Skip to main content

Optical Imaging

  • Reference work entry

Abstract

This chapter discusses diffuse optical tomography. We present the origins of this method in terms of spectroscopic analysis of tissue using near-infrared light and its extension to an imaging modality. Models for light propagation at the macroscopic and mesoscopic scale are developed from the radiative transfer equation (RTE). Both time- and frequency-domain systems are discussed. Some formal results based on Green’s function models are presented, and numerical methods are described based on discrete finite element method (FEM) models and a Bayesian framework for image reconstruction. Finally, some open questions are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ackroyd, R.T.: Finite Element Methods for Particle Transport: Applications to Reactor and Radiation Physics. Research Studies, Taunton (1997)

    Google Scholar 

  2. Amaldi, E.: The production and slowing down of neutrons. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. 38/2, pp. 1–659. Springer, Berlin (1959)

    Google Scholar 

  3. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice Hall, Englewood Cliffs (1979)

    MATH  Google Scholar 

  4. Aronson, R.: Boundary conditions for diffusion of light. J. Opt. Soc. Am. A 12, 2532–2539 (1995)

    Article  Google Scholar 

  5. Arridge, S.R.: Optical tomography in medical imaging. Inverse Probl. 15(2), R41–R93 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arridge, S.R., Lionheart, W.R.B.: Non-uniqueness in diffusion-based optical tomography. Opt. Lett. 23, 882–884 (1998)

    Article  Google Scholar 

  7. Arridge, S.R., Schotland, J.C.: Optical tomography: forward and inverse problems. Inverse Probl. 25(12), 123010 (59pp) (2009)

    Google Scholar 

  8. Arridge, S.R., Cope, M., Delpy, D.T.: Theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Phys. Med. Biol. 37, 1531–1560 (1992)

    Article  Google Scholar 

  9. Arridge, S.R., Schweiger, M., Hiraoka, M., Delpy, D.T.: A finite element approach for modeling photon transport in tissue. Med. Phys. 20(2), 299–309 (1993)

    Article  Google Scholar 

  10. Arridge, S.R., Dehghani, H., Schweiger, M., Okada, E.: The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions. Med. Phys. 27(1), 252–264 (2000)

    Article  Google Scholar 

  11. Arridge, S.R., Kaipio, J.P., Kolehmainen, V., Schweiger, M., Somersalo, E., Tarvainen, T., Vauhkonen, M.: Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Probl. 22(1), 175–196 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Arridge, S.R., Kaipio, J.P., Kolehmainen, V., Schweiger, M., Somersalo, E., Tarvainen, T., Vauhkonen, M.: Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Probl. 22, 175–195 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Aydin, E.D.: Three-dimensional photon migration through voidlike regions and channels. Appl. Opt. 46(34), 8272–8277 (2007)

    Article  Google Scholar 

  14. Aydin, E.D., de Oliveira, C.R.E., Goddard, A.J.H.: A finite element-spherical harmonics radiation transport model for photon migration in turbid media. J. Quant. Spectrosc. Radiat. Transf. 84, 247–260 (2004)

    Article  Google Scholar 

  15. Bal, G.: Transport through diffusive and nondiffusive regions, embedded objects, and clear layers. SIAM J. Appl. Math. 62(5), 1677–1697 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bal, G.: Radiative transfer equation with varying refractive index: a mathematical perspective. J. Opt. Soc. Am. A 23, 1639–1644 (2006)

    Article  MathSciNet  Google Scholar 

  17. Bal, G.: Inverse transport theory and applications. Inverse Probl. 25, 053001 (48pp) (2009)

    Google Scholar 

  18. Bal, G., Maday, Y.: Coupling of transport and diffusion models in linear transport theory. Math. Model. Numer. Anal. 36(1), 69–86 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Benaron, D.A., Stevenson, D.K.: Optical time-of-flight and absorbance imaging of biological media. Science 259, 1463–1466 (1993)

    Article  Google Scholar 

  20. Berg, R., Svanberg, S., Jarlman, O.: Medical transillumination imaging using short-pulse laser diodes. Appl. Opt. 32, 574–579 (1993)

    Article  Google Scholar 

  21. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (2006)

    Google Scholar 

  22. Bluestone, A.V., Abdoulaev, G., Schmitz, C.H., Barbour, R.L., Hielscher, A.H.: Three-dimensional optical tomography of hemodynamics in the human head. Opt. Express 9(6), 272–286 (2001)

    Article  Google Scholar 

  23. Calvetti, D., Kaipio, J.P., Somersalo, E.: Aristotelian prior boundary conditions. Int. J. Math. 1, 63–81 (2006)

    MATH  Google Scholar 

  24. Case, M.C., Zweifel, P.F.: Linear Transport Theory. Addison-Wesley, New York (1967)

    MATH  Google Scholar 

  25. Contini, D., Martelli, F., Zaccanti, G.: Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory Appl. Opt. 36(19), 4587–4599 (1997)

    Article  Google Scholar 

  26. Cope, M., Delpy, D.T.: System for long term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med. Biol. Eng. Comput. 26, 289–294 (1988)

    Article  Google Scholar 

  27. Cutler, M.: Transillumination as an aid in the diagnosis of breast lesions. Surg. Gynecol. Obstet. 48, 721–729 (1929)

    Google Scholar 

  28. Dehghani, H., Arridge, S.R., Schweiger, M., Delpy, D.T.: Optical tomography in the presence of void regions. J. Opt. Soc. Am. A 17(9), 1659–1670 (2000)

    Article  Google Scholar 

  29. Delpy, D.T., Cope, M., van der Zee, P., Arridge, S.R., Wray, S., Wyatt, J.: Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 33, 1433–1442 (1988)

    Article  Google Scholar 

  30. Diamond, S.G., Huppert, T.J., Kolehmainen, V., Franceschini, M.A., Kaipio, J.P., Arridge, S.R., Boas, D.A.: Dynamic physiological modeling for functional diffuse optical tomography. Neuroimage 30, 88–101 (2006)

    Article  Google Scholar 

  31. Dorn, O.: Das inverse Transportproblem in der Lasertomographie. PhD thesis, University of Münster (1997)

    Google Scholar 

  32. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    Book  MATH  Google Scholar 

  33. Duderstadt, J.J., Martin, W.R.: Transport Theory. Wiley, New York (1979)

    MATH  Google Scholar 

  34. Durbin, J., Koopman, J.: Time Series Analysis by State Space Methods. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  35. Fantini, S., Franceschini, M.A., Gratton, E.: Effective source term in the diffusion equation for photon transport in turbid media. Appl. Opt. 36(1), 156–163 (1997)

    Article  Google Scholar 

  36. Ferwerda, H.A.: The radiative transfer equation for scattering media with a spatially varying refractive index. J. Opt. A Pure Appl. Opt. 1(3), L1–L2 (1999)

    Article  Google Scholar 

  37. Firbank, M., Arridge, S.R., Schweiger, M., Delpy, D.T.: An investigation of light transport through scattering bodies with non-scattering regions. Phys. Med. Biol. 41, 767–783 (1996)

    Article  Google Scholar 

  38. Furutsu, K.: Diffusion equation derived from space-time transport equation. J. Opt. Soc. Am. 70(4), 360–366 (1980)

    Article  MathSciNet  Google Scholar 

  39. Groenhuis, R.A.J., Ferwerda, H.A., Ten Bosch, J.J.: Scattering and absorption of turbid materials determined from reflection measurements. Part 1: theory. Appl. Opt. 22(16), 2456–2462 (1983)

    Google Scholar 

  40. Haskell, R.C., Svaasand, L.O., Tsay, T.-T., Feng, T.-C., McAdams, M.S., Tromberg, B.J.: Boundary conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A 11(10), 2727–2741 (1994)

    Article  Google Scholar 

  41. Hayashi, T., Kashio, Y., Okada, E.: Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region. Appl. Opt. 42(16), 2888–2896 (2003)

    Article  Google Scholar 

  42. Hebden, J.C., Kruger, R.A., Wong, K.S.: Time resolved imaging through a highly scattering medium. Appl. Opt. 30(7), 788–794 (1991)

    Article  Google Scholar 

  43. Hebden, J.C., Gibson, A., Md Yusof, R., Everdell, N., Hillman, E.M.C., Delpy, D.T., Arridge, S.R., Austin, T., Meek, J.H., Wyatt, J.S.: Three-dimensional optical tomography of the premature infant brain. Phys. Med. Biol. 47, 4155–4166 (2002)

