Skip to main content

Imaging in Random Media

  • Reference work entry
Handbook of Mathematical Methods in Imaging
  • 5874 Accesses

Abstract

We give a self-contained presentation of coherent array imaging in random media, which are mathematical models of media with uncertain small-scale features (inhomogeneities). We describe the challenges of imaging in random media and discuss the coherent interferometric (CINT) imaging approach. It is designed to image with partially coherent waves, so it works at distances that do not exceed a transport mean-free path. The waves are incoherent when they travel longer distances, due to strong cumulative scattering by the inhomogeneities, and coherent imaging becomes impossible. In this article we base the presentation of coherent imaging on a simple geometrical optics model of wave propagation with randomly perturbed travel time. The model captures the canonical form of the second statistical moments of the wave field, which describe the loss of coherence and decorrelation of the waves due to scattering in random media. We use it to give an explicit resolution analysis of CINT which includes the assessment of statistical stability of the images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso, R., Borcea, L., Papanicolaou, G., Tsogka, C.: Detection and imaging in strongly backscattering randomly layered media. Inverse Prob. 27, 025004 (2011)

    Article  MathSciNet  Google Scholar 

  2. Aubry, A., Derode, A.: Random matrix theory applied to acoustic backscattering and imaging in complex media. Phys. Rev. Lett. 102(8), 084301 (2009)

    Article  Google Scholar 

  3. Bal, G., Ryzhik, L.: Time reversal and refocusing in random media. SIAM J. Appl. Math. 63(5), 1475–1498 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Biondi, B.: 3D Seismic Imaging. Society of Exploration Geophysicists, Tulsa (2006)

    Book  Google Scholar 

  5. Bleistein, N., Cohen, J.K., Stockwell, J.W.: Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, vol. 13. Springer, New York (2001)

    Book  MATH  Google Scholar 

  6. Blomgren, P., Papanicolaou, G., Zhao, H.: Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am. 111, 230 (2002)

    Article  Google Scholar 

  7. Borcea, L., Garnier, J.: Paraxial coupling of propagating modes in three-dimensional waveguides with random boundaries (2012). arXiv:1211.0468. Preprint

    Google Scholar 

  8. Borcea, L., Papanicolaou, G., Tsogka, C.: Adaptive interferometric imaging in clutter and optimal illumination. Inverse Prob. 22, 1405–1436 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Borcea, L., Papanicolaou, G., Tsogka, C.: Asymptotics for the space-time Wigner transform with applications to imaging. In: Baxendale, P.H., Lototsky, S.V., (eds.) Stochastic Differential Equations: Theory and Applications. Volume in Honor of Professor Boris L Rozovskii, Interdisciplinary Mathematical Sciences, vol. 2. World Scientific Publishing Company, Hackensack (2007)

    Google Scholar 

  10. Borcea, L., del Cueto, F.G., Papanicolaou, G., Tsogka, C.: Filtering random layering effects in imaging. SIAM Multiscale Model. Simul. 8, 751–781 (2010)

    Article  MATH  Google Scholar 

  11. Borcea, L., Garnier, J., Papanicolaou, G., Tsogka, C.: Enhanced statistical stability in coherent interferometric imaging. Inverse Prob. 27, 085003 (2011)

    Article  Google Scholar 

  12. Borcea, L., Garnier, J., Papanicolaou, G., Tsogka, C.: Coherent interferometric imaging, time gating and beamforming. Inverse Prob. 27(6), 065008 (2011)

    Article  MathSciNet  Google Scholar 

  13. Borcea, L., Papanicolaou, G., Tsogka, C.: Adaptive time-frequency detection and filtering for imaging in heavy clutter. SIAM J. Imag. Sci. 4(3), 827–849 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Carazzone, J., Symes, W.: Velocity inversion by differential semblance optimization. Geophysics 56, 654 (1991)

    Article  Google Scholar 

  15. Chai, A., Moscoso, M., Papanicolaou, G.: Robust imaging of localized scatterers using the singular value decomposition and â„“1 minimization. Inverse Prob. 29(2), 025016 (2013)

    Article  MathSciNet  Google Scholar 

  16. Curlander, J.C., McDonough, R.N., Synthetic Aperture Radar-Systems and Signal Processing. Wiley, New York (1991)

    MATH  Google Scholar 

  17. Dussaud, E.A.: Velocity analysis in the presence of uncertainty. Ph.D. thesis, Rice University (2005)

    Google Scholar 

  18. Fannjiang, A.C., Solna, K.: Propagation and time reversal of wave beams in atmospheric turbulence. Multiscale Model. Simul. 3(3), 522–558 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fink, M.: Time reversed acoustics. Phys. Today 50, 34 (1997)

    Article  Google Scholar 

  20. Fink, M.: Time-reversed acoustics. Sci. Am. 281(5), 91–97 (1999)

    Article  Google Scholar 

  21. Fouque, J.P., Garnier, J., Papanicolaou, G., Sølna, K.: Wave Propagation and Time Reversal in Randomly Layered Media. Springer, New York (2007)

    MATH  Google Scholar 

  22. Garnier, J., Sølna, K.: Effective fractional acoustic wave equations in one-dimensional random multiscale media. J. Acoust. Soc. Am. 127, 62 (2010)

    Article  Google Scholar 

  23. John, J., Dennis, E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, vol. 16. SIAM, Philadelphia (1983)

    Google Scholar 

  24. Lewis, R.M., Keller, J.B.: Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equation. Technical report, DTIC Document (1964)

    Google Scholar 

  25. Marty, R., Sølna, K.: A general framework for waves in random media with long-range correlations. Ann. Appl. Probab. 21(1), 115–139 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Moscoso, M., Novikov, A., Papanicolaou G., Ryzhik, L.: A differential equations approach to l1-minimization with applications to array imaging. Inverse Prob. 28(10), 105001 (2012)

    Article  MathSciNet  Google Scholar 

  27. Papanicolaou, G., Ryzhik, L., Sølna, K.: Self-averaging from lateral diversity in the itô-schrödinger equation. Multiscale Model. Simul. 6(2), 468–492 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rytov, SM., Kravtsov, Y.A., Tatarskii, V.I.: Principles of Statistical Radiophysics. Vol. 4. Wave Propagation Through Random Media. Springer, Berlin (1989)

    Book  Google Scholar 

  29. Ryzhik, L., Papanicolaou, G., Keller, J.B.: Transport equations for elastic and other waves in random media. Wave Motion 24(4), 327–370 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Santosa, F., Symes, W.W., Brown, R.L.: An Analysis of Least-Squares Velocity Inversion. Society of Exploration Geophysicists, Tulsa (1989)

    Book  Google Scholar 

  31. Snons C., Sukjoon P., Cs, S.: Two efficient steepest-descent algorithms for source signature-free waveform inversion: synthetic examples. J. Seism. Explor. 14(4), 335 (2006)

    Google Scholar 

  32. Stolk, C.: On the modeling and inversion of seismic data. Ph.D. thesis, Universiteit Utrecht (2000)

    Google Scholar 

  33. Symes, WW.: The seismic reflection inverse problem. Inverse Prob. 25(12), 123008 (2009)

    Article  MathSciNet  Google Scholar 

  34. Tarantola, A., Crase, E., Jervis, M., Konen, Z., Lindgren, J., Mosegaard, K., Noble, M.: Nonlinear inversion of seismograms: State of the art. In: 60th Annual International Meeting, Expanded Abstracts, pp. 1193–1198. Society of Exploration Geophysicists (1990)

    Google Scholar 

  35. van Rossum, M.C.W., Nieuwenhuizen, Th.M.: Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 71(1), 313 (1999)

    Article  Google Scholar 

  36. Verschuur, D.J., Berkhout, A.J., Wapenaar, C.P.A.: Adaptive surface-related multiple elimination. Geophysics 57(9), 1166–1177 (1992)

    Article  Google Scholar 

  37. Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6), WCC1–WCC26 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This article reviews results obtained in collaboration with Josselin Garnier from Université Paris VII, George Papanicolaou from Stanford University, and Chrysoula Tsogka from University of Crete. These results are published in [8, 9, 11, 12]. The work of L. Borcea was partially supported by the AFSOR Grant FA9550-12-1-0117 and the ONR Grant N00014-14-1-0077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Borcea .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Second Moments of the Random Travel Time

