Skip to main content

A Deterministic and Symbolic Regression Hybrid Applied to Resting-State fMRI Data

  • Chapter
  • First Online:

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

Symbolic regression (SR) is one the most popular applications of genetic programming (GP) and an attractive alternative to the standard deterministic regression approaches due to its flexibility in generating free-form mathematical models from observed data without any domain knowledge. However, GP suffers from various issues hindering the applicability of the technique to real-life problems. In this paper, we show that a hybrid deterministic regression (DR)/genetic programming based symbolic regression (GP-SR) algorithm outperforms GP-SR alone on a brain imaging dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACM (2011) Robot biologist solves complex problem from scratch. http://cacm.acm.org/careers/136345-robot-biologist-solves-complex-problem-from-scratch/fulltext

  • Amil NM, Bredeche N, Gagné C, Gelly S, Schoenauer M, Teytaud O (2009) A statistical learning perspective of genetic programming. In: Vanneschi L, Gustafson S, Moraglio A, De Falco I, Ebner M (eds) Proceedings of the 12th European conference on genetic programming, EuroGP 2009, Tuebingen. Lecture notes in computer science, vol 5481. Springer, pp 327–338. doi:10.1007/978-3-642-01181-8-28

    Google Scholar 

  • Castelli M, Manzoni L, Silva S, Vanneschi L (2011) A quantitative study of learning and generalization in genetic programming. In: Silva S, Foster J, Nicolau M, Machado P, Giacobini M (eds) Genetic programming, Torino. Lecture notes in computer science, vol 6621. Springer, Berlin/Heidelberg, pp 25–36

    Chapter  Google Scholar 

  • Dubcakova R (2011) Eureqa: software review. Genet Program Evolvable Mach 12(2):173–178. doi:10.1007/s10710-010-9124-z

    Article  Google Scholar 

  • GPG (2013) Genetic programming on general purpose graphics processing units. http://www.gpgpgpu.com/

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  • Icke I, Bongard J (2013) Improving genetic programming based symbolic regression using machine learning. In: IEEE congress on evolutionary computation, CEC 2013, Cancun

    Google Scholar 

  • Jerome Friedman TH, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Google Scholar 

  • Jiang H (2013) Glmnet for Matlab. http://www-stat.stanford.edu/~tibs/glmnet-matlab/

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT, Cambridge

    MATH  Google Scholar 

  • Koza JR (2010) Human-competitive results produced by genetic programming. Genet Program Evolvable Mach 11(3/4):251–284. doi:10.1007/s10710-010-9112-3, tenth anniversary issue: progress in genetic programming and evolvable machines

    Google Scholar 

  • Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, Glahn DC, Beckmann CF, Smith SM, Fox PT (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23(12):4022–4037

    Article  Google Scholar 

  • McConaghy T (2011) FFX: fast, scalable, deterministic symbolic regression technology. In: Riolo R, Vladislavleva E, Moore JH (eds) Genetic programming theory and practice IX. Genetic and evolutionary computation. Springer, Ann Arbor, chap 13, pp 235–260. doi:10.1007/978-1-4614-1770-5-13

    Google Scholar 

  • McRee RK (2010) Symbolic regression using nearest neighbor indexing. In: Gustafson S, Kotanchek M (eds) GECCO 2010 symbolic regression workshop, Portland. ACM, pp 1983–1990. doi:10.1145/1830761.1830841

    Google Scholar 

  • Michalski RS (2000) Learnable evolution model: evolutionary processes guided by machine learning. Mach Learn 38:9–40

    Article  MATH  Google Scholar 

  • Murphy KP (2012) Machine learning a probabilistic perspective. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Nikolaev NY, Iba H (2001) Regularization approach to inductive genetic programming. IEEE Trans Evol Comput 54(4):359–375. http://ieeexplore.ieee.org/iel5/4235/20398/00942530.pdf?isNumber=20398

    Google Scholar 

  • O’Neill M, Vanneschi L, Gustafson S, Banzhaf W (2010) Open issues in genetic programming. Genet Program Evolvable Mach 11(3–4):339–363. doi:10.1007/s10710-010-9113-2, http://dx.doi.org/10.1007/s10710-010-9113-2

    Google Scholar 

  • Poldrack RA, Nichols TE (2011) Handbook of functional MRI data analysis. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Searson D (2013) GPTIPS for Matlab. https://sites.google.com/site/gptips4matlab/

  • Sherry D, Veeramachaneni K, McDermott J, O’Reilly UM (2011) Flex-GP: genetic programming on the cloud. In: Di Chio C, Agapitos A, Cagnoni S, Cotta C, Fernandez de Vega F, Di Caro GA, Drechsler R, Ekart A, Esparcia-Alcazar AI, Farooq M, Langdon WB, Merelo JJ, Preuss M, Richter H, Silva S, Simoes A, Squillero G, Tarantino E, Tettamanzi AGB, Togelius J, Urquhart N, Uyar AS, Yannakakis GN (eds) Applications of evolutionary computing, evoapplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, EvoSTOC, Malaga. Lecture notes in computer science, vol 7248. Springer, pp 477–486. doi:10.1007/978-3-642-29178-4-48

    Google Scholar 

  • Smits G, Kordon A, Vladislavleva K, Jordaan E, Kotanchek M (2005) Variable selection in industrial datasets using Pareto genetic programming. In: Yu T, Riolo RL, Worzel B (eds) Genetic programming theory and practice III. Genetic programming, vol 9. Springer, Ann Arbor, chap 6, pp 79–92

    Google Scholar 

  • Stijven S, Minnebo W, Vladislavleva K (2011) Separating the wheat from the chaff: on feature selection and feature importance in regression random forests and symbolic regression. In: Gustafson S, Vladislavleva E (eds) 3rd symbolic regression and modeling workshop for GECCO 2011, Dublin. ACM, pp 623–630. doi:10.1145/2001858.2002059

    Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc (Ser B) 58:267–288

    MATH  MathSciNet  Google Scholar 

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67(2):301–320

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a DARPA grant #FA8650-11-1-7155. We thank the IMAGEN consortium for providing us with the resting-state fMRI dataset. The authors also acknowledge the Vermont Advanced Computing Core which is supported by NASA (NNX 06AC88G), at the University of Vermont for providing High Performance Computing resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilknur Icke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Icke, I., Allgaier, N.A., Danforth, C.M., Whelan, R.A., Garavan, H.P., Bongard, J.C. (2014). A Deterministic and Symbolic Regression Hybrid Applied to Resting-State fMRI Data. In: Riolo, R., Moore, J., Kotanchek, M. (eds) Genetic Programming Theory and Practice XI. Genetic and Evolutionary Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0375-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0375-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0374-0

  • Online ISBN: 978-1-4939-0375-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics