucker’s. (You may equivalently use Benson instead of Geoffrion.)

26. Let K C R? be a cone.

The polar cone K° of K is defined as follows:
K°:={z€eR?:(z,d) >0 VdeK}.

Prove the following;:

a) K° is a closed convex cone containing 0.
b) K C (K°)° =: K°*°

¢) K1 C Ky = K$ C K}

d) K° = (K*°)°

27. Comparing scalarizations with respect to polar cones and K-efficiency. Let K be a convex
pointed cone and X € K°.
Optc (1Y) = {1 €Y () = inf () |-

y

a) Show that Sk-(Y):= | Opt(\,Y) C Ykwes

A€EK°\{0}
where y* € Yiyeg if (V +int K —y*)N(—intK) =0
b) Let K* :={z € R? : (z,d) >0 Vde K\{0}}.

Show Sgkso (Y) = U Opt(/\, Y) C Y oft-
AEKs©

Hint: Look at the proofs of Theorems 3.5 and 3.2, respectively.

28. A function f: R" — R is called quasi-convex if f(az + (1 — a)y) < max {f(z), f(y)}
Vae(0,1).
(It is known that f is quasi-convex iff L<(f(x)) is convex for all .)

Give an Example of a multi-criteria optimization problem with X C R convex, f; : R - R

quasi-convex s.t. Xp,, 1S not connected.

Hint: Monotone increasing/decreasing functions are quasi-convex, especially those that

look like






Chapter 4

Methodology

In this chapter we will discuss methods to find Pareto optimal solutions. We have already

investigated in detail the most popular, namely weighted sum scalarization. First we discuss

lower and upper bounds for efficient points.

4.1 Bounds on the Efficient Set

We assume that Xp,r and Yes are nonempty.

eff

Figure 4.1: Y, Yo, y° and y?v

We are interested in the range of possible values of the objective functions.
A lower bound is given by the optima of each objective individually.
Let

0 e . — . i
y; = jof fi(z) = inf y,

Then y° = (y7,... ,4g) is called the ideal point of the problem IIél)I(l(fl (z),...
x

As a consequence we have y? <y; Vy € Yeg.

55

» fo(2)).



An upper bound is defined as follows

yi = sup fi(x) = sup y; (4.2)
z€Xpar YEYerr
yN =N, ... ,yg ) is called the Nadir point of the multicriteria optimization problem.

Obviously y; < yN V y € Yegr.

The ideal point is found by solving @ single objective optimization problems.

But determination of yN would require knowledge of Xp,. There is no known method to de-
termine 3™ for a general MOP.

An estimation is as follows. Assume that minimizers of f; over X exist. Then
(D) Determine 2%, i =1,...,Q s.t. fi(z?) = mig fi().
TE

@ Make the following payoff table

fr

fq

the ideal point 39

@ Let gjflv = i:I}'la.XQ fo(=), the largest element in each row is used as estimate for yflv .

L]

The problem is that "V may over- or under-estimate y" .

Example 4.1 ([KSS97]).

min —11zy —-1lzz3 —-1224 —925 —92¢ +927
min —11z; —11z3 —-924 —1225 —92 +927
min —11z; —-11z —Ox4 -9z —12x¢ —12z;

st. T14+To+T3+Ta+T5+T6+T7=1

SE,’ZO

The individual minimizers are
for f; zy=1,2}=0,i#4
for fo z2=1,22=0,i#5
3

for fs zi=1,23=0,i#6 or To=1,7 =0, i # 7.

7



Payoff table

h

2

fs

By solving appropriate weighted sum problems it can be seen that all z where z; = 1 for
one i € {1,...,6} and 0 else are (properly) Pareto optimal.
z° = (0,...,0,1) is obviously weakly Pareto optimal, as a minimizer of one objective.
So choose = = (1,0,...,0) € Xpa, = f(z)=(0,-11,-11)
z=(0,1,0,...,0) € Xpay = f(z)=(~11,0,—11)

z=1(0,0,1,0,...,0) € Xpor — f(z)=(-11,-11,0)
Therefore y™ = (0,0,0) (No Pareto point has positive objective values.)

We observe that

1. With 72 we overestimate y{¥ (arbitrarily far: replace +9 by C' > 0 arbitrarily large)
The reason is: Z° is weakly Pareto optimal. If we choose Pareto optimal points to

determine z?, overestimation is impossible.

2. With 2 we underestimate y¥ severly (arbitrarily far, if we modify the cost coefficients).

In general, it is difficult to be sure that z! are Pareto optimal. The only case where y~ can
be determined is for @) = 2. Here the worst value for y, is attained when y; is minimal and

vice versa.

@ Solve nél§ fi(x), Hél? f2(x). Denote the optimal objective values by v, y9.
X €T

(@) Solve min f(x) s.t. filz) =40.
Solve rrgQ fi(z) st. fa(x) = 99.

Denote the values by yd¥, 31V, respectively.

3 N = (uVN,yY) is the Nadir point.

If Q > 2 we don’t know, which objectives to fix in Step @
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Figure 4.2: Feasible Set of Example 4.1

4.2 The e-Constraint Method

In this method, only one objective is minimized, whereas constraints are put on the others. It

was introduced by Haimes et.al. in 1971, [HLWT1].

is replaced by
min fi(z)
Pk (E)
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Figure 4.3: Solution of Py ()

Proposition 4.1. Let & be an optimal solution of Py(g) for some k then % is weakly Pareto

optimal.

Proof: Assume & ¢ Xypar = Jz € X st. fi(z) < fi(2) Vi=1,...,0Q, especially
fe(x) < fr(2). Since fi(z) < fi(%) < €;, © # k, z is also feasible for P,(¢). We have a

contradiction to optimality of Z.

If the solution of a Py (g) problem is unique, we get Pareto optimal solutions:
Proposition 4.2. Let & be a unique optimal solution of Py(€) for some k then & € Xpa;.

Proof: Suppose there exists an x € X, f;(x) <e; V j# k. Because & solves Py (g), from
fe(@) < fr(Z) it must follow fr(z) = fr(Z), thus from uniqueness, x = Z, therefore & € Xp,;,.

O
In general, Pareto optimality of Z is related to Z solving Py(¢) for all k.
Theorem 4.3. # € Xpa, if and only if 3 €RL s.t. & solves Pp(é) for allk=1,...,Q.

Proof:

», = “ Let € = f(Z). Assume % does not solve Py (€) for some k.
= Jdz€X st. fu(®) < fu(@) and fi(z) <& = f;(2) Vj#k
= % ¢ Xpar é Contradiction

» <= Suppose & ¢ Xpyy = Jge{l,...,Q}, Iz e X st. f(z) < fy(z), fi(z) <
fi(@) j#4q
Since & solves Py (€), in particular & is feasible for P, (€), we have f;(z) < f;(&) < é&;Vj #
q.
So z is feasible for P,(€). Therefore f,(x) < fq(£) contradicts the assumption = & €
Xpar-



If we denote by & = {e : {z € X : fj(z) < ¢j, j # k} # 0} and Xy(e) = {z :

z solves Py(g) for € € £} we can write (using Theorem 4.3): For each ¢ € R

Q
() Xk(e) C Xpar C Xi(e) VE=1,...,Q (4.4)
k=1

We can relate solutions of Py (e) problems to solutions of weighted sum problems:

Theorem 4.4.

a)
b)

Proof:

4.3

Q
Suppose & solves I%l% S Aifi(x). If A > O there exists € s.t. I solves Pi(€).
z i=1

Suppose X is conver and f; : R* — R are convex. If & solves Py(£) for some k, there

Q
exists A € Rf \ {0} such that & solves ng% > Aifi(z).
redi=1

Q
Let &€ = f(#). From the choice of & we have > \;(fi(z) — fi(£)) >0 Vze X.

=1
Suppose % does not solve Py(¢). Then 3 2% € X st. fr(2°) < fr(2) and f;(2°) <
fi@) i#k.

—> because A\ >0

Ne(fi (@) = ful#) + 3O M(fie®) = fi@) <0 &
—_— 4 —_——
<0 7k <0
Suppose Z solves Pj(¢). Therefore 3z € X st. fr(z) < fr(®), fi(z) < fi(#) <
Q
Using convexity of f; == Ip€eR?, p>0 st. > pi(fi(z) - fi(£)) >0 VzeX.
i=1
Since p € IR? \ {0} we get
Q Q
D pifi(x) 2> pifild) VoeX
i=1 i=1
so A = p is the desired weight vector. (Here we again used the generalized Gordon

Theorem 2.24, see also [Man69, p.65].)

Benson’s Method

This section is from a paper by Benson, 1978 [Ben78]. In this method z° € X is chosen, and

efficiency of f(z°) is tested by maximizing the sum of f;(z°) — fi(x).

Q
max Y&
=1
st fi(2®) —ei— fi(x) =0 P (2°)
E; Z 0

reX
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Figure 4.4: Ilustration of Benson’s Problem

The main result is as follows:
Theorem 4.5.  z° € X is Pareto optimal iff the optimal value of P.(z°) is 0.

Proof: Yegi=0 < =0 Vi=1,...,Q, becauseg; >0
— fi(@") =fi(x) Vi=1,...,Q
= BreX fizx) < fi(a®) f(z)# f@@°)
— 1% € Xpq.
O

P.(z°) is useful for testing z° for Pareto optimality, especially in linear problems, as we will see

in Chapter 5.

Proposition 4.6. If problem P.(z°) has a finite optimal solution and this optimum is at-

tained at (x*,e*) then z* € Xpar.

Proof: ~ Suppose z* ¢ Xpay = 3 & s.t. fi(@) < fi(z*) Vi, [f(&)< fy(z*) for some gq.
So for &; = fi(z°) — fi(z), (&,€) is feasible for P.(z°) because ¢&; = f;(z°) — fi(2) >

Q Q
fi(@®) — fi(z*) =er >0and Y & > ) e} as & > ¢} contradicting the choice of (z*,e*).
i=1 i=1
|

The question what happens if there is no finite solution of P (z°) is answered by Theorem 4.7.

Theorem 4.7. Assume that f; are convez, i =1,...,Q and X C R" is convezr. If P-(z°)

has no finite optimal value then Yy e = 0.

Proof:  Since no finite optimum exists YV M >0 37 € X st. f(2°) — f(Z) > 0 and

m

> (=) - fi() > M (4.5)

i=1
Suppose that z* is properly efficient (Geoffrion). By Theorem 2.23 = 3 \; >0 i =

Q
1,...,Q s.t. z* is an optimal solution of mig > Aifi(x)
zeX ;1



Corollary 4.8.

Proof:

= i)\i(fi(x)_fi(m*))zo VzelX.

Especially, f: Ai(fi(2®) — fi(z*)) > 0.

Lot Am = min{A1, ..., Aq} > 0.

Given M >0 let M := L.

45) = 37 st. f;(@®) —f;@) >0 Vj=1,...,Q and

Q
A S~ @) > 1 Am = M

= M < 3 ()~ £ < 3 N6 - @) ¥ M 20

Choosing M = f: Xi(fi(20) — £i(T)) we get

Q = Q
;)\i(fi(mo) - fi(z*)) < ;)\i(fi(mo) — fi(z))

Q _ Q f o
= ;)\i fi(@) < ; i fi(x*) Contradiction

We can combine Theorems 4.7 and 3.9 to get

f(X) is Rﬁ -closed. Then if P.(z°) has no finite optimal solution Yeg = 0.

CIYp_eﬂ‘ =) = Yer = 0.

Example 4.2.

min (22 —4,(z - 1)*)

st. —2—100<0

max €1+ &y

st. —z—100<0
P.(z°) (292 —4—¢; —22+4=0
(@ - —eo—(z—-1)*=0
£1,€2 2 0
First, choose z° = 0.
max €1 +¢€&s9
st. —z—100<0
PE(O) IL'2+61=0 =>61:—£L'2<0

l—gy—(z-1)*=0

€1,€2 Z 0

Assume X C R™ is convex, f; : R* — R are conver Vi=1,...

,Q and

From Theorem 3.9 = Yex C c1S(Y) = clY,enr. From Theorem 4.7 Y, e = 0 =



Wesee: ¢1=0 — =0 = e2=0

Therefore z° =0, £ = (0,0) is the only feasible point for P.(0).
From Theorem 4.5 2% =0 € Xp,r.

From Exercise 14 we know that Xpar = Xs par = Xw-par = [0, 1].

Let us check 2° = 2, to see if 2° ¢ Xpa, can be continued.

max &j -+ é&s

st. —xz—100<0

PE(Q) —;L'2+4—61 =0
1—((1}—1)4—62:0
61,6220

Here we have 0<¢1 <4, 0<e<1.

Therefore the optimal value is bounded, and according to Proposition 4.6 an optimal solution

of P.(2) defines a Pareto optimal point.

Because £ = 0, g1 =4, g2 = 0 is feasible for P.(2), the optimal value is nonzero. Theorem

4.5 implies 2° = 2 is not Pareto optimal.

f2(z)

Figure 4.5: Objective Functions of Example 4.2



4.4 Compromise Solutions — Approximation of the Ideal

Point

In Exercise 29 we have seen a characterization of X, p,, by solutions of né1§ ) maXQ Aifi(z), A\ €
e X im

i=1,...,
int Rﬁ. However, we had to assume in§( fi(z) > 0.
zC
We can avoid this, if we use the ideal point y° from Section 4.1. The idea is to find a point &
s.t. f(Z) is close to y°.

We use a norm as measure of distance.

: .0
gggllf(m) vl (4.6)
12 + — Teff
10 +
1 |
8 | Y
7 |
6 I
4—/ |
|
_ o 1
y° Iy h
Iy

Figure 4.6: Sets {y: ||y — ¥°|| < ¢} for Different Norms: I1,l> and

We define two properties of norms:

Definition 4.1.

i) Anorm | -] : R® — Ry is called monotone, if for a,b € R? |a;| < |bs], i =
L...,Q  [lall <[b]l holds, and [a;| < [bi] Vi=1,...,Q = llall <[[b]|-

i) |- | s called strictly monotone, if [ai < [bi, i = 1....,Q and 3k st || #
lbe] = |lal| < ||b]| holds.

We obtain the following results:

Theorem 4.9.

a) If || - || is monotone and & solves (4.6) then & is weakly Pareto optimal. If & is unique

then & € Xpyr.

b) If || - || is strictly monotone and & solves (4.6) then & is Pareto optimal.



Proof:

a) Suppose & solves (4.6) and & ¢ Xy -par
= JreX st filz)< fi(z) Vi=1,...,Q
= 0< file) —y) < fil@) -9, i=1,...,Q
— If(@) =1l < IIf(@) —4°| ¥ Contradiction
Now suppose Z is unique, Z ¢ Xpar.
= dzeX st filz) <fi(2) Vi=1,...,Q and Ik s.t. fr(z) < fr(Z).
= 0< fi(z) —y? < fi(2) — y? with strict inequality once.
— 1I7() = 51l < I£(&) —4°]I, from optimality of 2.
—> equality holds é the uniqueness of Z.
b) Suppose £ solves (4.6) and £ ¢ Xpar
= dzeX filx)<fi(@) i=1,...,Q and I ks.t. fr(z) < fr().
= 0< file) =) < fi(@) —yi i=1,...,Q and 0 < fi(z) — 93 < fu(®) — 43
— |If@) — 3 < [If(&) —4°| & Contradiction

]
Q »
Remark. Let || -]l = |- llp, ie- llyll = { D0 |yslP) for 1 < p < oo. Then || ||, is strictly
i=1
monotone for 1 < p < oo and monotone for p = co (]| ||, is called the 1,-norm). Note that
19lloo = , max _ |yi].

The full strength of the method is obtained when we use weighted norms. We shall only consider

l,-norms now. We consider the following problems:

Q »
iy (5 with(o) - o0 ) ™)
min max_w;(fi(z) —y?) (N)

zeX i=1,...,Q

with w € RY \ {0}.

We obtain the following results:

Theorem 4.10. A solution & of (N,) is Pareto optimal
i) if it is a unique solution
i) wi>0 Yi=1,...,Q.
Proof: Assume £ solves (N;,") but & ¢ Xpar.
i) 3zeX filx)<fi() i=1,...,Q, fr(z) < fr(&) for some k.
Therefore = solves (IV,’), too é to uniqueness.
ii) From w; > 0 we have 0 < w;(fi(z) — y?) < wi(fi(2) —y?) Vi with strict inequality
for some k. Taking power p and summing up preserves strict inequality. é to Z solves

(V)-



Proposition 4.11. Let w> 0
a) If & solves (N2) then & € Xy par-

b) (NZ) has at least one Pareto optimal solution.

¢) If (N¥) has a unique solution &, then & € Xpar.

a) Z solves (N¥) and & ¢ Xy pa, implies F 2 fi(z) < fi(2) Vi=1,...,Q
= filz) =) < fi@) -y Vi=1,...,Q
= wi(fi(z) —4}) <wi(fi(@) —y?) Vi
= maxw;(fi(z) — y?) < maxw;(fi(£) — y?) é Contradiction
b) Assume that no solution of (N%) is Pareto optimal.
Suppose # solves (N2) = Iz € Xpy,
filx) < fi(&) i=1,...,Q with strict inequality for one k
= wi(fi(z) —97) Swi(fi(@) —y)) i=1,...,Q
= 1 is optimal for (NV¥) é Contradiction
c) follows from b)

O

The problem (N2) can be used to obtain all (weakly) Pareto optimal points. Let £ 3> 0 and
define y% = y® — . Then fi(z) >y Vze X, i=1,...,Q.

Theorem 4.12. € Xypar < Jw>0 s.t. T solves

. r _,,00
min max wi(fi(z) —y;") (4.7)

Proof:
» <= “ 1is the same as b) in Proposition 4.11.

y — “ Let w; = _fi(i)l—_o_o-y,- > 0.

Suppose Z does not solve (4.7) = Iz € X

@) ) =1
= fi(z) =y < fi(2) —y® Vi=1,...,Q
— fil@) < fi@) Vi=1...,Q ¥ tod€ Xypar

miaxwi(fi(ﬂf) -0 < max

To prove the main results about compromise solutions, we introduce some notation.
Let W:={w e R? :w; >0, Sw; =1} and W = 1iW = {w € R? : w; > 0, Y w; =
1}. Furthermore, for w € W and y € YV: w Oy = (w1y1,... ,wqyg). The set of best

approximations of y% is denoted for a certain weight w and norm || ||, by
Aw,p,Y) = {GeY:|lwo@—-y®)l,= Jnf [lwe (y - y*)lln} (4.8)

Av) = U U Awpy). (4.9)

weEWO0 1<p<co



We have seen before that

A(Y) C Yo C Yo = | A(w, 0,Y). (4.10)
weW?o

This result can be strengthened, as we show below.

Remark.

The family of /,-norms has the following properties:
lyllo <llyll, V1<p<oo VyeR?
ol = 9l P—o00 VyeR?

|| | is strictly monotone V1 < p < co.

Theorem 4.13 ([SNT85]).  A(Y) C Ypenr C Yo C cl(A(Y)) if Y is RS -closed.

Proof:

1. A(Y) C Yp_eﬁ':
Letj € AY) = Jwe W’ pe[loo) st. wo@-y®)l, < llwoly-y®)l, Vye

Y.

Suppose § ¢ Yy enr
= I{B} CR, {y*} C Y, {di} CRY s.t. By >0, Br(y*+d"—§) » —d, d € R?\{0}.

Distinguish two cases:
a) Br bounded:

Wlog 8 — B0 > 0
If Bo = 0 from y* + d¥ —j > y°° — § we have By (y* + d* — §) > Br(y*® — §) and thus

~~ ~~

—d —0
—-d>0 é Contradiction

If fo>0 = yF+df —§ — F2#0.
Y +Rf isclosed = j— £ eV +R} = Fy°€Y st. §>¢°
By strict monotonicity = |lw ® (§ —y°%)||, > [[w © (¥° —y°)|l, Z to choice of 9.

b) Br unbounded:

Wlog B o0 = y*+d*—§—0
Because §; >4 Vi=1,...,Q 3IB>0 s.t. Ogg)—%—y00<g—y00 VB>8

From strict monotonicity

d —
llwo (- 5 YOy <llwe @G —y" ), VB> 5.

and since B = 00 = fBr > B V k> ko sufficiently large

k

— Jlw® @ +d* — )|, = lw o @F +d* — g+ L +5- L =D,
<

L lwod i
llwo @* +d* = Pllp+ =—3= +lwo @ = 5 = ™),
—0 ~

= Jlwo @ +d* —yO)p, <llwo G -2 -yl <llwe G-y,

But since y* + d¥ — y% > y* — 490 > 0 this implies

lw® (7 =5l < lw® @ - y™)ll, ¥ to choice of §



2. Yo C cl(A(Y)):
Let § € Yog. We show that Ve >0 Fy® € AY) st. [|y° — il <e.
Claim: Jy' > ¢ st. |ly—9lleo <& Vye(y — ]RSE) ny.
Assume there is no such y'.

Then 3{§*} CR?, §* >4, ¢* > gand Yk Ty* € @ -RYNY st |y* —g] >e.

{v:lly—dllec <e}

Figure 4.7: {y : ly — lloc < £}

Y +RY is closed and Y € 4%+ RS (bounded below). We can assume wlog y* — 5+d, 5 €
Y, d>0and [|[§+d — §lc > . On the other hand 7 +d € (§ — RY) N (Y + RY) = {g},
since § € Yegr é Contradiction.
So we have y° < § <y’ and 3w e W, >0 st. v -y =p(5-, ... ,t)
= wi(fi —y°) <wi(y; —y°) =8 Vi=1,...,Q
= [lwo @ - y*)lw < B
Let y(p) € A(w,p,Y), this exists as ¥ + ]Rg is closed.
— 06 60) ~ 1) < 0o @) -y, < wo 6 - ™),

2w © (G- )l < 8-
Thus ||lw ® (y(p) — ¥°°)||ec < B for p sufficiently large.
= 5P -y <L =y —y® Vi=1,..,Q
= y(p) <y
= ylp) e —RY)NY
So y° := y(p) for sufficiently large p has the desired properties.

O

The proof of the second inclusion suggests that, if Y is not Rf—convex, p has to be large. The
value of p seems to be related to the degree of nonconvexity of Y. Note that if Y is Rf—convex,
p = 1is enough, and in general p = oo works. See also Exercise 34.

We note that the inclusion cl A(Y) C Yesr may not be true.



Example 4.3. Let Y :={yeR : 92 + (1o —1)><1JU{y e R? : ¢y >0, y2 > —1}

Figure 4.8: cl1A(Y) ¢ Yenr

Here 0 ¢ Yerr but 0 € cl A(Y).

It should also be noted that if y%° is replaced by y° in the Theorem 4.12 then not even Y, e C

U AW 00,Y) is true. See Exercise 35.
weWO

Remark.

e The result of Theorem 4.13 is also true, if 4%° is replaced by y°, with a modification of

the proof.

e Note that only properties (P1)-(P3) have been used. Theorem 4.13 is true for any family

of norms that satisfies such properties. This fact has been used by various researchers.

To conclude the section, we present an example.

Example 4.4. We solve Example 4.2 with the compromise solution method:

min(z? — 4, (z — 1)%)

—z—100<0
Let w = (3,1) and p=2.
The ideal point is y° = (—4,0). We choose y°° = (=5, —1).

So (N') is

min \/%(aﬂ — 4452+ L((z 1) +1)?
st. —x—100<0

Noting that minimization of the term under the root is enough we denote

9(@) = 3@ +1)?+5((z-1)* +1)?
(@2 +1)- 224+ ((z—1)*+1)-4(z —1)3
= 208 +2r+4(x—1)"+4(z - 1)°

%\
—~
8
~—
Il

From ¢'(z) = 0 we obtain z* = 0.40563 € Xp,, which is Pareto optimal.



4.5 Exercises to Chapter 4

29.

30.

31.

32.

33.

34.

35.

Consider rrélg (fi(z),..., fo(x)) and assume

0< inf fi(z) Vi=1,...,Q.

zeX

Prove that x € Xy_pa, if and only if z solves

min max \;f;(z
z€X i=1,...,Q ifi(x)

for some \ € int ]Rg.

Suppose & solves

Q
: £ i Q@
min ;:1 Aifi(x) with A € RY \ {0},

and that Z is the unique solution of this problem. Then 3 £ s.t. Z solves Py (¢) for all
k=1,...,Q.
(Corley’s method), [Cor80]

Show that # € Xpar if and only if 3 A € intRY and 3 & € R? s.t. # is an optimal

solution of

Q
min Zl i fi(@)
subject to f(z) <e.

Consider the following problem:

min —6.731 - 4:(1]2

min —I
S.t. 1 +xzo < 100
21 + 22 < 150
1,22 > 0

Use € = 0 and solve the e-constraint problem Pj(¢). Check if your resulting optimal

solution z* is Pareto optimal by Benson’s P.(z*) test.

Solve the problem of Exercise 32 by the compromise solution method. Use w = (%,1)
and find the solution of (N;’) for p = 1,2, c0.

Let Y ={yeR:y1+y2>1,0<y <1}

Show that § = (0,1) € Y, exr (Benson) but 3 w € W° s.t. § € A(w,00,Y), if 3° is used
in the compromise solution method.

Let Y = {(y1,y2) € R2 :y? + y3 > 1}. Show that 31 <p < oo s.t.

Yer = |J Aw,p,Y)
weW?e

Choose ¢° in the definition of A(w,p,Y).



36.

37.

A function g : R? — R is called strictly increasing, if for a,b € R? with a < b
(a; <bj,i=1,...,Q, a#b) gla) < g(b) holds.

Consider the following problem, where ¢ € R?, f: R* — R,

min  g(f(x))
s.t. zeX (Py.e)

flz)<e

Prove: If g is strictly increasing, then x € Xp,y <= J¢e s.t. x solves P, . with finite

objective value.

Show that Benson’s P.(z°) problem, the weighted sum scalarization with A € int ]Rf, the
compromise solution method and Corley’s method (see Exercise 31) can be seen as special

cases of (Py,c).






Chapter 5

Multicriteria Linear

Programming

5.1 Introduction

In this chapter we specifically address multiobjective linear programming programs. Most of
the material is based on Steuer, 1985, [Ste85]. Le. we assume X = {z € R” : Az =b, z > 0}

where A is a m x n matrix and
fz(.’L‘) = Cix 1= 1,... ,Q. (51)

The problem is therefore written as

min Cz
st. Az =05> (MCLP)
z >0

with a ) xn criteria matrix C. In terms of classification this problem is (X, C, R?)/id/(R?, <).
Since X and Y = CX are closed, convex we can apply all results that hold for convex MCOP,

especially
o S(Y)=Ypexr C Yeir CclS(Y) (Theorem 3.9)
e If 3yeR? st. CXCy+ R$ then Yeg is connected. (Theorem 3.21)
e If X is bounded, X, par is connected. (Theorem 3.24)

In fact, due to linearity, these results can all be strengthened.

Lemma 5.1. 20 € X is Pareto optimal <= the LP

max ely
s.t. Ax = b
P)
Cz+Iy = Cz°
z,y > 0

(et = (1,...,1), I = identity matriz) has an optimal solution Z,§ with § = 0.

73



Proof:  This is Theorem 4.5 for (MCLP).

|
Lemma 5.2. 2° € X is Pareto optimal iff the LP
min  ulb+ wtCz°

st ulA+wtC > 0 (D)

w > e

has an optimal solution 4, w with 4tb + wtCx°® = 0.

Proof: (D) is the dual of (P). Therefore Z,4 is optimal in (P) <= (D) has an optimal

solution 4, and et§ = 4'b + w'Cx® = 0.

O
Using these Lemmas we can prove:
Theorem 5.3 (Isermann, 1974, [Ise74]).
S(Y) = Yog, ice. 2° € Xpor <= 3 A€intRY st MCz® < MNCzx VazeX.
Proof:
, <= “ is always true, see Theorem 3.1.
, = ¢ 20 € Xp,, TEZ52 (D) has an optimal solution 4, s.t. ‘b= —w!CxP.
Also 4 is an optimal solution of the problem
min{ulb: utA > —w'C} (P2)
= an optimal solution of the dual of (P2)
max{—w'Cx : Az =b, z > 0} (D2)

exists. Since u'b > —ww!Cz V u feasible in (P2) and V z feasible in (D2) and 4b =
—t!Cx® = 20 is optimal in (D2). Because @ > e > 0 we can use A = .

(Note that (D2) is equivalent to minw!Cz, Az = b, z > 0.)
O
Consequently we have S(Y) = Yegr = Yp.err for MCLP and we can find Yer by weighted sum
scalarization with strictly positive weights.

In order to understand the following development of a multicriteria simplex method, we review

some results of linear programming. An LP is the following problem

min cz
st. Az =0» (LP)
x>0



We assume that rank A = m. A nonsingular submatrix B of A is called basis.

We split A = (B,N) and z = (zg,zxN) and obtain

(B,N)(zp,zn) =b (5.2)

< zp=Bl(b—Nzy) (5.3)

Setting z; = 0 we have z = B~'b. zp is a basic solution, and a basic feasible solution

(bfs), if zg > 0. The values ¢ = ¢ — cg B~! 4 are called reduced costs.

Linear Programming Theory has the following results:

e If X # () then a basic feasible solution exists.
o If, furthermore, X is bounded then an optimal basic feasible solution exists.
e A Dbfs is optimal <= ¢>0.

We also need some geometry:

Let d € R" then
Hy, ={z eR":{z,d) =r} (5.4)
is called a hyperplane. A hyperplane defines closed and open halfspaces

H,,:={zeR":(z,d) <r} (5.5)

H;, ={z€eR":(z,d)<r} (5.6)

For X C R" a hyperplane H is called supporting hyperplane at X (H supports X at 7) if
TeXNHand X CH,,.

Now let X be the intersection of finitely many closed halfspaces. Then X is called polyhedron
(e.g. X ={x: Az =0, z > 0} is a polyhedron).
A polyhedron X is called a polytope if X is bounded.
T € X is called an extreme point of X if

T=azx; +(l—a)ze, z1,22€X, 0<a<l = z1=2a9
Assume that X # 0 is a polyhedron, X = {z : Az < b}.
Let r € R™ be such that Ar < 0. Then r is called a ray.
A ray is called an extreme ray if there are no rays r',r?, r! # X2 VA€ R, st. r=
s(rt+1%).
The dimension of a polyhedron X is the maximal number of affinely independent points of
X, minus 1. Let H be a supporting hyperplane of polyhedron X. Then F = X N H is called
a face of X. A face F is itself a polyhedron, thus dim F' is defined. We consider only faces F
with ) # F # X. An extreme point is a face of dimension 0. A face of dimension 1 is called
an edge (if it is bounded). A facet is a face of dimension dim X — 1.
Finally, a face F is called maximal, if there is no face F’ of higher dimension s.t. F C F', thus

facets are maximal faces.



From linear programming it is known that

e Bfs correspond to extreme points of X.

e If X # () and the LP is bounded, the set of optimal solutions of an LP is a face of X or
X itself.

e For each extreme point & of X, 3 c € R® s.t. Z solves mincz, z € X.
Now we take a look at parametric linear programming.

Let ¢!, c? be two cost rows and consider a combined (parametric) objective

=Xt + (1 - (5.7)
A parametric LP is
min c*z
st. Azx=b (PLP)
z>0

with the objective to find an optimal solution for each value of A.
The algorithm to do so is as follows:

Phase I:  Determine, if possible, an initial bfs (extreme point of X)
Phase IT: ~ Solve the problem with c'z, to obtain an optimal bfs (extreme point)

Phase III: Vary A from 1 to 0, solve the corresponding problem to obtain optimal bfs for all
A

From c* = Ac! + (1 — A\)c? we get
- =e' + (1 - N)e
Now suppose Bis an optimal basis for some A. Then ¢* > 0 and we distinguish 2 cases

1.) @ >0. Then, forall \ < A " > 0. Thus B is an optimal basis for all 0 < X < X.

2) 3j st. € <0.Then IA<A st. ¢ <0.

We determine the critical value, where the first ¢; becomes negative:

5 _ oyl -2 _ - -2 1
¢ =A¢;+(1—-Agcj=0 forjst. ¢;<0,¢;>0

e .
So let ' := max ——4; where J = {j : 23 <0, ¢} > 0} be the critical value. Then B is optimal
jed &G

for minc*z, Az =b, z >0 for all A € [N, /A\] and at A\’ new bases become optimal.

Let j' be the index at which the critical value X' is attained. Then we choose j' as pivot column,
and pivot it into the basis. Proceeding in this way, we generate a sequence of critical values
1=A! >... > A\ =0 and optimal bases B,... , B? which define optimal solutions of (PLP)

for all \. Essentially, we have solved a bicriteria linear program.



Example 5.1.  Consider the LP with ¢! = (3,1), ¢ = (—1,-2) and

min c*z
s.t. T < 3
3z1—22 < 6
1,22 > 0

The initial Simplex Tableau of this problem, with ¢! optimized is

-1 -2 0 0 0 | &
1 0 o0 o0 |¢ & = (3,1,0,0)
1 0] 3
-1 0 1 6
Therefore J = {1,2} and X' = max{ﬁ, 2} =2, j' = 2. We pivot z into the basis and get
-1 0 2 0 6 |
3 0 -1 0| -3]|¢ ¢ =(1,0,3,0)
0 1 1 0 3
0 1 1] 9

Now J = {1} and X' = 1. We pivot z; into the basis to get

o o I |9 @
0 0 -2 —-1|-12|¢ ¢ =(0,0,, %)
0 1 1 0 3
1 0 3 3| 3
Now J = () and the algorithm stops.
The result is:
B = (a3, a4), = = (0,0) is optimal for A € [2,1]
B = (az,a4), = = (0,3) is optimal for X € [1, 2], and

3
B = (a1,a2), = = (3,3) is optimal for X € [0, 1].
Graphically:

Z2

5 _ - = min—l:cl —2.7]2

—————— min 3z + 1zs

T T "

4 5 T1

Figure 5.1: Feasible Set and Objectives in Example 5.1



4 6 8 10 12 14

Yerr Cz3

—-10 -

Figure 5.2: Criterion Space in Example 5.1

Note that in the sequence 1 = A! > A2 > ... > AP =0 an optimal bfs zg: is always optimal for
all X\ € [A\%, \iT1]. Therefore, for each A%, 2 < i < p—1 we have two optimal bfs z: and zpi-1.
= conv(zpi,gi-1 ) is optimal for A = A%
Because Y = Cz is a polyhedron, and here Y C R? and because Yeg C 6Y, we know that Yog
must consist of efficient edges (and possibly extreme rays).
Therefore

p—1

1) Y;ff = U COIIV(JEBi—1,;L'Bi)
=2

2.) Yeg is connected.

The general case of () criteria will be investigated now.

5.2 Theory of MCLP

We consider

min Cz
st. Az =0» (MCLP)
z>0

For ) € intR¢ we denote by LP()\) the LP min MCz. We denote by C = C — CgB 1A the
TE
reduced cost matrix with respect to basis B, and R = Cny (Cp = 0 always). Proofs will often

use Theorem 5.3 in this section.

Lemma 5.4. If Xpar # 0 then X has a Pareto optimal extreme point.



Proof: From Theorem 5.3 Xpa, = S(Y), Xpar # 0
= JAe€intR, s.t. rrélg MCz has an optimal solution
x

= mi§ ACz has an optimal extreme point solution, which is Pareto optimal, by Theorem
(4SS
5.3.

O

Definition 5.1. B is called efficient basis iff 3 A\ € ]Rg s.t. B is an optimal basis of
LP()) (in particular, B defines a bfs zp).

Lemma 5.5.

a) Let B be an efficient basis and xzp be the extreme point of X associated with B, then

rB € XPar-

b) Let x € Xpar be an extreme point. Then 3T efficient basis B associated with x.

a) B efficient basis = 3 X € int ng s.t. B is optimal basis for LP(\) = zp is an

extreme point optimal solution of LP()) Theorem 5.3, B € Xpar

b) Theorem 5.3 =—> I A €int ]Rg s.t. z is optimal for LP(X).

Since z is an extreme point = 3 optimal basis of LP(A) associated with z.

O

Definition 5.2. Two bases B and B are called adjacent, if one can be obtained from the

other by a single pivot step.

Definition 5.3.

a) Let B be an efficient basis. z; is called efficient nonbasic variable if 3 A € int Rf

s.t. MR >0, Mri =0, where 7 is the j-th column of R.

b) Let B be an efficient basis and z; an efficient nonbasic variable. Then a feasible pivot

from B with z; entering the basis is called an efficient pivot w.r.t. B and z;.

Lemma 5.6. Let B be an efficient basis and x; be an efficient nonbasic variable. Then any

efficient pivot from B leads to an adjacent efficient basis B.

Proof: Let z; be the entering variable
= I xeintR? st. ARp >0, Ml = 0. Thus z; is a nonbasic variable with reduced
cost 0.
= Reduced costs do not change after a pivot with z; entering.
= MRz >0and /\tr% =0 i.e. Bisoptimal for LP()) and therefore an adjacent efficient
basis.

O



If zp and 4 are the Pareto optimal extreme points associated to adjacent efficient bases B, B ,
we see from the proof of Lemma, 5.6 that both z g, x 5 are optimal for the same LP()). Therefore
the edge conv(zp,z3) C Xpar-

To check, whether a nonbasic variable z; at efficient basis B is efficient, we can perform a test.

Theorem 5.7. Let B be an efficient basis and x; be nonbasic. All feasible pivots (even with

negative pivot elements) with x; entering are efficient pivots iff

max e'v e=(1,...,1)
st. Ry—rié+Iv = 0
0 <y
0 < 94
0 < v
has an optimal value of 0.
Proof: By Definition 5.3 a) z; is efficient nonbasic variable, iff
min 0x = 0
s.t. RX > 0
(rix = 0 < (F)IA<0 = (=r)IA>0
IN > e
A >0

has an optimal objective value of 0 (i.e. is feasible).

The dual of this is

t

max e€e’'v

st. Ry—ri§+Iv+It = 0
0 <y
0 < ¢
0 < ot

But since in an optimal solution of this, ¢ will always be zero, this is exactly

max elw

st. Ry—rid+Iv

Il
(en]
—
w2
)
~

y,6,v > 0

Note that (SP) is always feasible (y,d,v,t = 0).

Therefore we have

e z; is an efficient nonbasic variable <= (SP) is bounded

e z; is an inefficient nonbasic variable <= (SP) is unbounded



Definition 5.4. Two efficient bases B and B are called connected, if one can be obtained

from the other by performing only efficient pivots.

We prove that all efficient bases are connected using parametric programming. Note that a

single objective optimal pivot is an efficient pivot.
Theorem 5.8. All efficient bases are connected.

Proof:  Let B and B be efficient bases. Let A, \ € int Rﬁ be the weights for which B, B are

optimal for LP(\), LP()).

Consider the parametric LP with objective
O =BMC+ (1-B)NC, ®elo,1].

Let B be the starting basis (optimal for ® = 1). After several parametric programming

pivots, we get a basis B optimal for LP(X). (Note that A\* = ®A+ (1 — @)X € int Rf V)

All intermediate bases are thus optimal for some A*, i.e. efficient. All pivots are efficient

(see the parametric programming description in Section 5.1).

If B =B we are done. Otherwise B can be obtained from B by optimal (efficient) pivots.
O

Xp,, may contain some unbounded edges U = {z : £ = 2* + ur?, p > 0} where r/ is an extreme
ray and 2’ is an extreme point of X.

An unbounded edge always starts at an extreme point, which must therefore be Pareto optimal.
Let B be the efficient bases associated with that extreme point. Then the unbounded Pareto
optimal edge is detected by an efficient nonbasic variable, in which the column contains only
nonpositive elements.

We conclude that the set of all Pareto optimal extreme points and unbounded edges can be
found by efficient pivots from efficient bases !

This observation is the basis of the multicriteria simplex algorithm.

After the algebra, let’s have a look at the geometry:

Definition 5.5. Let FF C X be a face of X. F'is called a Pareto face, if F' C Xp,,. It is

called maximal Pareto face, if there is no Pareto face F' of higher dimension s.t. F' C F'.
We now look at the structure of Xpas.

Lemma 5.9.

a) Suppose I X € int ]Rf s.t. NCx =const YV x € X then Xpy = X.

T
b) Otherwise Xpar C | F;, where F; is a face of X and T is the number of faces of X .
t=1

Proof:

a) obvious, because X!Cx = const Vz e X

b) follows from the fact that Xpa, C §X (because Yo C 0Y and C : X — Y is linear) and
T

the fact that 60X = |J Fi.
=1

O



Now let F' be a face of X. Then any x € F can be written as a convex combination of its

extreme points plus a nonnegative combination of extreme rays.

Let € F and z',... ,2"* be the extreme points of F, r!,...,rP the extreme rays of F, then
k P
x:Zam’%—Zmr’ Ogaigl,Zaizl,Ogm. (5.8)
i=1 i=1

A point in the relative interior of F' can be written as
zen(F) < z=)Y aag'+) pr' 0<e;i<1, Y a;=1,0< (5.9)
i=1 =1

(see e.g. [NW88] Chapter 1.4, Theorem 4.8)

Figure 5.3: A Polyhedron with Extreme Points and Extreme Rays

Suppose that () # Xpa, # X. Then we obtain
Theorem 5.10. A face F C X is a Pareto face iff 3 2° € ri(F) s.t. z2° € Xpa,.

Proof:
, = “ is by definition

» <= Let 2° € Xp,,. We show that 3 \° € int ]R? s.t. F is optimal for LP(A?).
First, by 5.3 3 X0 s.t. 20 solves LP(\?), in particular LP(A°) is bounded
= M\'Czi > \0'(C20 Y extreme points z* and
N'Cri >0 Y extreme rays rf
(Note that: 3j:X°Cri <0 <= LP(\%) is unbounded)
Suppose I zi, i€ {1,...,r} st. A'Czi > \'Ca®

k P
t t s t
= \'Cz0 = a; A0z + 3 i A0°Cr?
=1~~~ T j= R
=T savicge T >0

k t t é_ .
> Y X020 = \0°Cxf Contradiction

i=1
— N'cri = \'Ca.
Therefore all extreme points of F are optimal for LP(X°). Now, since A\°’Czi = A\°’Cz®
we get V ri either y; = 0 or \'Cri = 0.
= F is optimal for LP()\?).



