Skip to main content

Numerical Methods and Applications in Total Variation Image Restoration

  • Reference work entry
Book cover Handbook of Mathematical Methods in Imaging

Abstract

Since their introduction in a classic paper by Rudin, Osher, and Fatemi (Physica D 60:259–268, 1992), total variation minimizing models have become one of the most popular and successful methodologies for image restoration. New developments continue to expand the capability of the basic method in various aspects. Many faster numerical algorithms and more sophisticated applications have been proposed. This chapter reviews some of these recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, A., Vogel, C.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adams, R., Fournier, J.: Sobolev Spaces. Volume 140 of Pure and Applied Mathematics, 2nd edn. Academic, New York (2003)

    Google Scholar 

  3. Aujol, J.-F.: Some first-order algorithms for total variation based image restoration. J. Math. Imaging Vis. 34(3), 307–327 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition – modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  5. Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A l 1-unified variational framework for image restoration. In: Proceedings of ECCV. Volume 3024 of Lecture Notes in Computer Sciences, Prague, Czech Republic, pp. 1–13 (2004)

    Google Scholar 

  6. Bioucas-Dias, J., Figueiredo, M., Nowak, R.: Total variation-based image deconvolution: a majorization-minimization approach. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2006), Toulouse, France, vol. 2, pp. 14–19 (2006)

    Google Scholar 

  7. Blomgren, P., Chan, T.: Color TV: total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7, 304–309 (1998)

    Article  Google Scholar 

  8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Bresson, X., Chan, T.: Non-local unsupervised variational image segmentation models. UCLA CAM Report, 08–67 (2008)

    Google Scholar 

  10. Bresson, X., Chan, T.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burger, M., Frick, K., Osher, S., Scherzer, O.: Inverse total variation flow. Multiscale Model. Simul. 6(2), 366–395 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carter, J.: Dual methods for total variation-based image restoration. Ph.D. thesis, UCLA, Los Angeles (2001)

    Google Scholar 

  14. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  15. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84(3), 288–307 (1997)

    Article  Google Scholar 

  16. Chambolle, A., Lions, P.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chan, R., Chan, T., Wong, C.: Cosine transform based preconditioners for total variation deblurring. IEEE Trans. Image Process. 8, 1472–1478 (1999)

    Article  Google Scholar 

  18. Chan, R., Wen, Y., Yip, A.: A fast optimization transfer algorithm for image inpainting in wavelet domains. IEEE Trans. Image Process. 18(7), 1467–1476 (2009)

    Article  MathSciNet  Google Scholar 

  19. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  20. Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chan, T., Esedoḡlu, S., Park, F., Yip, A.: Recent developments in total variation image restoration. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision. Springer, Berlin, pp. 17–32 (2005)

    Google Scholar 

  22. Chan, T., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chan, T., Shen, J., Zhou, H.: Total variation wavelet inpainting. J. Math. Imaging Vis. 25(1), 107–125 (2006)

    Article  MathSciNet  Google Scholar 

  24. Chan, T., Ng, M., Yau, C., Yip, A.: Superresolution image reconstruction using fast inpainting algorithms. Appl. Comput. Harmon. Anal. 23(1), 3–24 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Christiansen, O., Lee, T., Lie, J., Sinha, U., Chan, T.: Total variation regularization of matrix-valued images. Int. J. Biomed. Imaging 2007, 27432 (2007)

    Article  Google Scholar 

  26. Combettes, P., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2004)

    Article  MathSciNet  Google Scholar 

  27. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: fast and exact optimization. J. Math. Imaging Vis. 26, 261–276 (2006)

    Article  MathSciNet  Google Scholar 

  28. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proceedings of the IEEE International Conference on Computer Vision, Corfu, vol. 2, pp. 1033–1038 (1999)

    Google Scholar 

  29. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for TV minimization. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Fu, H., Ng, M., Nikolova, M., Barlow, J.: Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM J. Sci. Comput. 27(6), 1881–1902 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)