    Article  Google Scholar 

  44. Heino, J., Somersalo, E.: Estimation of optical absorption in anisotropic background. Inverse Probl. 18, 559–573 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  45. Heino, J., Somersalo, E.: A modelling error approach for the estimation of optical absorption in the presence of anisotropies. Phys. Med. Biol. 49, 4785–4798 (2004)

    Article  Google Scholar 

  46. Heino, J., Somersalo, E., Kaipio, J.P.: Compensation for geometric mismodelling by anisotropies in optical tomography. Opt. Express 13(1), 296–308 (2005)

    Article  Google Scholar 

  47. Henyey, L.G., Greenstein, J.L.: Diffuse radiation in the galaxy. AstroPhys. J. 93, 70–83 (1941)

    Article  Google Scholar 

  48. Hielscher, A.H., Alcouffe, R.E., Barbour, R.L.: Comparison of finitedifference transport and diffusion calculations for photon migration in homogeneous and hetergeneous tissue. Phys. Med. Biol. 43, 1285–1302 (1998)

    Article  Google Scholar 

  49. Ho, P.P., Baldeck, P., Wong, K.S., Yoo, K.M., Lee, D., Alfano, R.R.: Time dynamics of photon migration in semiopaque random media. Appl. Opt. 28, 2304–2310 (1989)

    Article  Google Scholar 

  50. Huttunen, J.M.J., Kaipio, J.P.: Approximation error analysis in nonlinear state estimation with an application to state-space identification. Inverse Probl. 23, 2141–2157 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Huttunen, J.M.J., Kaipio, J.P.: Approximation errors in nostationary inverse problems. Inverse Probl. Imaging 1(1), 77–93 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Huttunen, J.M.J., Kaipio, J.P.: Model reduction in state identification problems with an application to determination of thermal parameters. Appl. Numer. Math. 59, 877–890 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  53. Huttunen, J.M.J., Lehikoinen, A., Hämäläinen, J., Kaipio, J.P.: Importance filtering approach for the nonstationary approximation error method. Inverse Probl. (2009). In review

    Google Scholar 

  54. Ishimaru, A.: Wave Propagation and Scattering in Random Media, vol. 1. Academic, New York (1978)

    Google Scholar 

  55. Jarry, G., Ghesquiere, S., Maarek, J.M., Debray, S., Bui, M.-H., Laurent, H.D.: Imaging mammalian tissues and organs using laser collimated transillumination. J. Biomed. Eng. 6, 70–74 (1984)

    Article  Google Scholar 

  56. Jöbsis, F.F.: Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977)

    Article  Google Scholar 

  57. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005)

    MATH  Google Scholar 

  58. Kaipio, J., Somersalo, E.: Statistical and computational inverse problems. J. Comput. Appl. Math. 198, 493–504 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  59. Kaipio, J.P., Kolehmainen, V., Vauhkonen, M., Somersalo, E.: Inverse problems with structural prior information. Inverse Probl. 15, 713–729 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  60. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE, New York (1987)

    Google Scholar 

  61. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans ASME J. Basic Eng. 82D(1), 35–45 (1960)

    Article  Google Scholar 

  62. Khan, T., Jiang, H.: A new diffusion approximation to the radiative transfer equation for scattering media with spatially varying refractive indices. J. Opt. A Pure Appl. Opt. 5, 137–141 (2003)

    Article  Google Scholar 

  63. Kim, A.D., Ishimaru, A.: Optical diffusion of continuos-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer. Appl. Opt. 37(22), 5313–5319 (1998)

    Article  Google Scholar 

  64. Klose, A.D., Larsen, E.W.: Light transport in biological tissue based on the simplified spherical harmonics equations. J. Comput. Phys. 220, 441–470 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  65. Kolehmainen, V., Arridge, S.R., Vauhkonen, M., Kaipio, J.P.: Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography. Phys. Med. Biol. 45, 3267–3283 (2000)