We obtain by direct calculation from (75) and (84) that

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}\left [\nu (\vec{{\mathbf{x}}},\vec{\mathbf{y}})\nu (\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}}^{{\prime}}) = \frac{\mathcal{L}} {\sqrt{2\pi }\ell}\int _{0}^{1}dt\int _{ 0}^{1}dt^{{\prime}}\right ] \\ & & \mathbb{E}\left [\mu \left (\frac{(1 - t)\vec{\mathbf{y}}} {\ell} + \frac{t\vec{{\mathbf{x}}}} {\ell} \right )\mu \left (\frac{(1 - t^{{\prime}})\vec{\mathbf{y}}^{{\prime}}} {\ell} + \frac{t^{{\prime}}\vec{{\mathbf{x}}}} {\ell} \right )\right ] \\ & & = \frac{\mathcal{L}} {\sqrt{2\pi }\ell}\int _{0}^{1}dt\int _{ 0}^{1}dt^{{\prime}}\,\mathcal{R}\left [\frac{(t^{{\prime}}- t)(\vec{{\mathbf{x}}} -\vec{\mathbf{y}})} {\ell} + \frac{(1 - t^{{\prime}})(\vec{\mathbf{y}}^{{\prime}}-\vec{\mathbf{y}}) + t^{{\prime}}(\vec{{\mathbf{x}}}^{{\prime}}-\vec{{\mathbf{x}}})} {\ell} \right ] \\ & & = \frac{1} {\sqrt{2\pi }}\int _{0}^{1}dt^{{\prime}}\int _{ -\mathcal{L}/\ell}^{\mathcal{L}/\ell}d\tilde{t}\,\mathcal{R}\left [\tilde{t}\,\vec{\mathbf{n}} + \frac{(1 - t^{{\prime}})(\vec{\mathbf{y}}^{{\prime}}-\vec{\mathbf{y}}) + t^{{\prime}}(\vec{{\mathbf{x}}}^{{\prime}}-\vec{{\mathbf{x}}})} {\ell} \right ]\,, {}\end{array}$$
(174)

where we made the change of variables \((t,t^{{\prime}}) \leadsto (\tilde{t},t^{{\prime}})\) with

$$\displaystyle{t^{{\prime}}- t = \frac{\ell} {\mathcal{L}}\tilde{t}.}$$

We can rewrite the result as

$$\displaystyle\begin{array}{rcl} \mathbb{E}\left [\nu (\vec{{\mathbf{x}}},\vec{\mathbf{y}})\nu (\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}}^{{\prime}})\right ]& =& \int _{ 0}^{1}dt^{{\prime}}\int _{ -\infty }^{\infty } \frac{d\tilde{t}} {\sqrt{2\pi }}\,1_{[-\mathcal{L}/\ell,\mathcal{L}/\ell]}(\tilde{t})\,\mathcal{R} \\ & &\left [\tilde{t}\,\vec{\mathbf{n}} + \frac{(1 - t^{{\prime}})(\vec{\mathbf{y}}^{{\prime}}-\vec{\mathbf{y}}) + t^{{\prime}}(\vec{{\mathbf{x}}}^{{\prime}}-\vec{{\mathbf{x}}})} {\ell} \right ]\,,{}\end{array}$$
(175)

and note that the integrand converges to \(\mathcal{R}\left [\tilde{t}\,\vec{\mathbf{n}} + \frac{(1-t^{{\prime}})(\vec{\mathbf{y}}^{{\prime}}-\vec{\mathbf{y}})+t^{{\prime}}(\vec{{\mathbf{x}}}^{{\prime}}-\vec{{\mathbf{x}}})} {\ell} \right ]\) pointwise, from below, as \(\mathcal{L}/\ell \rightarrow \infty \). Since \(\mathcal{R}\) is integrable by assumption, we obtain from the Lebesgue dominated convergence theorem that

$$\displaystyle\begin{array}{rcl} \mathbb{E}\left [\nu (\vec{{\mathbf{x}}},\vec{\mathbf{y}})\nu (\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}}^{{\prime}})\right ]& \approx & \lim _{ \mathcal{L}/\ell\rightarrow \infty }\int _{0}^{1}dt^{{\prime}}\int _{ -\infty }^{\infty } \frac{d\tilde{t}} {\sqrt{2\pi }}\,1_{[-\mathcal{L}/\ell,\mathcal{L}/\ell]}(\tilde{t}) \\ & & \mathcal{R}\left [\tilde{t}\,\vec{\mathbf{n}} + \frac{(1 - t^{{\prime}})(\vec{\mathbf{y}}^{{\prime}}-\vec{\mathbf{y}}) + t^{{\prime}}(\vec{{\mathbf{x}}}^{{\prime}}-\vec{{\mathbf{x}}})} {\ell} \right ] \\ & =& \int _{-\infty }^{\infty } \frac{d\tilde{t}} {\sqrt{2\pi }}\,\mathcal{R}\left [\tilde{t}\,\vec{\mathbf{n}} + \frac{(1 - t^{{\prime}})(\vec{\mathbf{y}}^{{\prime}}-\vec{\mathbf{y}}) + t^{{\prime}}(\vec{{\mathbf{x}}}^{{\prime}}-\vec{{\mathbf{x}}})} {\ell} \right ]\,,{}\end{array}$$
(176)

as stated in (86).

Appendix 2: Second Moments of the Local Cross-Correlations

Using the Gaussian windows in (147), we obtain

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}\left [\left \vert \mathcal{C}(\overline{\tau }_{o}(\vec{{\mathbf{x}}},\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}}),\tilde{\tau }_{ o}(\vec{{\mathbf{x}}},\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}});\vec{{\mathbf{x}}},\vec{{\mathbf{x}}}^{{\prime}})\right \vert ^{2}\right ] = \frac{2\pi } {(32\pi ^{3}L^{2})^{2}B^{4}}\iint _{-\infty }^{\infty } \\ & & d\omega _{1}d\omega _{2}\,e^{-\frac{(\omega _{1}-\omega _{o})^{2}} {B^{2}} -\frac{(\omega _{2}-\omega _{o})^{2}} {B^{2}} }\quad \times \iint _{-\infty }^{\infty } \\ & & d\tilde{\omega }_{1}d\tilde{\omega }_{2}e^{-\frac{(\tilde{\omega }_{1}^{2}+\tilde{\omega }_{2}^{2})} {2} \left ( \frac{1} {\Omega _{\Phi }}^{2} + \frac{1} {2B^{2}} \right ) } \\ & & \mathbb{E}\left [e^{i\big(\omega _{1}-\omega _{2}+\frac{\tilde{\omega }_{1}-\tilde{\omega }_{2}} {2} \big)\nu _{\tau }(\vec{{\mathbf{x}}},\vec{\mathbf{y}})-i\big(\omega _{1}-\omega _{2}-\frac{\tilde{\omega }_{1}-\tilde{\omega }_{2}} {2} \big)\nu _{\tau }(\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}}) }\right ]\,, {}\end{array}$$
(177)

and it remains to evaluate the expectation. Because ν τ is approximately Gaussian, we have

$$\displaystyle\begin{array}{rcl} \mathbb{E}\left [e^{i\big(\Delta \omega +\frac{\Delta \tilde{\omega }} {2} \big)\nu _{\tau }(\vec{{\mathbf{x}}},\vec{\mathbf{y}})-i\big(\Delta \omega -\frac{\Delta \tilde{\omega }} {2} \big)\nu _{\tau }(\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}}) }\right ] \approx e^{-\frac{1} {2} \mathbb{E}\left [\big(\Delta \omega +\frac{\Delta \tilde{\omega }} {2} \big)\nu _{\tau }(\vec{{\mathbf{x}}},\vec{\mathbf{y}})-\big(\Delta \omega -\frac{\Delta \tilde{\omega }} {2} \big)\nu _{\tau }(\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}})\right ]^{2} }\,,& & {}\\ \end{array}$$

where we let \(\Delta \omega =\omega _{1} -\omega _{2}\) and \(\Delta \tilde{\omega } =\tilde{\omega } _{1} -\tilde{\omega }_{2}\). The exponent follows from (84) and (91)