Therefore, Xp,, is the union of maximally efficient faces, each of which is the set of optimal
solutions of LP()\), for some \ € int I[{{f.
If we combine this with the fact, that the set of Pareto optimal extreme points is connected by

Pareto optimal edges, we get:
Theorem 5.11. Xpar is connected (therefore Yesr is connected, too).
Proof: Theorem 5.8 and Theorem 5.10 for Xp,,. Yer is connected because Xp,; is and C is

linear, thus continuous.

Example 5.2.

5 2

3 ' =(0,1,-2)
2 =(0,-2,1)

—Vclz -Vlz

Figure 5.4: Xp,,; for Example 5.2

We use the fact that z € Xpyr <= I X € int Ri s.t. z solves LP()\), i.e. 3 ¢* =
Act + (1 —X)c? s.t. z solves LP()\) with objective c*. We use the negative gradient of the
objective c¢* to determine the optimal facet.

So Xp,r has a 2-dimensional face and a 1-dimensional face, which are maximal Pareto faces.

5.3 A Multicriteria Simplex Algorithm

Consider MCLP:

min Cz
st. Az =05b (MCLP)
x>0



Then one and only one of the following cases can occur:

. X=0
2. X?é@ but XPa,rZQ
3. XPar#@

Thus, our algorithm will have three phases:

Phase I:  Determine an initial extreme point (bfs) or stop with the conclusion that X = 0.

(This can be done by the usual Phase I simplex method).

Phase II:  Determine an initial Pareto optimal extreme point (efficient basis) or stop with the

conclusion Xp,, = 0.

Phase III: Pivot among efficient bases to determine all Pareto optimal extreme points and

extreme rays.

Phase 1II:
After Phase I, we have a feasible point z° € X. Then we proceed in two steps:
First, one LP is solved to check if Xp,, = 0 or the MCLP has a Pareto optimal extreme point.

Then a weighted sum LP()) is solved, for an appropriate A, to obtain a Pareto optimal extreme

point.
We solve
max ely
s.t. Az = b
(P1)
Cx+Iy = Ca°
z,y > 0

This problem is always feasible (x = 2%,y = 0), so there are two possibilities:
1. The objective is unbounded. Then from Theorem 4.7 of Benson’s method Yy.er = 0.

Theorem 5.3 = Xpa, = 0.

2. Otherwise the objective is bounded. Let (z*,y*) be an optimal solution. From Propo-
sition 4.6 z* is Pareto optimal. However, we do not know if it is an extreme point of

the original MCLP.

So far we know:

(MCLP) has a Pareto optimal solution <= (P1) has an optimal solution.

By the duality, (P1) has an optimal solution if and only if

min  ulb + wtCx°

st. ulA+wiC > 0
(P2)

w > e

u 2z 0

has an optimal solution u*,w* with u*'b + w*'C2° = ey* (see Lemma 5.2).

Therefore u* is an optimal solution of



min ufb

(P3)
st. uwlA>—w*tC
which is just (P2) for w = w* fixed.
Therefore the dual of (P3)
max -w*'Cz
st. Az = b (P4)
z > 0

has an optimal solution, and therefore an optimal extreme point, which by Theorem 5.3 is

Pareto optimal.

So we have (in addition to Lemma 5.2):

The MCLP has an efficient solution if and only if (P2) has an optimal solution. So in Phase II

e we solve (P2), if (P2) is unbounded or infeasible, Xp,, = 0.

e otherwise we use the optimal solution w* of (P2) and solve (P4) to obtain an initial

Pareto optimal extreme point.

We can now summarize the multicriteria Simplex algorithm, where we use the following nota-

tion:

LB is a list of bases to be processed
LPX is a list of Pareto optimal extreme points
LPU is a list of Pareto optimal unbounded edges

Multicriteria Simplex Algorithm

(D) a) Solve the problem

min e'%
st. Ax+Iz = b
z,z > 0

b) If the optimal solution is nonzero, STOP, X = {.
Otherwise go to @ with a feasible solution ° of MCLP.

(2 a) Solve the problem

min  u!b+ wtCa®

st. utA+wtC

v
o

w > e

b) If the optimal solution is unbounded, STOP, Xp,, = 0.

Otherwise let (u*,w*) be an optimal solution, go to c)



c)

Solve

min w*'Cz
st. Ax = b
z > 0

Add the optimal basis to LB, the optimal extreme point in LPX, go to @

If LB =@ STOP: all Pareto optimal extreme points and unbounded edges are found.

Otherwise choose a basis B in LB, remove it from LB, go to b)

For all nonbasic variables z; for basis B solve
max e‘v
st. +Ry—rié+Iv = 0

0 < y v

and do the following steps:
i) Add all efficient bases adjacent to B to LB, if they are new.
ii) Add all extreme points corresponding to adjacent efficient bases to LPX, if new.

iii) Add all unbounded Pareto optimal edges emanating from xg to LPU

(unbounded edges are characterized by an (zp,r7) pair).

Go to (3) a)

Remark.

1.

The list LPX can be determined after termination of the algorithm from LB, if a copy
is kept till the end.

Because the Simplex algorithm may require an exponential number of steps (in terms

of problem size m,n, @), the same is true for a multicriteria Simplex algorithm.

The test for nonbasic variable efficiency can be replaced by several other more efficient,

but more complicated methods (see Steuer, 1985, [Ste85] for a survey).

The question, whether a polynomial time MCLP algorithm is possible depends on the
number of Pareto optimal extreme points. There may exist exponentially many. Two
results recently published are interesting:

Benson, 1997, [Ben97]; numerical tests (10 random examples with inequality con-

straints)
n  m @ | #Pareto optimal points
30 25 4 | average 7245.9
50 50 4 | average 83780.6
60 50 4 > 200000




Kiifer, 1998, [Kiif98]
The expected number of Pareto optimal extreme points for a certain family of randomly

generated MCLP is polynomial in n,m, Q.

However, examples with all (i.e. exponentially many) extreme points Pareto optimal

can be constructed for all (n, m, Q)-choices.

We close this section with an example for the multicriteria Simplex algorithm.

Example 5.3.
min —x; —2x9
min —x; +2x3
min T —3
s.t. T +xo < 1
x5 < 2
T —T3 +z3 < 4

@ o1 = x9 = 3 = 0 is an initial feasible extreme point
@ a) Solve

min  uy + 2us + 4us

1 101 00 -1 -2 00 00
st. uwt| 0 10010 |+w]| -1 0 2 0 00 > 0
1 -1 1 0 0 1 1 0 -1 0 0O
w > e
the constraints are equivalent to
1 10 -1 -2 0
-t 0 10 |-w| -1 0 2 |+Is = 0
1 -1 1 1 0 -1

g
|
~
~
I
o

u,w > 0
Phase I (artificial variables)
0 0 o -1 -1 -1 0 0 O 1 1 1 0 0 0|-3
-1 0 -1 1 1 -1 1 0 O 0 0 0O 0 0 O 0
-1 -1 1 2 0 0O 0 1 o0 0 0 0O 0 0 O 0
0 0 -1 0 -2 0 0 1 0 0 0O 0 0 O 0
0 0 0 1 0 o 0 o0 0 -1 0 0O 1 0 O 1
6o o o o0 1 o O O O O-1 o0 O 1 0| 1
o o o o o0 1 0 O O O O-1 0 0 1| 1

After 5 Simplex operations obtain



0 1 5 0 0 0 O 1 0 1 0 0 original

1 2 4 0 0 0 O 0 O 0 0 0 objective
o o 1 0 0O O O O o o o o0 1 1 0] O
o 1-2 o0 o0 0 1 -1 0 -1 1 -1 1 -1 1|1
o o o 1 0 O O O O-1 o0 0 1 0 0|1
o o o o o0 1 0 O O O 0 -1 0 0 -1|1
i1 -1 o 0 O O0-1 0 -1 0 0 1 0 0] 2
o 0 -1 0 0 0 0 0 1 0 -2 1 0 1 —-1|1
o o o o 1 0 O O O O0O-1 1 0 1 0|1

We delete the artificial variables, because the LP is feasible, replace it with the orig-
inal objective and make 1 Pivot step (Pivot element indicated) to get an optimal

solution.

b) An optimal solution is w* = (1,1,1)

¢) Solve minw*'Cz, z € X

-1 -2 0 00 0|0
-1 0 2 00 0|0
1 0 -1 00 0|0 AR = (~1,2,1)
1 [1] o 10 0]1
0 1 0 01 0]2
1 -1 1 00 14
1 0 0 20 0]2
-1 0 2 00 0|0
1 0 -1 00 0|0 AR =(1,1,2) >0
1 1 0 100]1
-1 0 0 -110]1
2 0 1 10 15

LB ={(2,5,6)} LPX={z'=(0,1,0)}
(3®)a) B=(2,5,6) LB=0

Nonbasic variable ;. Solve the LP of the following tableau.

112—1000‘0 13200100
1 02 -1100/0 02201100
-1 20 [1]010|0 -1201010/0
1 -1 0 -100 1|0 01000110



The LP has an optimal solution, x; is efficient. From now on we will not display the
right hand side column, it is always 0.

Nonbasic variable 3.

1 1 2 -1 0 0 0
1 0 2 0100
-1 2 0 -2 010
1 -1 0 001
x4 is efficient.
Nonbasic variable z4.
1 1 2 -2 0 0 O
1 0 2 -2 1 0 0
-1 2 0 0 010
1 -1 0 0 0 01
T
LP unbounded, x4 not efficient.
i) 1 entering = x> leaving, basis (1,5, 6).
x3 entering = x4 leaving, basis (2, 3, 5).
LB = {(1,5,6),(2,3,5)}.
ii)
T(1,5,6) 0 -1 0 1 00 1
0 1 2 1 00 1
0O -1 -1 -1 0 0|-1
1 1 0 1 00 1
0 1 0 01 0| 2 22=(1,0,0
0 2 1 -1 0 1 3
T(2,3,5) 100 20 0| 2
-5 0 0 -2 0 —-2|-10
3 00 1 0 1 5
1 1 0 1 0 0 1
100 -1 1 0| 1 2%=(0,1,5)
2 01 1 0 1 5

LPX = {z',2?,2%}.

a‘) B = (17556) LB = {(25375)}

Nonbasic variable z2 = x; leaves, leads to (2,5,6), not new.



Nonbasic variable x3.

-1 1 1 -1 000 032 -3010
-1 0 1 0100 022 -2 110
2 1 -2 010 1 21 -2 010
-1 -1 -1 1 0 0 1 010 -1 001
T
LP unbounded, z3 is not efficient.
Nonbasic variable x4.
-1 1 1 -1 000 031 -2010
-1 0 1 -1 1 0 0 022 -2 110
2 1 -1 010 1 21 -1 010
-1 -1 -1 1 0 01 010 0 011
1
LP unbounded, z, is not efficient.
No new basis to add, go to a)
a) B=(2,3,5) LB=10
Nonbasic variable z .
-1 1 -1 1 0 00 0 3 -1 0 100
2 0 -1100 1 2 0 -1 100
-5 -2 -2 5 010 0 8 -2 0 5 10
3 1 1 -3 001 0 -5 0 9 -3 01
T
x7 is not efficient.
Nonbasic variable z4.
-1 1 -1 -1 0 0 O 2 20 -2 001
1 2 0 -2 1 0 0 1 20 -2 100
-5 -2 -2 2 010 100 001 2
3 1 [1] -1 001 311 1001

x4 is not efficient.
Nonbasic variable zg = x3 leaves, leads back to (2,5, 6).

No new basis to add.

a) ILB=190
STOP



We found 3 efficient bases and 3 Pareto optimal extreme points, with the following structure:

(1.5,6)
(2,$51, 6) /
N 55

Figure 5.5: Efficient Bases and Corresponding Extreme Points

Z3
6 .CL'3 XPa,r
20 = (0,0,0)
5] #! = (0,1,0)
z? = (1,0,0)
44 2 z® = (0,1,5)
z 4
2 = (1,0,3)
3 z? 25 = (0,0,4)
2 —
_.3
¢ 1 /—c1
o}
22
0, I I T
Y 1 2 3 4 0

—c2

Figure 5.6: Feasible and Pareto Set in Example 5.3

5.4 Identifying Scalarization Vectors and Pareto Faces

The set A = {\ € int ]Rf : > A = 1} can be subdivided into regions, which correspond to
those weighting vectors A, which make a certain face Pareto optimal. I.e. for each Pareto face

F 3 Ar CA s.t. Fisoptimal for LP(X) for all A € Ap.

First assume ACz is bounded over X V X € A.

Let F be a Pareto face, and 2, 4 = 1,...,t be the set of all extreme points of F. Because F
is Pareto, from the proof of Theorem 5.10 3 Ap € A s.t. F solves LP(Ar). Thus z!,... 2
solve LP(\p).

Hence we can apply the optimality conditions. Let R’ be the reduced cost matrix of a basis
associated to z'. Then z? is optimal <= M'R! > 0.

Therefore the face is optimal iff XR! >0, i =1,... ,¢t.

Proposition 5.12. The set of all \ s.t. Pareto face F solves LP()) is defined by the system

Q ) .
SSA=1, \; >0, XXR' >0 V z¢ extreme points of F.
=1



Example 5.4.  In Example 5.3 let us consider the Pareto face conv(z!,z?).
1 0 2
x' corresponds to basis (2,5,6), R'=| -1 2 0
1 -1 0
-1 0 1
z? corresponds to basis (1,5,6), R?= 1 2 1
-1 -1 -1

So we get the system MR >0, XXR2 >0, eiA=1, A >0

Al A +A3 > 0

22 —A3 > 0
A1 =X +A3 =0

2 > 0

2 =X3 > 0

A1 +X A3 > 0
or A1+ —A3 > 0

20 —=A3 > 0
A+ A3 = 1

A+ =3 > 0
A13)‘23)\3 2 0

A A A3 1

)\17)‘27)\3 Z 0

or, eliminating A3, A2 = %, O<M < %
In total A’s corresponding to Pareto faces are as shown in Figure 5.7.

Az

Figure 5.7: Weights to obtain Pareto Faces in Example 5.3

If X is not bounded, it may happen that Xp,, contains unbounded faces, i.e. I A € A such
that LP(A) is unbounded.

In this case there exists, additionally to Ap C A for all bounded Pareto faces F, a subset A, C A
with Ao = {A € A : LP(}) is unbounded}.

Let us finally turn to the determination of maximal Pareto faces.

Let B be an efficient basis and N? be the nonbasic variables, which allow feasible pivots. Let

J C NP then we have:

Proposition 5.13. All variables in J are nonbasic efficient variables <=
max elv
st. Ry—R'6+Iv = e P(J)
y,6,v > 0

has an optimal solution, where R’ denotes the columns of R pertaining to variables in J.



Proof: Exercise 40.
O

Let us call J C NP a maximal set of efficient nonbasic variables, if A J' C N?, JC J'

s.t. P(J') has an optimal solution.

Now let B%, i = 1,...,k be all efficient bases and J*J, i =1,... ,k, j =1,... 1 be all maximal
index sets of efficient nonbasic variables for basis Bi. Furthermore let E! = (B rt), t =
1,...,k' denote unbounded Pareto edges, where rt is an extreme ray. Let Q*/ = B*U J%J and
select a minimal number of index sets representing all Q7.
Le. choose UL,... ,U° s.t.

1) For each Q%7 3 U® st. Q% C U?

2) For each U®* 3 Q% s.t. U® = QM

3) AU U ,s#s st. UscCU
Then for s € {1,... ,0} let

I; = {ie{l,...k} | B CU®} (5.10)
I = {te{l,...k'}| B cU*} (5.11)
and define
Xs:{w|$:Zaixi+z,uj""jazai=1= a; >0, p; >0} (5.12)
el tels

Then we have
Theorem 5.14. X5 CXpar Vs=1,...,0.

Proof: By definition 3 Q% s.t. Q% = U®.

= P(Q% \ B%) has an optimal solution

= Its dual
min et
S.t. RN > 0 DP(J)
-R'A > 0
A > e
has an optimal solution \*
= all z € X? are optimal solutions of LP(\*)
— X° C Xpar-
O

Theorem 5.15. If v € Xpay = Ise€{l,...,0} st. zeX°.

Proof: Let x € Xpa;.-
—> I maximal Pareto face F' s.t z € F.

Choose an extreme point 2 of F and let B* be a basis associated with z?.



Let I be the index set of efficient bases adjacent to B? and J° := { U Bl} \ Bi.
lel
Because all B! are efficient and adjacent to B?, J° is a set of efficient nonbasic variables at

Bt

= P(J°) has an optimal solution.

—> J maximal index set of efficient nonbasic variables J s.t. J° C J.
Then by the further construction of index sets

= z € X°® for some s € {1,...,0}.

O

If all efficient bases are nondegenerate, X ® are exactly the maximal Pareto faces of X. Otherwise

some X° may not be maximal.
This method is from Isermann, 1977, [Ise77].
Example 5.5. In Example 5.3:

B'={2,56}  JY'={1} Jh? = {3}
B? ={1,5,6} J3 = {2}

B? ={2,3,5} J3 = {6}

QY ={1,2,56} Q'?={3,2,5,6}

Q> =1{1,2,5,6}

Q> ={2,3,5,6}

U''=1{1,2,5,6} U?=1{2,3,5,6}

I} ={1,2} 17 ={1,3}

There are no unbounded edges.

X'={z | aqz! + awx? : 01 + a2 = 1, a; > 0} = conv(z!, z?)

X2 ={z | qa' + ao2® : au + a2 = 1, o; > 0} = conv(a!,2?)

Thus Xpar = X1 U X2, as expected.

5.5 Exercises to Chapter 5
38. Consider the parametric LP

min  A(—2z1 + 22) + (1 — A)(—421 — 3z2)
st. z1+2x2 < 10

X1 5

IN

1,2 Z 0

Solve the problem with the three phase algorithm of Section 5.1. Determine Xpay, Yer.
Tllustrate the results graphically.

39. a) Give an example of an MCLP s.t. Xp,, is a singleton, although X is full dimensional.



b) Tt is possible that some objectives are unbounded, yet Xp,, # (. Show this behaviour
for the MCLP
min 1 + 2332

min —2xs

s.t. —x1+x2 < 3
z1+x2 > 3
Z1,T2 Z 0

What can you say about Xp,, in this case ?

40. Let J C N be an index set of nonbasic variables at efficient basis B.
Show that each variable x;, j € J is efficient if and only if the problem

max etv

st. Ry—R‘6+1Iv
y,6,0 > 0

e

has an optimal solution. Here R’ is the part of R pertaining to variables z;, j € J.
(Hint: Take the definition of nonbasic variable efficiency and look at the dual of the above

LP.)

41. A basis B is called weakly efficient, iff B is an optimal basis of LP(\) for some A € Rf \{0}.
A feasible pivot with entering nonbasic variable x; is called weakly efficient if the basis
obtained is weakly efficient. Prove the following theorem:

Let z; be nonbasic at weakly efficient basis B. Then all feasible pivots with z; entering

are weakly efficient <= the subproblem

max v
st. Ry—rid+ev > 0
y,6bv > 0
has an optimal objective value of 0.
42. Solve the MCLP
min —3x1 — 22
min x; — 2z
s.t. 3x1+2x2 > 6
7 < 10
T < 3
1,z > 0

using the multicriteria simplex algorithm.

43. Determine, for each Pareto optimal extreme point of the MCLP in Exercise 42, the set of

all A, s.t. the extreme point solves LP(}).






Chapter 6

Other Optimality Concepts

In this chapter we study some optimality concepts different from (strict, weak, proper) Pareto

optimality.

6.1 Lexicographic Optimization
Here we consider problems of the type (X, f, R?)/id/(R?, <jex) or, in other words

lexmin(fy (z),... , fo(z)) (6.1)

zeX

Recall that y' <iex y* iff y) < y2 where ¢ =min{i :y; # y7}.
Lemma 6.1. Let € X be such that f(z) <iex f(y) Yy € X. Then z € Xpy,.

Proof: Suppose T ¢ Xp,y = JyeX st. f(y) < f(z).
Let ¢ := min{i : fi(y) < fi()}. Then fi(z) = fi(y) Vi=1,...,¢—1and f,(z) < f,(y)-
Therefore f(x) <iex f(y) é Contradiction
O

Because of the ranking of the objectives, we can solve a lexicographic program sequentially,

with one objective at a time and using optimal values as constraints.

(1)  Define X; ==X, i:=1
@ Solve min fi(x) (P)

@ a) If P; has a unique solution z}, STOP,

z; is the optimal solution of the lexicographic problem
b) If (P;) is unbounded, STOP, the lexicographic problem is unbounded.

c) If i =@ and (Pg) has an optimal solution, STOP.
The set of optimal solutions is {z € X¢ : fo(z) = Iél;gl fo(x)}.
z€Xq

d) Otherwise let X;y; :={z € X;: fi(z) = Hel{)r(l fi(z)}, i:=i+1 and go to @
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Note that, if all f; are continuous, (P;) unbounded implies that all objectives are unbounded,

and all problems (P;) are unbounded for i < k, too. Furthermore (P 1) is not defined.

