SpringerBriefs in Computer Science

Series Editors

Stan Zdonik

Peng Ning

Shashi Shekhar

Jonathan Katz

Xindong Wu

Lakhmi C. Jain

David Padua

Xuemin (Sherman) Shen

Borko Furht

V.S. Subrahmanian

Martial Hebert

Katsushi Ikeuchi

Bruno Siciliano

For further volumes: http://www.springer.com/series/10028

Energy Detection for Spectrum Sensing in Cognitive Radio

Saman Atapattu
Department of Electrical
and Computer Engineering
University of Alberta
Edmonton, AB, Canada

Hai Jiang
Department of Electrical
and Computer Engineering
University of Alberta
Edmonton, AB, Canada

Chintha Tellambura
Department of Electrical
and Computer Engineering
University of Alberta
Edmonton, AB, Canada

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-1-4939-0493-8 ISBN 978-1-4939-0494-5 (eBook)
DOI 10.1007/978-1-4939-0494-5
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014930296

© The Author(s) 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Spectrum sensing is critically important for cognitive radio, an emerging solution to the spectrum congestion and low usage of licensed spectrum. Energy detection is a promising low-complexity and low-cost spectrum sensing technique. Its performance analysis has been revisited extensively in the recent literature. This book thus aims at a comprehensive summary of recent research on energy detection for spectrum sensing in cognitive radio networks. This book is for researchers and engineers in both industry and academia who would like to know more about applications of energy detection.

After introducing cognitive radio and spectrum sensing techniques in Chap. 1, we discuss the basics of conventional energy detection in detail in Chap. 2. To improve conventional energy detection, many alternative energy detection techniques have been developed, which are described in Chap. 3. The common performance measures of energy detector are described in Chap. 4. Finally, Chap. 5 deals with diversity and cooperative spectrum sensing techniques which can significantly improve energy detection performance.

We would like to thank Dr. Xuemin (Sherman) Shen, for his help in publishing this monograph.

Edmonton, AB, Canada Edmonton, AB, Canada Edmonton, AB, Canada December, 2013 Saman Atapattu Chintha Tellambura Hai Jiang

Contents

1	Intr	duction	1
	1.1	Wireless Communications	1
	1.2	Cognitive Radio	3
		1.2.1 Applications of Cognitive Radio	3
		1.2.2 Dynamic Spectrum Access	4
	1.3	Spectrum Sensing	5
	1.4	Spectrum Sensing Techniques	6
	Refe	ences	8
2	Con	entional Energy Detector	1
	2.1	Binary Hypothesis Testing Problem	1
	2.2	Energy Detection	2
	2.3	Test Statistic	3
		2.3.1 Signal Models	5
		2.3.2 Distribution of Test Statistics	6
		2.3.3 CLT Approach	8
		2.3.4 Low-SNR and High-SNR Models	C
	2.4	Spectrum Sensing Standardization	C
		2.4.1 IEEE 802.22 Standard	1
	2.5	Design Parameters	1
		2.5.1 Threshold	2
		2.5.2 Number of Samples	2
	2.6	Noise Effect	3
	Refe	ences	4
3	Alte	native Forms of Energy Detectors	7
	3.1	Probability-Based Weighted Energy Detector	7
	3.2	Double Threshold Energy Detector	9
	3.3	Blindly Combined Energy Detector	C

viii Contents

	3.4	Energy Detector with an Arbitrary Power Operation	31
		3.4.1 Improved Energy Detector	31
		3.4.2 L_p -Norm Detector	32
	3.5	Hybrid/Coherent Energy Detection	34
	3.6	Sequential Energy Detection	35
		3.6.1 Doubly Sequential Energy Detection	35
	3.7	Adaptive Detection	36
	3.8	Generalized Energy Detector	37
	3.9	Other Energy Detectors	38
	Refe	erences	38
4	Perf	Formance Measurements	41
	4.1	Average Detection Probability	42
		4.1.1 Direct Averaging	42
		4.1.2 MGF Approach	43
		4.1.3 Infinite Series Representation	44
	4.2	Sensing Gain	45
	4.3	Receiver Operating Characteristic Curve	47
	4.4	Area Under the ROC Curve	50
		4.4.1 Direct Integration	51
		4.4.2 Threshold Averaging	51
		4.4.3 MGF Approach	52
		4.4.4 Complementary AUC	54
		4.4.5 Partial AUC	55
	4.5	Low-SNR Energy Detection	56
	Refe	erences	59
5	Dive	ersity Techniques and Cooperative Networks	63
	5.1	Traditional Diversity Techniques	63
		5.1.1 Maximal Ratio Combining	64
		5.1.2 Equal Gain Combining	65
	5.2	Square-Law Techniques	66
		5.2.1 Square-Law Combining	66
		5.2.2 Square-Law Selection	68
		5.2.3 Performance Analysis	68
	5.3	Cooperative Networks	70
		5.3.1 Data Fusion	72
		5.3.2 Decision Fusion	78
	Refe	erences	82

Acronyms

ADC Analog-to-digital converter

AUC Area under the receiver operating characteristic curve

AWGN Additive white Gaussian noise BCED Blindly combined energy detection

BER Bit error rate

BSC Binary symmetric channel
CAUC Complementary AUC
CCI Co-channel interference

CDF Cumulative distribution function

CLT Central limit theorem

CSCG Circularly symmetric complex Gaussian

CSI Channel-state information
DSA Dynamic spectrum access
EGC Equal gain combining
ENP Estimated noise power

FCC Federal Communications Commission FDMA Frequency division multiple access

GGN Generalized Gaussian noise GMN Gaussian mixture noise

ICA Independent component analysis

i.i.d. Independent and identically distributed

LLR Log-likelihood ratio LTE Long term evolution MG Mixture gamma

MGF Moment generating function
MIMO Multiple-input multiple-output
MRC Maximal ratio combining

OFDM Orthogonal frequency division multiplexing

PDF Probability density function

PSK Phase shift keying

ROC Receiver operating characteristic

x Acronyms

SC Selection combining
SLC Square-law combining
SLS Square-law selection
SNR Signal-to-noise ratio

SPRT Sequential probability ratio test

SUN Smart utility networks

TDMA Time division multiple access

TV Television

WiMAX Worldwide interoperability for microwave access

WLAN Wireless local area network WRAN Wireless regional area network