$$\displaystyle\begin{array}{rcl} \mathbb{E}\left [\Big(\Delta \omega + \frac{\Delta \tilde{\omega }} {2} \Big)\nu _{\tau }(\vec{{\mathbf{x}}},\vec{\mathbf{y}}) -\Big (\Delta \omega -\frac{\Delta \tilde{\omega }} {2} \Big)\nu _{\tau }(\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}})\right ]^{2}& \approx & \frac{2\big[(\Delta \omega )^{2} + \frac{(\Delta \tilde{\omega })^{2}} {4} \big]} {\Omega ^{2}} {}\\ & & \left [1 -\int _{0}^{1}dt\,e^{-\frac{t^{2}\vert {\mathbf{x}}-{\mathbf{x}}^{{\prime}}\vert ^{2}} {2\ell^{2}} }\right ]\,. {}\\ \end{array}$$

Substituting in (177), we obtain

$$\displaystyle\begin{array}{rcl} & & \mathbb{E}\left [\left \vert \mathcal{C}(\overline{\tau }_{o}(\vec{{\mathbf{x}}},\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}}),\tilde{\tau }_{ o}(\vec{{\mathbf{x}}},\vec{{\mathbf{x}}}^{{\prime}},\vec{\mathbf{y}});\vec{{\mathbf{x}}},\vec{{\mathbf{x}}}^{{\prime}})\right \vert ^{2}\right ] \\ & & \quad \approx \frac{2\pi } {(32\pi ^{3}L^{2})^{2}B^{4}}\iint _{-\infty }^{\infty }d\omega _{ 1}d\omega _{2}\,e^{-\frac{(\omega _{1}-\omega _{o})^{2}} {B^{2}} -\frac{(\omega _{2}-\omega _{o})^{2}} {B^{2}} } \\ & & \quad \times \iint _{-\infty }^{\infty }d\tilde{\omega }_{ 1}d\tilde{\omega }_{2}e^{-\frac{(\tilde{\omega }_{1}^{2}+\tilde{\omega }_{2}^{2})} {2} \left ( \frac{1} {\Omega _{\Phi }}^{2} + \frac{1} {2B^{2}} \right )-\big[\frac{(\omega _{1}-\omega _{2})^{2}} {\Omega ^{2}} +\frac{(\tilde{\omega }_{1}-\tilde{\omega }_{2})^{2}} {4\Omega ^{2}} \big]\big[1-\int _{0}^{1}dt\,e^{-\frac{t^{2}\vert {\mathbf{x}}-{\mathbf{x}}^{{\prime}}\vert ^{2}} {2\ell^{2}} }\big] }\,,{}\end{array}$$
(178)

and after evaluating the Gaussian integrals, we obtain (149).

Conclusion

This article reviews basic results on coherent array imaging in random media. The random model is motivated by the uncertainty of the small-scale fluctuations of the wave speed in complex media with numerous inhomogeneities. We consider a simple model of wave propagation in random media that captures nevertheless canonical scattering effects on the coherent part of the waves, and consider two imaging methods: migration imaging and CINT imaging. They are both related to an approximation of the solution of the least squares data fit formulation of the inverse problem. Migration imaging is superficially connected to the time reversal process, in the sense that it involves the back-propagation to the imaging region of the time reversed waves measured at the receivers in the array. However, the back-propagation is in a surrogate medium, not in the real one as in the time reversal process, because the medium is not known in imaging. We know only its smooth part, but not its inhomogeneities, which is why we model it as random. This subtle difference between imaging and time reversal has profound effects in random media. We give an explicit and self-contained study of these effects and show that migration imaging is not useful when the waves propagate longer than a scattering mean-free path in random media. The CINT method images by back-propagating to the imaging region local cross-correlations of the measurements at the array. We analyze in detail these local cross-correlations in order to explain why they are useful in imaging. Moreover, we give an explicit resolution analysis of CINT, which includes an assessment of its statistical stability, and illustrate the results with numerical simulations.

Cross-References

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Borcea, L. (2015). Imaging in Random Media. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_41

Download citation

Publish with us

Policies and ethics