    Book  MATH  Google Scholar 

  33. Glowinki, R., Le Tallec, P.: Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  34. Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation based image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Goldstein, T., Osher, S.: The split Bregman method for l 1-regularization problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hintermüller, M., Kunisch, K.: Total bounded variation regularization as a bilaterally constrained optimisation problem. SIAM J. Appl. Math. 64, 1311–1333 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hintermüller, M., Stadler, G.: A primal-dual algorithm for TV-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton’s method. SIAM J. Optim. 13(3), 865–888 (2003)

    Article  MATH  Google Scholar 

  39. Huang, Y., Ng, M., Wen, Y.: A fast total variation minimization method for image restoration. Multiscale Model. Simul. 7(2), 774–795 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kanwal, R.P.: Generalized Functions: Theory and Applications. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  41. Krishnan, D., Lin, P., Yip, A.: A primal-dual active-set method for non-negativity constrained total variation deblurring problems. IEEE Trans. Image Process. 16(2), 2766–2777 (2007)

    Article  MathSciNet  Google Scholar 

  42. Krishnan, D., Pham, Q., Yip, A.: A primal dual active set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems. Adv. Comput. Math. 31(1–3), 237–266 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lange, K.: (2004) Optimization. Springer, New York

    Book  MATH  Google Scholar 

  44. Lange, K., Carson, R.: (1984) EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 8, 306–316

    Google Scholar 

  45. Law, Y., Lee, H., Yip, A.: A multi-resolution stochastic level set method for Mumford-Shah image segmentation. IEEE Trans. Image Process. 17(3), 2289–2300 (2008)

    MathSciNet  Google Scholar 

  46. LeVeque, R.: Numerical Methods for Conservation Laws, 2nd edn. Birkhäuser, Basel (2005)

    Google Scholar 

  47. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  48. Ng, M., Qi, L., Tang, Y., Huang, Y.: On semismooth Newton’s methods for total variation minimization. J. Math. Imaging Vis. 27(3), 265–276 (2007)

    Article  Google Scholar 

  49. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. Royden, H.: Real Analysis, 3rd edn. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  51. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  52. Sapiro, G., Ringach, D.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5, 1582–1586 (1996)

    Article  Google Scholar 

  53. Setzer, S.: Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. In: Proceedings of Scale-Space, Voss, Norway, pp. 464–476 (2009)

    Google Scholar 

  54. Setzer, S., Steidl, G., Popilka, B., Burgeth, B.: Variational methods for denoising matrix fields. In: Laidlaw, D., Weickert, J. (eds.) Visualization and Processing of Tensor Fields: Advances and Perspectives, Mathematics and Visualization, pp. 341–360. Springer, Berlin (2009)

    Chapter  Google Scholar 

  55. Shen, J., Kang, S.: Quantum TV and application in image processing. Inverse Probl. Imaging 1(3), 557–575 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  56. Strang, G.: Maximal flow through a domain. Math. Program. 26(2), 123–143 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  57. Tschumperlé, D., Deriche, R.: Diffusion tensor regularization with constraints preservation. In: Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, vol. 1, pp. 948–953. IEEE Computer Science Press (2001)

    Google Scholar 

  58. Vogel, C., Oman, M.: Iteration methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  59. Wang, Y, Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  60. Wang, Z., Vemuri, B., Chen, Y., Mareci, T.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Trans. Med. Imaging 23(8), 930–939 (2004)

    Article  Google Scholar 

  61. Weiss, P., Aubert, G., Blanc-Fèraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  62. Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  63. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l 1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  64. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report, 08–34 (2008)

    Google Scholar 

  65. Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total-variation-regularized image restoration. Comput. Optim. Appl. 47(3), 377–400 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Chan, R., Chan, T.F., Yip, A. (2015). Numerical Methods and Applications in Total Variation Image Restoration. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_24

Download citation

Publish with us

Policies and ethics