Skip to main content

Evaluation of Parameter Contribution to Neural Network Size and Fitness in ATHENA for Genetic Analysis

  • Chapter
  • First Online:
Genetic Programming Theory and Practice XI

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 1116 Accesses

Abstract

The vast amount of available genomics data provides us an unprecedented ability to survey the entire genome and search for the genetic determinants of complex diseases. Until now, Genome-wide association studies have been the predominant method to associate DNA variations to disease traits. GWAS have successfully uncovered many genetic variants associated with complex diseases when the effect loci are strongly associated with the trait. However, methods for studying interaction effects among multiple loci are still lacking. Established machine learning methods such as the grammatical evolution neural networks (GENN) can be adapted to help us uncover the missing interaction effects that are not captured by GWAS studies. We used an implementation of GENN distributed in the software package ATHENA (Analysis Tool for Heritable and Environmental Network Associations) to investigate the effects of multiple GENN parameters and data noise levels on model detection and network structure. We concluded that the models produced by GENN were greatly affected by algorithm parameters and data noise levels. We also produced complex, multi-layer networks that were not produced in the previous study. In summary, GENN can produce complex, multi-layered networks when the data require it for higher fitness and when the parameter settings allow for a wide search of the complex model space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrew AS, Hu T, Gu J, Gui J, Ye Y, Marsit CJ, Kelsey KT, Schned AR, Tanyos SA, Pendleton EM, Mason RA, Morlock EV, Zens MS, Li Z, Moore JH, Wu X, Karagas MR (2012) HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer. PLoS One 7(12):e51301

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  MATH  Google Scholar 

  • Edwards T, Bush W, Turner S, Dudek S, Torstenson E, Schmidt M, Martin E, Ritchie M (2008) Generating linkage disequilibrium patterns in data simulations using genomesimla. Evol Comput Mach Learn Data Min Bioinform 4973:24–35

    Article  Google Scholar 

  • Gibson G, Riley-Berger R, Harshman L, Kopp A, Vacha S, Nuzhdin S, Wayne M (2004) Extensive sex-specific nonadditivity of gene expression in drosophila melanogaster. Genetics 167:1791–1799. 104026583

    Google Scholar 

  • Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio T (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367

    Article  Google Scholar 

  • Koza JR, Rice JP (1991) Genetic generation of both the weights and architecture for a neural network. In: International joint conference on neural networks, IJCNN-91, Washington State Convention and Trade Center, Seattle, vol II. IEEE Computer Society, pp 397–404

    Google Scholar 

  • Motsinger AA, Lee SL, Mellick G, Ritchie MD (2006) GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinform [electronic resource] 7(1):39–39

    Article  Google Scholar 

  • Motsinger-Reif AA, Dudek SM, Hahn LW, Ritchie MD (2001) Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Genet Epidemiol 32:325–340

    Article  Google Scholar 

  • O’Neill M, Ryan C (2001) Grammatical evolution. IEEE Trans Evol Comput 5(4):349–358

    Article  Google Scholar 

  • O’Neill M, Ryan C (2003) Grammatical evolution: evolutionary automatic programming in a arbitrary language. Volume 4 of genetic programming. Kluwer, Boston

    Google Scholar 

  • Pearson B, Lau K, Allen A, Barron J, Cool R, Davis K, DeLoache W, Feeney E, Gordon A, Igo J, Lewis A, Muscalino K, Madeline P, Penumetcha P, Rinker V, Roland K, Zhu X, Poet J, Eckdahl T, Heyer L, Campbell A (2011) Bacterial hash function using DNA-based XOR logic reveals unexpected behavior of the LuxR promoter. IBC 3, article no 10:1–10

    Google Scholar 

  • Privman V, Zhou J, Halamek J, Katz E (2010) Realization and properties of biochemical-computing biocatalytic XOR gate based on signal change. J Phys Chem B 114:13601–13608

    Article  Google Scholar 

  • Ritchie MD, Holzinger ER, Dudek SM, Frase AT, Chalise P, Fridley B (2012) Meta-dimensional analysis of phenotypes using the Analysis Tool for Heritable and Environmental Network Associations (ATHENA): challenges with building large networks. In: Riolo R et al (eds) Genetic programming theory and practice X. Springer, New York

    Google Scholar 

  • Skapura D (1995) Building neural networks. ACM, New York

    Google Scholar 

  • Turner SD, Dudek SM, Ritchie MD (2010) Grammatical evolution of neural networks for discovering epistasis among quantitative trait loci. In: Pizzuti C, Ritchie MD, Giacobini M (eds) 8th European conference on evolutionary computation, machine learning and data mining in bioinformatics (EvoBIO 2010), Istanbul. Volume 6023 of lecture notes in computer science, pp 86–97. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruowang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, R., Holzinger, E.R., Dudek, S.M., Ritchie, M.D. (2014). Evaluation of Parameter Contribution to Neural Network Size and Fitness in ATHENA for Genetic Analysis. In: Riolo, R., Moore, J., Kotanchek, M. (eds) Genetic Programming Theory and Practice XI. Genetic and Evolutionary Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0375-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0375-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0374-0

  • Online ISBN: 978-1-4939-0375-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics