Skip to main content

Electrical Impedance Tomography

  • Reference work entry
Book cover Handbook of Mathematical Methods in Imaging

Abstract

This chapter reviews the state of the art and the current open problems in electrical impedance tomography (EIT), which seeks to recover the conductivity (or conductivity and permittivity) of the interior of a body from knowledge of electrical stimulation and measurements on its surface. This problem is also known as the inverse conductivity problem and its mathematical formulation is due to A. P. Calderón, who wrote in 1980, the first mathematical formulation of the problem, “On an inverse boundary value problem.” EIT has interesting applications in fields such as medical imaging (to detect air and fluid flows in the heart and lungs and imaging of the breast and brain) and geophysics (detection of conductive mineral ores and the presence of ground water). It is well known that this problem is severely ill-posed, and thus this chapter is devoted to the study of the uniqueness, stability, and reconstruction of the conductivity from boundary measurements. A detailed distinction between the isotropic and anisotropic case is made, pointing out the major difficulties with the anisotropic case. The issues of global and local measurements are studied, noting that local measurements are more appropriate for practical applications such as screening for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, A., Lionheart, W.R.B.: Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27, S25–S42 (2006)

    Article  Google Scholar 

  2. Alessandrini, G.: Stable determination of conductivity by boundary measurements. Appl. Anal. 27, 153–172 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alessandrini, G.: Singular solutions of elliptic equations and the determination of conductivity by boundary measurements. J. Differ. Equ. 84(2), 252–272 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alessandrini, G.: Determining conductivity by boundary measurements, the stability issue. In: Spigler, R. (ed.) Applied and Industrial Mathematics, pp. 317–324. Kluwer, Dordrecht (1991)

    Chapter  Google Scholar 

  5. Alessandrini, G.: Open issues of stability for the inverse conductivity problem. J. Inverse Ill-Posed Prob. 15, 451–460 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Alessandrini, G., Gaburro, R.: Determining conductivity with special anisotropy by boundary measurements. SIAM J. Math. Anal. 33, 153–171 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alessandrini, G., Gaburro, R.: The local Calderón problem and the determination at the boundary of the conductivity. Commun. PDE 34, 918–936 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Alessandrini, G., Vessella, S.: Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35, 207–241 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ammari, H., Buffa, A., Nédélec, J.-C.: A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60, 1805–1823 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)

    Article  MATH  Google Scholar 

  11. Barber, D., Brown, B.: Recent developments in applied potential tomography – APT. In: Bacharach, S.L. (ed.) Information Processing in Medical Imaging, pp. 106–121. Nijhoff, Amsterdam (1986)

    Chapter  Google Scholar 

  12. Barceló, J.A., Faraco, D., Ruiz, A.: Stability of the inverse problem in the plane for less regular conductivities. J. Differ. Equ. 173, 231–270 (2001)

    Article  MATH  Google Scholar 

  13. Barceló, J.A., Barceló, T., Ruiz, A.: Stability of Calderón inverse conductivity problem in the plane. J. Math. Pure. Appl. 88, 522–556 (2007)

    Article  MATH  Google Scholar 

  14. Beals, R., Coifman, R.: Transformation spectrales et equation d’evolution non lineares. Seminaire Goulaouic-Meyer-Schwarz 9, 1981–1982 (1982)

    Google Scholar 

  15. Beals, R., Coifman, R.R.: Linear spectral problems, non-linear equations and the \(\bar{\partial }\)-method. Inverse Prob. 5, 87–130 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Beretta, E., Francini, E.: Lipschitz stability for the electrical impedance tomography problem: the complex case. Commun. PDE 36, 1723–1749 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Berenstein, C.A., Casadio Tarabusi, E.: Integral geometry in hyperbolic spaces and electrical impedance tomography. SIAM J. Appl. Math. 56, 755–64 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Beretta, E., de Hoop, M.V., Qiu, L.: Lipschitz stability of an inverse boundary value problem for a Schrödinger-type equation. SIAM J. Math. Anal. 45(2), 679–699 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bikowski, J.: Electrical impedance tomography reconstructions in two and three dimensions; from Calderón to direct methods. Ph.D. thesis, Colorado State University, Fort Collins (2009)

    Google Scholar 

  20. Borcea, L.: Electrical impedance tomography. Inverse Probl. 18, R99–R136 (2002) [Borcea, L.: Addendum to electrical impedance tomography. Inverse Prob. 19, 997–998 (2003)]