    Article  Google Scholar 

  66. Kolehmainen, V., Prince, S., Arridge, S.R., Kaipio, J.P.: A state estimation approach to non-stationary optical tomography problem. J. Opt. Soc. Am. A 20, 876–884 (2000)

    Article  Google Scholar 

  67. Kolehmainen, V., Schweoger, M., Nissilä, I., Tarvainen, T., Arridge, S.R., Kaipio, J.P.: Approximation errors and model reduction in three-dimensional optical tomography. J. Opt. Soc. Am. A 26, 2257–2268 (2009)

    Article  Google Scholar 

  68. Kolehmainen, V., Tarvainen, T., Arridge, S.R., Kaipio, J.P.: Marginalization of uninteresting distributed parameters in inverse problems – application to diffuse optical tomography. Int. J. Uncertain. Quantif. (2010, in press)

    Google Scholar 

  69. Lakowicz, J.R., Berndt, K.: Frequency domain measurement of photon migration in tissues. Chem. Phys. Lett. 166(3), 246–252 (1990)

    Article  Google Scholar 

  70. Lehikoinen, A., Finsterle, S., Voutilainen, A., Heikkinen, L.M., Vauhkonen, M., Kaipio, J.P.: Approximation errors and truncation of computational domains with application to geophysical tomography. Inverse Probl. Imaging 1, 371–389 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  71. Lehikoinen, A., Huttunen, J.M.J., Finsterle, S., Kowalsky, M.B., Kaipio, J.P.: Dynamic inversion for hydrological process monitoring with electrical resistance tomography under model uncertainties. Water Resour. Res. 46, W04513 (2010). doi:10.1029/2009WR008470

    Google Scholar 

  72. Marti-Lopez, L., Bouza-Dominguez, J., Hebden, J.C., Arridge, S.R., Martinez-Celorio, R.A.: Validity conditions for the radiative transfer equation. J. Opt. Soc. Am. A 20(11), 2046–2056 (2003)

    Article  Google Scholar 

  73. Mitic, G., Kolzer, J., Otto, J., Plies, E., Solkner, G., Zinth, W.: Timegated transillumination of biological tissue and tissuelike phantoms. Opt. Lett. 33, 6699–6710 (1994)

    Google Scholar 

  74. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  75. Nissilä, I., Noponen, T., Kotilahti, K., Tarvainen, T., Schweiger, M., Lipiänen, L., Arridge, S.R., Katila, T.: Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography. Rev. Sci. Instrum. 76(4), 004302 (2005)

    Google Scholar 

  76. Nissinen, A., Heikkinen, L.M., Kaipio, J.P.: Approximation errors in electrical impedance tomography – an experimental study. Meas. Sci. Technol. 19 (2008). doi:10.1088/0957-0233/19/1/015501

    Google Scholar 

  77. Nissinen, A., Heikkinen, L.M., Kolehmainen, V., Kaipio, J.P.: Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas. Sci. Technol. 20 (2009). doi:10.1088/0957–0233/20/10/105504

    Google Scholar 

  78. Nissinen, A., Kolehmainen, V., Kaipio, J.P.: Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography. IEEE Trans. Med. Imaging (2010). In review

    Google Scholar 

  79. Ntziachristos, V., Ma, X., Chance, B.: Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography. Rev. Sci. Instrum. 69, 4221–4233 (1998)

    Article  Google Scholar 

  80. Okada, E., Schweiger, M., Arridge, S.R., Firbank, M., Delpy, D.T.: Experimental validation of Monte Carlo and Finite-Element methods for the estimation of the optical path length in inhomogeneous tissue. Appl. Opt. 35(19), 3362–3371 (1996)

    Article  Google Scholar 

  81. Prince, S., Kolehmainen, V., Kaipio, J.P., Franceschini, M.A., Boas, D., Arridge, S.R.: Time series estimation of biological factors in optical diffusion tomography. Phys. Med. Biol. 48(11), 1491–1504 (2003)

    Article  Google Scholar 

  82. Schmidt, A., Corey, R., Saulnier, P.: Imaging through random media by use of low-coherence optical heterodyning. Opt. Lett. 20, 404–406 (1995)

    Article  Google Scholar 

  83. Schmidt, F.E.W., Fry, M.E., Hillman, E.M.C., Hebden, J.C., Delpy, D.T.: A 32-channel time-resolved instrument for medical optical tomography. Rev. Sci. Instrum. 71(1), 256–265 (2000)

