Skip to main content

Linear Inverse Problems

  • Reference work entry

Abstract

This introductory treatment of linear inverse problems is aimed at students and neophytes. A historical survey of inverse problems and some examples of model inverse problems related to imaging are discussed to furnish context and texture to the mathematical theory that follows. The development takes place within the sphere of the theory of compact linear operators on Hilbert space, and the singular value decomposition plays an essential role. The primary concern is regularization theory: the construction of convergent well-posed approximations to ill-posed problems. For the most part, the discussion is limited to the familiar regularization method devised by Tikhonov and Phillips.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambarzumian, V.: On the derivation of the frequency function of space velocities of the stars from the observed radial velocities. Mon. Not. R. Astron. Soc. Lond. 96, 172–179 (1936)

    Article  Google Scholar 

  2. Anderssen, R.S.: Inverse problems: a pragmatist’s approach to the recovery of information from indirect measurements. Aust. N.Z. Ind. Appl. Math. J. 46, 588–622 (2004)

    MathSciNet  Google Scholar 

  3. Aster, R., Borchers, B., Thurber, C.: Parameter Estimation and Inverse Problems. Elsevier, Boston (2005)

    MATH  Google Scholar 

  4. Bennett, A.: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  5. Ben-Israel, A.: The Moore of the Moore penrose inverse. Electron. J. Linear Algebr. 9, 150–157 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. IOP, London (1998)

    Book  MATH  Google Scholar 

  7. Bonilla, L. (ed.): Inverse Problems and Imaging. LNM 1943. Springer, Berlin (2008)

    Google Scholar 

  8. Carasso, A., Sanderson, J., Hyman, J.: Digital removal of random media image degradations by solving the diffusion equation backwards in time. SIAM J. Numer. Anal. 15, 344–367 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chalmond, B.: Modeling and Inverse Problems in Image Analysis. Springer, New York (2003)

    Book  MATH  Google Scholar 

  10. Chan, T.F., Shen, J.: Image Processing and Analysis. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  11. Chen, Z., Xu, Y., Yang, H.: Fast collocation methods for solving ill-posed integral equations of the first kind. Inverse Probl. 24, 065007(21) (2008)

    Article  MathSciNet  Google Scholar 

  12. Cormack, A.: Representation of a function by its line integrals, with some radiological applications I. J. Appl. Phys. 34, 2722–2727 (1963)

    Article  MATH  Google Scholar 

  13. Cormack, A.: Representation of a function by its line integrals, with some radiological applications II. J. Appl. Phys. 35, 2908–2912 (1964)

    Article  MATH  Google Scholar 

  14. Cormack, A.: Computed tomography: some history and recent developments. In: Shepp, L.A. (ed.) Computed Tomography. Proceedings of Symposia in Applied Mathematics, vol. 27, pp. 35–42. American Mathematical Society, Providence (1983)

    Google Scholar 

  15. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Partial Differential Equations, vol. 2. Interscience, New York (1962)

    Google Scholar 

  16. Craig, I., Brown, J.: Inverse Problems in Astronomy. Adam Hilger, Bristol (1986)

    MATH  Google Scholar 

  17. Deans, S.R.: The Radon Transform and Some of Its Applications. Wiley, New York (1983)

    MATH  Google Scholar 

  18. Deutsch, F.: Best Approximation in Inner Product Spaces. Springer, New York (2001)

    Book  MATH  Google Scholar 

  19. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  20. Epstein, C.L.: Introduction to the Mathematics of Medical Imaging. Pearson Education, Upper Saddle River (2003)

    MATH  Google Scholar 

  21. Galilei, G.: Sidereus Nuncius (Trans.: van Helden, A.). University of Chicago Press, Chicago, 1989 (1610)

    Chapter  Google Scholar 

  22. Gates, E.: Einstein’s Telescope. W.W. Norton, New York (2009)

    Google Scholar 

  23. Gladwell, G.M.L.: Inverse Problems in Vibration. Martinus Nijhoff, Dordrecht (1986)

    Book  MATH  Google Scholar 

  24. Glasko, V.: Inverse Problems of Mathematical Physics (Trans.: Bincer, A. (Russian)). American Institute of Physics, New York (1984)

    Google Scholar 

  25. Goldberg, R.R.: Fourier Transforms. Cambridge University Press, Cambridge (1961)

    MATH  Google Scholar 

  26. Groetsch, C.W.: Comments on Morozov’s Discrepancy Principle. In: Hämmerlin, G., Hoffmann, K.-H. (eds.) Improperly Posed Problems and Their Numerical Treatment, pp. 97–104. Birkhäuser, Basel (1983)

    Chapter  Google Scholar 

  27. Groetsch, C.W.: On the asymptotic order of convergence of Tikhonov regularization. J. Optim. Theory Appl. 41, 293–298 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston (1984)

    MATH  Google Scholar 

  29. Groetsch, C.W.: Convergence analysis of a regularized degenerate kernel method for Fredholm integral equations of the first kind. Integr. Equ. Oper. Theory 13, 67–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Groetsch, C.W.: Inverse Problems in the Mathematical Sciences. Vieweg, Braunschweig (1993)

    Book  MATH  Google Scholar 

  31. Groetsch, C.W.: The delayed emergence of regularization theory. Bollettino di Storia delle Scienze Matematiche 23, 105–120 (2003)