    Google Scholar 

  21. Borsic, A, Graham, B.M., Adler, A., Lionheart, W.R.B.: Total variation regularization in electrical impedance tomography. IEEE Trans. Med. Imaging 29(1), 44–54 (2010)

    Article  Google Scholar 

  22. Brown, R.: Global uniqueness in the impedance-imaging problem for less regural conductivities. SIAM J. Math. Anal. 27(4), 1049 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Brown, R., Torres, R.: Uniqueness in the inverse conductivity problem for conductivities with 3∕2 derivatives in L p, p > 2n. J. Fourier Anal. Appl. 9, 1049–1056 (2003)

    Google Scholar 

  24. Brown, R., Uhlmann, G.: Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions. Commun. PDE. 22, 1009–1027 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bukhgeim, A.L., Uhlmann, G.: Recovery a potential from partial Cauchy data. Commun. PDE. 27, 653–668 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73. Sociedade Brasileira de Matemática, Rio de Janeiro (1980)

    Google Scholar 

  27. Calderón, A.P.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–138 (2006) [Note this reprint has some different typographical errors from the original: in particular on the first page the Dirichlet data for w is ϕ not zero]

    Google Scholar 

  28. Chambers, J.E., Meldrum, P.I., Ogilvy, R.D., Wilkinson, P.B.: Characterisation of a NAPL-contaminated former quarry site using electrical impedance tomography. Near Surf. Geophys. 3, 79–90 (2005)

    Google Scholar 

  29. Chambers, J.E., Kuras, O., Meldrum, P.I., Ogilvy, R.D., Hollands, J.: Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71, B231–B239 (2006)

    Article  Google Scholar 

  30. Cheng, K., Isaacson, D., Newell, J.C., Gisser, D.G.:Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36, 918–24 (1989)

    Google Scholar 

  31. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ciulli, S., Ispas, S., Pidcock, M.K.: Anomalous thresholds and edge singularities in electrical impedance tomography. J. Math. Phys. 37, 4388 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Colin de VerdiZ̀ere, Y., Gitler, I., Vertigan, D.: Réseaux électriques planaires. II. Comment. Math. Helv. 71, 144–167 (1996)

    Google Scholar 

  34. Cornean, H., Knudsen, K., Siltanen, S.: Towards a D-bar reconstruction method for three dimensional EIT. J. Inverse Ill-Posed Prob. 14, 111–134 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Di Cristo, M.: Stable determination of an inhomogeneous inclusion by local boundary measurements. J. Comput. Appl. Math. 198, 414–425 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Dobson, D.C.: Stability and regularity of an inverse elliptic boundary value problem. Technical Report TR90-14 Rice University, Department of Mathematical Sciences (1990)

    Google Scholar 

  37. Doerstling, B.H.: A 3-d reconstruction algorithm for the linearized inverse boundary value problem for Maxwell’s equations. Ph.D. thesis, Rensselaer Polytechnic Institute (1995)

    Google Scholar 

  38. Druskin, V.: The unique solution of the inverse problem of electrical surveying and electrical well-logging for piecewise-constant conductivity. Izv. Earth Phys. 18, 51–53 (1982) (in Russian)

    Google Scholar 

  39. Druskin, V.: On uniqueness of the determination of the three-dimensional underground structures from surface measurements with variously positioned steady-state or monochromatic field sources. Sov. Phys.-Solid Earth 21, 210–214 (1985) (in Russian)

    Google Scholar 

  40. Druskin, V.: On the uniqueness of inverse problems for incomplete boundary data. SIAM J. Appl. Math. 58(5), 1591–1603 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Gaburro, R.: Sul problema inverso della tomografia da impedenza elettrica nel caso di conduttivitá anisotropa, Tesi di Laurea in Matematica, Universitá degli Studi di Trieste (1999)

    Google Scholar 

  42. Gaburro, R.: Anisotropic conductivity inverse boundary value problems. Ph.D. thesis, University of Manchester Institute of Science and Technology (UMIST), Manchester (2003)

    Google Scholar 

  43. Gaburro, R., Lionheart, W.R.B.: Recovering Riemannian metrics in monotone families from boundary data. Inverse Prob. 25, 045004 (2009)

    Article  MathSciNet  Google Scholar 

  44. Geotomo Software: RES3DINV ver. 2.16, Rapid 3D Resistivity and IP Inversion Using the Least-Squares Method. Geotomo Software, Malaysia (2009). http://www.geoelectrical.com