    Article  Google Scholar 

  84. Schmitt, J.M., Gandbjbakhche, A.H., Bonner, R.F.: Use of polarized light to discriminate short-path photons in a multiply scattering medium. Appl. Opt. 31, 6535–6546 (1992)

    Article  Google Scholar 

  85. Schotland, J.C., Markel, V.: Inverse scattering with diffusing waves. J. Opt. Soc. Am. A 18, 2767–2777 (2001)

    Article  MathSciNet  Google Scholar 

  86. Schweiger, M., Arridge, S.R.: The finite element model for the propagation of light in scattering media: frequency domain case. Med. Phys. 24(6), 895–902 (1997)

    Article  Google Scholar 

  87. Schweiger, M., Arridge, S.R., Hiraoka, M., Delpy, D.T.: The finite element model for the propagation of light in scattering media: boundary and source conditions. Med. Phys. 22(11), 1779–1792 (1995)

    Article  Google Scholar 

  88. Schweiger, M., Arridge, S.R., Nissilä, I.: Gauss–Newton method for image reconstruction in diffuse optical tomography. Phys. Med. Biol. 50, 2365–2386 (2005)

    Article  Google Scholar 

  89. Schweiger, M., Nissilä, I., Boas, D.A., Arridge, S.R.: Image reconstruction in optical tomography in the presence of coupling errors. Appl. Opt. 46(14), 2743–2756 (2007)

    Article  Google Scholar 

  90. Spears, K.G., Serafin, J., Abramson, N.H., Zhu, X., Bjelkhagen, H.: Chronocoherent imaging for medicine. IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989)

    Article  Google Scholar 

  91. Sylvester, J., Uhlmann, G.: A global uniquness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  92. Tarvainen, T., Vauhkonen, M., Kolehmainen, V., Arridge, S.R., Kaipio, J.P.: Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions. Phys. Med. Biol. 50, 4913–4930 (2005)

    Article  Google Scholar 

  93. Tarvainen, T., Vauhkonen, M., Kolehmainen, V., Kaipio, J.P.: A hybrid radiative transfer – diffusion model for optical tomography. Appl. Opt. 44(6), 876–886 (2005)

    Article  Google Scholar 

  94. Tarvainen, T., Vauhkonen, M., Kolehmainen, V., Kaipio, J.P.: Finite element model for the coupled radiative transfer equation and diffusion approximation. Int. J. Numer. Methods Eng. 65(3), 383–405 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  95. Tarvainen, T., Kolehmainen, V., Pulkkinen, A., Vauhkonen, M., Schweiger, M., Arridge, S.R., Kaipio, J.P.: Approximation error approach for compensating for modelling errors between the radiative transfer equation and the diffusion approximation in diffuse optical tomography. Inverse Probl. 26 (2010). doi:10.1088/0266–5611/26/1/015005

    Google Scholar 

  96. Tervo, J., Kolmonen, P., Vauhkonen, M., Heikkinen, L.M., Kaipio, J.P.: A finite-element model of electron transport in radiation therapy and a related inverse problem. Inverse Probl. 15, 1345–1362 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  97. Wang, L.V.: Rapid modeling of diffuse reflectance of light in turbid slabs. J. Opt. Soc. Am. A 15(4), 936–944 (1998)

    Article  Google Scholar 

  98. Wang, L., Jacques, S.L.: Hybrid model of Monte Carlo simulation diffusion theory for light reflectance by turbid media. J. Opt. Soc. Am. A 10(8), 1746–1752 (1993)

    Article  Google Scholar 

  99. Wang, L., Ho, P.P., Liu, C., Zhang, G., Alfano, R.R.: Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science 253, 769–771 (1991)

    Article  Google Scholar 

  100. Wright, S., Schweiger, M., Arridge, S.R.: Reconstruction in optical tomography using the PN approximations. Meas. Sci. Technol. 18, 79–86 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Arridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Arridge, S.R., Kaipio, J.P., Kolehmainen, V., Tarvainen, T. (2015). Optical Imaging. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_21

Download citation

Publish with us

Policies and ethics