    MATH  MathSciNet  Google Scholar 

  32. Groetsch, C.W.: Nascent function concepts in Nova Scientia. Int. J. Math. Educ. Sci. Technol. 35, 867–875 (2004)

    Article  MathSciNet  Google Scholar 

  33. Groetsch, C.W.: Extending Halley’s problem. Math. Sci. 34, 4–10 (2009)

    MATH  MathSciNet  Google Scholar 

  34. Groetsch, C.W., Neubauer, A.: Regularization of ill-posed problems: optimal parameter choice in finite dimensions. J. Approx. Theory 58, 184–200 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  35. Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. LNM 1894. Springer, New York (2007)

    Google Scholar 

  36. Grosser, M.: The Discovery of Neptune. Harvard University Press, Cambridge (1962)

    Google Scholar 

  37. Hadamard, J.: Sur les problèmes aux dériveès partielles et leur signification physique. Princet. Univ. Bull. 13, 49–52 (1902)

    MathSciNet  Google Scholar 

  38. Hadamard, J.: Lectures on Cauchy’s Problems in Linear Partial Differential Equations. Yale University Press, New Haven (1923). (Reprinted by Dover, New York, 1952)

    Google Scholar 

  39. Halley, E.: A discourse concerning gravity, and its properties, wherein the descent of heavy bodies, and the motion of projects is briey, but fully handled: together with the solution of a problem of great use in gunnery. Philos. Trans. R. Soc. Lond. 16, 3–21 (1686)

    Google Scholar 

  40. Hanke, M.: Iterative regularization techniques in image reconstruction. In: Colton, D. et al. (eds.) Surveys on Solution Methods for Inverse Problems, pp. 35–52. Springer, Vienna (2000)

    Chapter  Google Scholar 

  41. Hanke, M., Groetsch, C.W.: Nonstationary iterated Tikhonov regularization. J. Optim. Theory Appl. 98, 37–53 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  43. Hansen, P.C.: Rank Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  44. Hansen, P.C., Nagy, J., O’Leary, D.: Deblurring images: matrices, spectra, and filtering. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  45. Hensel, E.: Inverse Theory and Applications for Engineers. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  46. Hofmann, B.: Regularization for Applied Inverse and Ill-Posed Problems. Teubner, Leipzig (1986)

    Book  MATH  Google Scholar 

  47. Joachimstahl, F.: Über ein attractionsproblem. J. für die reine und angewandte Mathematik 58, 135–137 (1861)

    Article  Google Scholar 

  48. Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin International de l’Academie Polonaise des Sciences, Cl. d. Sc. Mathém. A, pp. 355–357 (1937)

    Google Scholar 

  49. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Walter de Gruyter, Berlin (2008)

    Book  MATH  Google Scholar 

  50. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1993)

    Google Scholar 

  51. Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615–624 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  52. Lewitt, R.M., Matej, S.: Overview of methods for image reconstruction from projections in emission computed tomography. Proc. IEEE 91, 1588–1611 (2003)

    Article  Google Scholar 

  53. Morozov, V.A.: On the solution of functional equations by the method of regularization. Sov. Math. Dokl. 7, 414–417 (1966)

    MATH  Google Scholar 

  54. Nashed, M.Z. (ed.): Generalized Inverses and Applications. Academic, New York (1976)

    MATH  Google Scholar 

  55. Natterer, F., Wübberling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  56. Newbury, P., Spiteri, R.: Inverting gravitational lenses. SIAM Rev. 44, 111–130 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  57. Parks, P.C., Kaczmarz, S.: Int. J. Control 57, 1263–1267 (1895–1939)

    Article  MathSciNet  Google Scholar 

  58. Parker, R.L.: Geophysical Inverse Theory. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  59. Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 9, 84–97 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  60. Picard, E.: Sur un théorème général relatif aux équations intégrales de premiére espéce et sur quelques probl_emes de physique mathématique. Rendiconti del Cicolo Matematico di Palermo 29, 79–97 (1910)

    Article  MATH  Google Scholar 

  61. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich Sächsischen Gesellshaft der Wissenschaften zur Leipzig 69, 262–277 (1917)

    Google Scholar 

  62. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, New York (2009)

    MATH  Google Scholar 

  63. Sheehan, W., Kollerstrom, N., Waff, C.: The case of the pilfered planet: did the British steal Neptune? Sci. Am. 291(6), 92–99 (2004)

    Article  Google Scholar 

  64. Shepp, L.A. (ed.): Computed Tomography. Proceedings of Symposia in Applied Mathematics, vol. 27. American Mathematical Society, Providence (1983)

    Google Scholar 

  65. Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35, 551–566 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  66. Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nau. SSSR 39, 176–179 (1943)

    MATH  MathSciNet  Google Scholar 

  67. Tihonov (Tikhonov), A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 4, 1035–1038 (1963)

    Google Scholar 

  68. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston & Sons, Washington, DC (1977)

    MATH  Google Scholar 

  69. Uhlmann, G. (ed.): Inside Out: Inverse Problems and Applications. Cambridge University Press, New York (2003)

    Google Scholar 

  70. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  71. Wing, G.M.: A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding. SIAM, Philadelphia (1992)

    Google Scholar 

  72. Wrenn, F.R., Good, M.L., Handler, P.: The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113, 525–527 (1951)

    Article  Google Scholar 

  73. Wunsch, C.: The Ocean Circulation Inverse Problem. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Groetsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Groetsch, C. (2015). Linear Inverse Problems. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_1

Download citation

Publish with us

Policies and ethics