Proposition 6.2. If © is a unique solution of (Pi), k < Q, or if z is a solution of (Pg)
then f(x) <iex f(y) VyeX.

Proof: Suppose Fy € X s.t. f(y) <iex f(2).
Because z is a solution of (P;) i=1,...,k = fi(y)=fi(z) Vi=1,... k.
Therefore, if £ < Q  fir+1(y) < fr+1(z) must hold, contradicting uniqueness of z, or, if
k = @Q we have f(z) = f(y) contradicting the choice of y.
O

Note also, that if z is a unique solution of a problem (F;) then z € X p,,. Otherwise there
would exist y € X s.t. fi(y) < fi(z) Vi=1,...,Q, which by Pareto optimality of X could
only hold with f(y) = f(z), and thus by uniqueness y = z.

Proposition 6.3. If z is a unique solution of (Py) for some k € {1,...,Q}, then z €
Xs—Par-

We may also choose an arbitrary order of the objectives and apply lexicographic optimization.
Let7:{1,...,Q} = {1,...,Q} be a permutation and consider the permutation of the objective
function (fr(1),--- , fr(@))-

As in Lemma 6.1 we can show that a solution of (X, f, R?)/7/(R?, <jex) is Pareto optimal.
We denote by TI(Q) the set of all permutations of {1,...,Q} and by Xp(g) the set of all

solutions of permuted lexicographic problems.
Proposition 6.4. Xm(q) C Xpar-

Example 6.1. The inclusion in Proposition 6.4 is strict in general.

Let X =[0,1], fi(z) ==, fo(z) =1—2

1_
h
fa
0 . ]
0 1

Figure 6.1: Illustration of Example 6.1

Here Xp,, = X.

The solution of ([0,1], f,R2)/id/(R?, <jex) is = 0.

The solution of ([0,1], f,R2) /7 = (2,1)/(R?, <jex) is & = 1.

Therefore Xy = {0,1}, and Xyy(g) C Xpar-

Also, because of uniqueness, Xj(g) C Xs.par, and again the inclusion is strict, as Xpar =

Xs—Par .



Note that finding Xp;(g) is usually not a good approach. It involves solving [II(Q)| = Q!
lexicographic problems. But if X is a finite set, finding Xyj(g) can be done in time polynomial

in |X| and Q.

6.2 Max-Ordering Optimization
The second problem type we consider is (X, f, R¥)/ max /(R, <) or

min max fi(z) (6.2)

Let Xmo denote the solution set of this problem.
What are the relations to Pareto optimality?

Proposition 6.5. A solution of mi)r(y max fi(x) is weakly Pareto optimal but not neces-
rzeX 1 =1,...,

sarily Pareto optimal.

Proof: Exercise 45.

From Proposition 6.5 Xvo C Xw-par-

Let us now assume that zlg( fi(x) > -0 Vi=1,...,Q. Then let y?° < zlélg( fi(x), and note
that Xp,, is the same for objectives (f1,... , fo) and (fi —47°,... , fo — y&), because this is
just a translation of Y.

We have already shown (see Theorem 4.12):

Proposition 6.6. * € Xgypar < J A€int H&f s.t. x* solves mig. max A (fi(z) —
EAS

=1,...,
y3°).

Therefore Xy.par can be determined through the solution of Max-ordering problems.

Concerning Pareto points we obtain:
Proposition 6.7. Xmo N Xpar # 0 and Xyo C Xpar of [ Xmo| < 1.

Proof: Let z € Xmo and suppose z ¢ Xpar.
= 3y € Xpar st. fily) < filz) Vi=1,...,Q and fr(y) < fr(z) for some k.
= max_fi (y) < max fi(z)

B}

From optimality of z, equality holds, and y € Xyo-

More about this intersection in Section 6.3.

Next, we show that the Max-ordering problem can be solved as a single objective problem, and



optimal solutions have a geometric characterization like Theorem 2.16.

PR 2P ) (62)
<~
min 2z
st. filz)y<z i=1,...,Q (6.3)
zeX

Using level sets L% (z) = {z € X : fi(z) < 2} we obtain:

Q
Proposition 6.8. 2 € Xyo = N L% (max fi(z)) # 0 and for oll 2z <
i=1 ~
Q
max fie) (1 L(2) = .

Since we consider only the worst objective for minimization, it may happen, that this is the
same for all x € X, i.e. the objective is considerably worse than all others.

We use the ideal point y° again. Let 2, i = 1,...,Q be such that 9 = f;(z?).

Then

7y = 0 < mij . < (e
fo(@®) =y, <min max fi(z) < max  fi(z?) (6.4)

Proposition 6.9. If 3 27 with fy(z?) = yg such that f;(z?) < yg Vi=1,...,Q then

29 € Xno and the optimal objective value is yg.

Proof:  fi(z?) <y) Vi=1,...,Q
= max_fi(z?) <y?. This implies that (6.4) holds with equalities, i.e.

i=1,...,

— 2,0 — 3 .
fo(z?) = Y = ;Iélﬁ z:IRaX,QfZ(x)

O

In this case, the minimum of one objective is worse than the value of all others for at least one
minimizer of this objective.

(6.4) also implies

max f,(z9) <min max fi(z) < min min max f;(z?) (6.5)

q=1,...,Q zeX i=1,...,Q g=1,...,Q z7€X, i=1,...,Q

where X, ={z € X : f,(z) = rrg)r{l fq(2)}.
This yields lower and upper bounds.
Now let

Q
A={X:) A =1, A >0} (6.6)
=1

Q
Proposition 6.10. max min i fi(z) < mi i(x).
P ax zeXi; ifi(z) _gél£i:r{1’.a:§sz(x)



Q Q
Proof: S hfi(z) <3N max | filz) < max | fi(z) holds for each = and A.
i=1 i=1 =1,..., i=1,...,
Q

' (2 < i )
— gél§,§ ifi(x) _;ng}%,-:‘{lf.’fczf’(x)

Note that the maxmin can also be reversed.
AEA zEX

6.3 Lexicographic Max-Ordering

Lexicographic Max-ordering is a combination of max-ordering (worst objective to be minimized)
and lexicographic optimization.
Definition 6.1.

a) Fory € R® let sort(y) := (sorti(y),... ,sortg(y)) with sorty(y) > ... > sortg(y).

b) z* € X is called a lexicographic Max-ordering solution (lex-MO solution) if
sort(f(z*)) <iex sort(f(z)) Vz e X. (6.7)
A lexicographic max-ordering problem is denoted, in the classification, by
(F, f,R?)/sort /(R?, <jex)-
We denote by Yiexmo = f(Xiex-Mmo0) its image in objective space.

Theorem 6.11.

a) |sort(Yiex-mo)| = [{sort(f(z)) : € Xiex-m0 }| = 1.

b) Xiex-mo C Xpar N Xyo  and Xiex-mo = Xpar N Xnmo if [ Xmo| < 1.

Proof:
a) Follows because <jex is a total order.

b) Let z € Xiex-MO-
First, assume = ¢ Xp,y = J2' € X st. f(z') < f(z)
= sort(f(z")) <iex sort(f(z)) and sort(f(z)) # sort(f(x)) é Contradiction
Second, assume z ¢ X0 = J2' € X s.t. i:rﬁ.g.x,Q filz") < z':rP,fd.J.X,Q fi(x)
= sorty (f(z')) < sorty (f(z))
= sort(f(z')) <iex sort(f(x))
The rest follows from Proposition 6.7.

O

Therefore, there is a unique sorted objective value vector, and a lex-MO solution is both Pareto

and max-ordering optimal.



Example 6.2.

The inclusion Xjex.mo C Xmo N Xpar may be strict.

Let X = {a,b,c,d,e} with the values

x f(x) sort f(x)
a (1,3,8,2,4) (8,4,3,2,1)
b (4,3,8,1,1) (8,4,3,1,1)
¢ (7,5,4,6,1) (7,6,5,4,1)
d (3,7,4,6,5) (7,6,5,4,3)
e (4,7,5,6,5) (7,6,5,5,4)
Then Xvo = {cde}
Xpar = {a,b,c,d}
Xiexmo = {c}

Since sort is a permutation of the objective functions (depending on z) we see that for each
z* € Xjexemo I 7w € II(Q) s.t. z* solves lexemXin(f,r(l) (z),--. , fx(q)(z)). Using Proposition

6.3 we obtain:

Corollary 6.12. All z* € Xiex-mo s.t. {z: f(z) = f(z*)} is a singleton are strictly Pareto

optimal.

Next, we show that Xjex Mo is invariant under permutations and strictly monotone increasing

mappings.

Proposition 6.13.

a) Xiex-Mmo is the same for (f1,...

 f@) and (fry,---» fr(q)) for all permuations m €

I(Q).
b) Let 7 : R = R be strictly increasing. Then Xiex-mo s the same for (f1,...,fg) and
(tofi,...,70fq).
Proof:
a) obvious: sort(fi(z),..., fq(x)) = sort(fr(1)(®),... , fr) (%))
b) By the strict monotonicity
filz) < fiz") = 71(fi(z)) < 7(fi(z"))
Therefore sort(f(z)) <iex sort(f(z')) <= sort(r(f(z))) <iex sort(r(f(z")))
O

Beside the fact that Xjexmo C Xpar, we can strengthen the result of Proposition 6.6 for
Xiex-MO-

Suppose that ﬂvlg(f,(ar:) >-—00 Vi=1,...,Q.

Theorem 6.14.

¥,

r € Xpar <~ I € int]Rg s.t. T € Xiex-MO fOT ()\1(f1 —

AQ(fo —vd))-



Proof:

» <= Let 2* € Xjex-mo for the given functions and assume z* ¢ Xp,y, — Jz€ X
s.t. flz) < f(z*)
= Ni(fi(z) = 4°) < Xi(fi(z*) —9°) Vi=1,...,Q
and strict inequality for some k.

= sort(\i(fi(z) — y?°)) <iex sort(N;(fi(z*) — y99)) é Contradiction

, = ¢ Let z* € Xpga,. Define ); := W
Then \;(fi(z*)—99%) =1 Vi=1,...,Q.
z* € Xpar = VzeX f(z)# f(z*) Tke{l,...,Q} st. fu(z) > fr(z*)
= Ae(fi(x) —yp°) > 1
= sort(\;(fi(z) — y?°)) >1ex (1,...,1) = sort(X;(fi(z*) — 499)) é Contradiction
O

Let us discuss the solution of lex-MO problems now. Could we apply a procedure like the
lexicographic method ?