  45. Gisser, D.G., Isaacson, D., Newell, J.C.: Electric current computed tomography and eigenvalues. SIAM J. Appl. Math. 50, 1623–1634 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  46. Griffiths, H.: Magnetic induction tomography. Meas. Sci. Technol. 12, 1126–1131 (2001)

    Article  Google Scholar 

  47. Griffiths, H., Jossinet, J.: Bioelectric tissue spectroscopy from multi-frequency EIT. Physiol. Meas. 15(Suppl. 2A), 29–35 (1994)

    Article  Google Scholar 

  48. Haberman, B., Tataru, D.: Uniqueness in Calderón problem with Lipschitz conductivities. Duke Math. J. 162(3), 435–625 (2013)

    Article  MathSciNet  Google Scholar 

  49. Hähner, P.: A periodic Faddeev-type solution operator. J. Differ. Equ. 128, 300–308 (1996)

    Article  MATH  Google Scholar 

  50. Hanke, M.: On real-time algorithms for the location search of discontinuous conductivities with one measurement. Inverse Prob. 24, 045005 (2008)

    Article  MathSciNet  Google Scholar 

  51. Hanke, M., Schappel, B.: The factorization method for electrical impedance tomography in the half-space. SIAM J. Appl. Math. 68, 907–924 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Hanke, M., Harrach, B., Hynöven, N.: Justification of point electrode models in electrical impedance tomography. Math. Models Methods Appl. Sci. 21, 1395 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  53. Harrach, B., Seo, JK.: Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal. 42, 1505–1518 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  54. Harrach, B., Ullrich, M.: Monotonicity based shape reconstruction in electrical impedance tomography. SIAM J. Math. Anal. 45(6), 3382–3403 (2013). http://dx.doi.org/10.1137/120886984

  55. Heck, H., Wang, J.-N.: Stability estimates for the inverse boundary value problem by partial Cauchy data. Inverse Prob. 22, 1787–1796 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. Heikkinen, L.M., Vilhunen, T., West, R.M., Vauhkonen, M.: Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas. Sci. Technol. 13, 1855 (2002)

    Article  Google Scholar 

  57. Heinrich, S., Schiffmann, H., Frerichs, A., Klockgether-Radke, A., Frerichs, I.: Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study. Intensive Care Med. 32, 1392–1398 (2006)

    Article  Google Scholar 

  58. Henderson, R.P., Webster, J.G.: An impedance camera for spatially specific measurements of the thorax. IEEE Trans. Biomed. Eng. BME-25(3), 250–254 (1978)

    Article  Google Scholar 

  59. Holder, D.S.: Electrical Impedance Tomography Methods History and Applications. Institute of Physics Publishing, Bristol (2005)

    Google Scholar 

  60. Huang, S.M., Plaskowski, A., Xie, C.G., Beck, M.S.: Capacitance-based tomographic flow imaging system. Electron. Lett. 24, 418–419 (1988)

    Article  Google Scholar 

  61. Ikehata, M.: The enclosure method and its applications, Chapter 7. In: Analytic Extension Formulas and Their Applications (Fukuoka, 1999/Kyoto, 2000). International Society for Analysis, Applications and Computation, vol. 9, pp. 87–103. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  62. Ikehata, M., Siltanen, S.: Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements. Inverse Prob. 16, 273–296 (2000)

    MathSciNet  Google Scholar 

  63. Ingerman, D., Morrow, J.A.: On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region. SIAM J. Math. Anal. 29, 106–115 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  64. Isaacson, D.: Distinguishability of conductivities by electric current computed tomography. IEEE Trans. Med. Imaging 5, 92–95 (1986)

    Article  Google Scholar 

  65. Isaacson, D., Mueller, J.L., Newell, J., Siltanen, S.: Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography. IEEE Trans. Med. Imaging 23, 821–828 (2004)

    Article  Google Scholar 

  66. Isaacson, D., Mueller, J.L., Newell, J., Siltanen, S.: Imaging cardiac activity by the D-bar method for electrical impedance tomography. Physiol. Meas. 27, S43–S50 (2006)

    Article  Google Scholar 

  67. Isakov, V.: Completeness of products of solutions and some inverse problems for PDE. J. Differ. Equ. 92, 305–317 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  68. Isakov, V.: On the uniqueness in the inverse conductivity problem with local data. Inverse Prob. Imaging 1, 95–105 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  69. Kaipio, J., Kolehmainen, V., Somersalo, E., Vauhkonen, M.: Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Prob. 16, 1487–1522 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  70. Kang, H., Yun, K.: Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator. SIAM J. Math. Anal. 34, 719–735 (2002)

    Article  MathSciNet  Google Scholar 

  71. Kenig, C., Salo, M.: Recent progress in the Calderón problem with partial data. Contemp. Math. 615, 193–222 (2014)

    MathSciNet  Google Scholar 

  72. Kenig, C., Salo, M.: The Calderón problem with partial data on manifolds and applications. Anal. PDE 6(8), 2003–2048 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  73. Kenig, C., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. 165, 567–591 (2007)

    Article  MATH  Google Scholar 

  74. Kim, Y., Woo, H.W.: A prototype system and reconstruction algorithms for electrical impedance technique in medical body imaging. Clin. Phys. Physiol. Meas. 8, 63–70 (1987)

    Article  Google Scholar 

  75. Kohn, R., Vogelius, M.: Identification of an unknown conductivity by means of measurements at the boundary. SIAM-AMS Proc. 14, 113–123 (1984)

    MathSciNet  Google Scholar 

  76. Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements II. Interior results. Commun. Pure Appl. Math. 38, 643–667 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  77. Knudsen, K., Lassas, M., Mueller, J.L., Siltanen, S.: Regularized D-bar method for the inverse conductivity problem. Inverse Prob. Imaging 3, 599–562 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  78. Lassas, M., Uhlmann, G.: Determining a Riemannian manifold from boundary measurements. Ann. Sci. École Norm. Sup. 34, 771–787 (2001)

    MATH  MathSciNet  Google Scholar 

  79. Lassas, M., Taylor, M., Uhlmann, G.: The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary. Commun. Geom. Anal. 11, 207–222 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  80. Lee, J.M., Uhlmann, G.: Determining anisotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42, 1097–112 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  81. Lionheart, W.R.B.: Conformal uniqueness results in anisotropic electrical impedance imaging. Inverse Prob. 13, 125–134 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  82. Liu, L.: Stability estimates for the two-deimensional inverse conductivity problem. Ph.D. thesis, University of Rochester, New York (1997)

    Google Scholar 

  83. Loke, M.H.: Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software (2010). http://www.geoelectrical.com

  84. Loke, M.H., Barker, R.D.: Rapid least-squares inversion by a quasi-Newton method. Geophys. Prospect. 44, 131–152 (1996)

    Article  Google Scholar 

  85. Loke, M.H., Chambers, J.E., Ogilvy, R.D.: Inversion of 2D spectral induced polarization imaging data. Geophys. Prospect. 54, 287–301 (2006)

    Article  Google Scholar 

  86. Mandache, N.: Exponential instability in an inverse problem for the Schrödinger equation. Inverse Prob. 17, 1435–1444 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  87. Molinari, M., Blott, B.H., Cox, S.J., Daniell, G.J.: Optimal imaging with adaptive mesh refinement in electrical tomography. Physiol. Meas. 23(1), 121–128 (2002)

    Article  Google Scholar 

  88. Nachman, A.: Reconstructions from boundary measurements. Ann. Math. 128, 531–576 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  89. Nachman, A.: Global uniqueness for a two dimensional inverse boundary value problem. Ann. Math. 143, 71–96 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  90. Nachman, A., Sylvester, J., Uhlmann, G.: An n-dimensional Borg-Levinson theorem. Commun. Math. Phys. 115, 593–605 (1988)

    Article  MathSciNet  Google Scholar 

  91. Nakamura, G., Tanuma, K.: Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map. Inverse Prob. 17, 405–419 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  92. Nakamura, G., Tanuma, K.: Direct determination of the derivatives of conductivity at the boundary from the localized Dirichlet to Neumann map. Commun. Korean Math. Soc. 16, 415–425 (2001)

    MATH  MathSciNet  Google Scholar 

  93. Nakamura, G., Tanuma, K.: Formulas for reconstrucing conductivity and its normal derivative at the boundary from the localized Dirichlet to Neumann map. In: Hon, Y.-C., Yamamoto, M., Cheng, J., Lee, J.-Y. (eds.) The First International Conference on Inverse Problems: Recent Development in Theories and Numerics, City University of Hong Kong, Jan 2002, pp. 192–201. World Scientific, River Edge (2002)

    Google Scholar 

  94. Novikov, R.G.: A multidimensional inverse spectral problem for the equation \(-\Delta \psi + (v(x) - Eu(x))\psi = 0\). Funktsional. Anal. i Prilozhen. 22(4), 11–22, 96 (1988) (in Russian) [translation in Funct. Anal. Appl. 22(1988), no. 4, 263–272 (1989)]

    Google Scholar 

  95. Päivärinta, L., Panchenko, A., Uhlmann, G.: Complex geometrical optics solutions for Lipschitz conductivities. Rev. Mat. Iberoamericana 19, 57–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  96. Paulson, K., Breckon, W., Pidcock, M.: Electrode modeling in electrical-impedance tomography. SIAM J. Appl. Math. 52, 1012–1022 (1992)

    Article  MATH  Google Scholar 

  97. Polydorides, N., Lionheart, W.R.B.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 13, 1871–1883 (2002)

    Article  Google Scholar 

  98. Seagar, A.D.: Probing with low frequency electric current. Ph.D. thesis, University of Canterbury, Christchurch (1983)

    Google Scholar 

  99. Seagar, A.D., Bates, R.H.T.: Full-wave computed tomography. Pt 4: low-frequency electric current CT. Inst. Electr. Eng Proc. Pt. A 132, 455–466 (1985)

    Google Scholar 

  100. Siltanen, S., Mueller, J.L., Isaacson, D.: An implementation of the reconstruction algorithm of A. Nachman for the 2-D inverse conductivity problem. Inverse Prob. 16, 681–699 (2000)

    Google Scholar 

  101. Soleimani, M., Lionheart, W.R.B.: Nonlinear image reconstruction for electrical capacitance tomography experimental data using. Meas. Sci. Technol. 16(10), 1987–1996 (2005)

    Article  Google Scholar 

  102. Soleimani, M., Lionheart, W.R.B., Dorn, O.: Level set reconstruction of conductivity and permittivity from boundary electrical measurements using expeimental data. Inverse Prob. Sci. Eng. 14, 193–210 (2006)

    Article  MATH  Google Scholar 

  103. Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52, 1023–1040 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  104. Soni, N.K.: Breast imaging using electrical impedance tomography. Ph.D. thesis, Dartmouth College (2005)

    Google Scholar 

  105. Sylvester, J.: An anisotropic inverse boundary value problem. Commun. Pure. Appl. Math. 43, 201–232 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  106. Sylvester, J., Uhlmann, G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection. Commun. Pure Appl. Math. 39, 92–112 (1986)

    Article  MathSciNet  Google Scholar 

  107. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary valued problem. Ann. Math. 125, 153–169 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  108. Sylvester, J., Uhlmann, G.: Inverse boundary value problems at the boundary-continuous dependence. Commun. Pure Appl. Math. 41, 197–221 (1988)

    Article  MathSciNet  Google Scholar 

  109. Tamburrino, A., Rubinacci, G.: A new non-iterative inversion method for electrical resistance tomography. Inverse Prob. 18, 1809–1829 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  110. Uhlmann, G.: Topical review: electrical impedance tomography and Calderón’s problem. Inverse Prob. 25, 123011 (2009)

    Article  Google Scholar 

  111. Vauhkonen, M.: Electrical impedance tomography and prior information. Ph.D. thesis, University of Kuopio (1997)

    Google Scholar 

  112. Vauhkonen, M., Karjalainen, P.A., Kaipio, J.P.: A Kalman filter approach to track fast impedance changes in electrical impedance tomography. IEEE Trans. Biomed. Eng. 45, 486–493 (1998)

    Article  Google Scholar 

  113. Vauhkonen, M., Lionheart, W.R.B., Heikkinen, L.M., Vauhkonen, P.J., Kaipio, J.P: A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images. Physiol. Meas. 22, 107–111 (2001)

    Article  Google Scholar 

  114. West, R.M., Jia, X., Williams, R.A.: Parametric modelling in industrial process tomography. Chem. Eng. J. 77, 31–36 (2000)

    Article  Google Scholar 

  115. West, R.M., Soleimani, M., Aykroyd, R.G., Lionheart, W.R.B.: Speed improvement of MCMC image reconstruction in tomography by partial linearization. Int. J. Tomogr. Stat. 4(S06), 13–23 (2006)

    MATH  MathSciNet  Google Scholar 

  116. Yang, W.Q., Spink, D.M., York, T.A., McCann, H.: An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography. Meas. Sci. Technol. 10, 1065–1069 (1999)

    Article  Google Scholar 

  117. York, T.: Status of electrical tomography in industrial applications. J. Electron. Imag. 10, 608 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Adler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Adler, A., Gaburro, R., Lionheart, W. (2015). Electrical Impedance Tomography. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_14

Download citation

Publish with us

Policies and ethics