First we would have to solve the max-ordering problem. Then fix the value of the worst
objective, solve the max-ordering problem for the remaining ) — 1 objectives. Unfortunately,
we do not know which objective will be the worst, and there may be several x with the worst
value obtained for different objectives, but both MO solutions. See e.g. ¢, fi(c) = 7, and
d, f2(d) =7 in Example 6.2.

Under additional assumptions on f;, we can show that there is one objective f; s.t.

fe(z) =min max fi(z) Vze Xwo (6.8)

rzeX i=1,...,Q

The following is from Behringer, 1977, [Beh77].
Let f; : R* — R be convex. We use Xyo to denote the set of all optimal solutions of the

max-ordering problem and Xjex Mo for the optimal solutions of the lex-MO problem.

Furthermore:
MO = ;ré% nax fi(z) (6.9)
Ai = {z€X:fil2) = max fi(@)} (6.10)
L, = {ze€d;: fi(x)= rreujl fi(z)} (6.11)

Note that max fi(x) is a convex function. If X is compact, f; are continuous on X and
i=1,...,

hence Xno # 0 and compact. Iteratively we get that Xie.mo # 0 and compact.

(For this and all following results it is enough that f; are lower semicontinuous and strictly

quasiconvex.)

Lemma 6.15. If f; are convex, X is convex then Xyo is conver.



Proof: ~ Assume Xy 0 # 0. Because f; are convex r{laxQ fi(z) is convex.

=1,...,

Xwmo

{z € X :sort1(f(z)) = 2mo} = {z € X : sort1 (f(z)) < 2mo0}

Q Q
01{513 € X: f,(.’L‘) < ZMO} = .ﬂl L’S (ZMO)

1=

is convex as intersection of convex sets.

O

Theorem 6.16. Assume X is convez, f; are convexr. Then Ik € {1,...,Q} s.t. fr(z) =

zvmo V€ Xwno.

Proof: Let € Xmo = 3j st fj(@)=2n0 = fi(@)>fi(@) Vi=1,...,Q.
Suppose k€ {1,...,Q} st. fr(z) = f;(2°) Vz € Xumo.
= Vke{l,...,Q} Tz*¥e€ Xno st. fr(z*) < f;(2°) and f;(z*) < f;(2°) Vi=
1,...,Q. (Note that z*¥ € Xyo does not allow f;(z*) > f;(z°).)
Q
Let 2* := Y ap2® with ag, > 0, > ax = 1. Then 2* € X0, because of convexity (Lemma
k=1
6.15).
Q
= fi(z*) < 3 a fi(z®) < f;(2°) contradicting 2° € Xyo.
k=1 N——
strict inequality for i = k
O
Theorem 6.16 says that zyo is attained for all z € Xy for at least one objective. The index

k in 6.16 is called a common index.

Theorem 6.17. Suppose X is convez, f; are convex, Xyo # 0.

Then k is a common index <= Xno = L.

Proof:

, — “ Let k be a common index.
First suppose z € Xpo = fr(z) = 2M0 = 2z € Ly = Xwmo C Lg
Now suppose z € L, = fr(y) > fr(z) Yy € A (6.12)
Assume z ¢ Xmo.
= z':rﬁé.XiQ fi(x) > zmo
Because Xyo0 #0 = 3 % € Xyo and because k is a common index.
= fr(&) = i:q{.ahx’Q fi(%) = 2m0 and T € Ay,
= max fi(z) > 2mo = fir(2)
With (6.12) = fu(8) > fu(s) = max_fi(w) > fu(#) ¥ Contradiction

)

= z€Xmo = Ly C Xmo

, <= Let z € Ly = Xwmo-

= fi(z) = max fi(z) by definition of Lj and max filz) = min max fi(z) by

definition of Xvyo = k is a common index.



The following theorem gives criteria for k to be a common index.

Theorem 6.18. Suppose X is convex, f; are conver and Xyo Z 0. Then
o) Li=0 = i is not a common index

b) Let J:={ie{l,...,Q} | Li #0} and m; := rreujlf,(x)

Define m := mi}l m;. Then if m; >m 4 is not a common index.
i€

¢c) Let J:={ie€J:m;=m}. Then Ly = U L; <= k€ J is a common index.
jeJ

a) iisacommonindex <= 0 #Xyo=L;=0 f Contradiction

b) Suppose m; > m; and that i is a common index. Then L; = Xyo # 0.
Let 2° € Xmo and & € L; # 0.

=> zmo = max fi(z®) = fi(2°) = m; > my; = (&) = fnax 1(&) % Contradiction

C) " <= [43
Let k € J be a common index.

First, Ly C |J L; is clear.

jeJ
Letz € J L; = z € L; for some j € J.
ieJ
= fi(z) = pax fi(z) = ;Telgi fiy) =m; =m.

By Theorem 6.17 L = Xyo

= fe(@)=mp=m= rlnaXin(:i') =20 VZEL
i=1,...,

= fi(®) =2m0 = v € Xno = T € Ly

" :> “
Ly = |J L; for some k € J.
ieJ N
Since Xyo #® 3 common index k and Xyo = L,
From a) and b) = k € J, then from , <= “ L= U L;

ieJ
= Xymo = L];: = UiL’ =Ly
=
By Theorem 6.17 k is a common index.

Therefore, we can find a common index with the following procedure:
(D Find J:={i€{1,...,Q} : L; # 0}
(@ Findonez’ € L; VieJ JT:={ieJ: fi(x) < fij(z!) VjeJ}

(@) J*:={ieJ : LyCL; YjeJ}is the set of all common indices.



An algorithm for solving lex-MO problems is as follows (for X convex, compact, nonempty and

fi convex):

@ X=X Q:=1{1,...,Q}

(2) Solve the Max-ordering problem for f = f and find Xyo # 0.

@ Q=1 Xiexmo=Xwmo, STOP
Otherwise determine a common index k, let X = Xm0, Q@ = Q\{k}, f = f\ f&, go to @

To conclude this chapter, we study some characteristic properties of lex-MO solutions.

Recall that a multicriteria optimization class is the set of all MCOP with the same model map
and ordered set. We dicuss properties of the MCO class -/ sort /(R¥, <jex), lexicographic max-
ordering.

This part is from Ehrgott, 1997, [Ehr97].
Definition 6.2.
a) An MCO class -/0/(RP, =) satisfies the normalization property, if when Q =1 (i.e.
f:R* = R), it coincides with single objective optimization.

/0/(R?, <) = -/id/(R, <) (6.13)
which means for any X, for any f : R — R the set of optimal solution is equal to
{zeX:fla)<fly) VyeX}

b) An MCO class -/0/(RP, <) satisfies the regularity property, if for any choice of X, f,
and @, the set of optimal solutions is contained in Xyio.
Let us denote the set of optimal solutions of an MCOP (X, f,R?)/0/(RP,<) by

Opt((X, f,R?)/6/ (R, <)).

Now let (X, f,R?) be data for an MCOP, and y € R¥ s.t. 3 2 € Opt((X, f,R?)/6/(RP, <))
with f(z) = y. Let K = {i1,...,ix} C {1,...,Q}. The reduced problem RP(K) is
(XK, fE RE)/0/(RP, <) where XX = {z € X : fi(z) = y; Vi€ {l,...,Q}\ K} and
FE = (firs oo fir)-

Definition 6.3. An MCO class satisfies the reduction property, if for all data (X, f, R?)
and K C {1,...,Q} and y as above

Opt((X X, f5,RY)/6/(RP, <)) =
{z € Opt((X, f,R?)/6/(R?, X)), filz) =yi Vig¢ K} (6.14)

Proposition 6.19. The lex-MO class satisfies normalization, reqularity and reduction prop-

erty.



1°T00].
1) Normalization is obvious because sort(f(z)) = f(z) and <jex=< if Q =1.
2) From Theorem 6.11 b) regularity is clear (Xjex-mo C XMo0)-

3) We write Opt and Opt(RP(K)) for short for the optimal solutions of the original and
reduced problem, respectively.
Let Opt™ := {z € Opt : fi(z) =y; Vi¢ K}. We have to show Opt(RP(K)) = Opt*.
We note that V z* € Opt*, V z € Opt(RP(K))
filz*) = filx) =y Vie{l,...,Q}\ K (6.15)
and sort(f(z*)) <iex sort(f(z)) (6.16)
First let & € Opt(RP(K)).
(6.15) and (6.16) =  sort(fX(z*)) <jex sort(f&(2))
By the choice of z*, Z this holds with equality = sort(f(%)) = sort(f(z*)) = & €
Opt*.
Second let & € Opt*.
Then # is feasible for RP(K).
Assume 3 2 € Opt(RP(K)) s.t. sort(fX(z)) <iex sort(fX(£))
with (6.15) =  sort(f(x)) <iex sort(f(Z)) é Contradiction
= sort(f(2)) <iex sort(f(z))
with (6.16) =  sort f(£) = sort(f(z)) = & € Opt(RP(K))
a

Theorem 6.20. An MCO class satisfies normalization, reduction and regularity property

=  /0/(RP, <) =-/sort /(RP, <jex)-

Proof: We only need to show ,, = “.
We have to show Opt((X, f,R?)/0/(R,<)) = Opt((X, f,R?)/sort /(R¥, <jex) for any
choice of X and f.
We proceed by induction on Q.
@ = 1 is obvious from normalization.
Suppose the result is true for not more than ) — 1 criteria.

Let # € Opt((X, f,R?)/0/(RP, <)) and let

:=min max f;(x) = 2mo0-
Yy EEXZ.:L_._,sz() MO

By the regularity property 3k € {1,...,Q} st. fr(@) =y and f;(#) <y Vi=1,...,Q
= & € {z € Opt((X, f,R?)/6/(R?, %)) : fu(z) = y}-
Let K ={1,...,Q}\ {k}.
= {z € Opt((X, f,R?)/8/(RP, X)) : fr(z) =y}
"E Opt((XK, fK, R /6/(RP, <))
¢ Opt((XK, K, RQL)/sort /(RO <1ex))
"€ {2 € Opt((X, £,RQ)/sort /(RY, <iex) : fi(w) = v}
C  Opt((X, f,R?)/sort /(RY, <jex)-

The reverse inclusion is proved in the same way.



6.4 Exercises to Chapter 6

44. Solve the lexicographic problem

min —z; + T2 — T3

min Ty
min —x1 — 229
s.t. T14+Te < 1

T1—x2t+x3 < 4

What happens if you reverse the order of objective functions ?

45. Prove, or give counterexamples, to the following conjectures.

If z* is a solution of min max  fi(z), then z* € Xpar (Xy-par)-
zeX i=1,..,Q

46. Solve the problem

min max{—=z1 — 2z, —z1 + 223, T1 — 23}
s.t. T1+1xy < 1

Ty —Tot+x3 < 4

Is the optimal solution Pareto optimal ?

(Hint: Write the problem as an LP.)
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