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Abstract

In this chapter a general mathematical model of Optical Coherence Tomography (OCT)
is presented on the basis of the electromagnetic theory. OCT produces high resolution
images of the inner structure of biological tissues. Images are obtained by measuring the
time delay and the intensity of the backscattered light from the sample considering also the
coherence properties of light. The scattering problem is considered for a weakly scattering
medium located far enough from the detector. The inverse problem is to reconstruct the
susceptibility of the medium given the measurements for different positions of the mirror.
Different approaches are addressed depending on the different assumptions made about the
optical properties of the sample. This procedure is applied to a full field OCT system and
an extension to standard (time and frequency domain) OCT is briefly presented.

1 Introduction

Optical Coherence Tomography (OCT) is a non-invasive imaging technique producing high-
resolution images of biological tissues. OCT is based on Low (time) Coherence Interferometry
and takes into account the coherence properties of light to image micro-structures with
resolution in the range of few micrometers. Standard OCT operates using broadband and
continuous wave light in the visible and near-infrared spectrum. OCT images are obtained
by measuring the time delay and the intensity of backscattered or back-reflected light from
the sample under investigation.

Since it was first established in 1991 by Huang et al [24], the clinical applications of OCT
have been greatly improved. Ophthalmology remains the dominant one, initially applied
in 1993 [17, 41]. The main reason is that OCT has limited penetration depth in biological
tissues, but high resolution. The theory of OCT has been analysed in details in review papers
[14, 15, 32, 36, 44], in book chapters [16, 19, 42] and in books [4, 5, 10].

To derive a mathematical model for the OCT system, the scattering properties of the sam-
ple need to be described. There exist several different approaches to model the propagation
of light within the sample: the radiative transfer equation with scattering and absorption
coefficients [9, 38, 45], Lambert–Beer’s law with the attenuation coefficient [39, 46], the
equations of geometric optics with the refractive index [7], and Maxwell’s equations with the
susceptibility (or the refractive index) as optical parameters of the medium [6, 12, 27, 37, 43].
Also statistical approaches using Monte Carlo simulations are used [2, 11, 26, 31, 40].

This chapter describes the propagation of the electromagnetic wave through the sample
using Maxwell’s equations and adopts the analysis based on the theory of electromagnetic
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fields scattered by inhomogeneous media [8, 20]. The sample is hereby considered as a linear
dielectric medium (potentially inhomogeneous and anisotropic). Moreover, the medium is
considered weakly scattering so that the first order Born approximation can be used and, as
it is usually assumed in OCT, the backscattered light is detected far enough from the sample
so that the far field approximation is valid. Starting from this model, different reconstruction
formulas for special cases regarding the inner structure of the sample are presented.

This chapter is organised as follows. In Section 2, the principles of OCT and different
variants of OCT systems are presented. Section 3 describes the solution of Maxwell’s equa-
tions and an appropriate formula for the measurements of OCT is derived. Given the initial
field and the optical properties (the susceptibility) of the sample, the solution of the direct
problem is obtained in Section 4. An iterative scheme is derived in the last section for the
reconstruction of the unknown susceptibility, which is the inverse problem of OCT.

2 Basic Principles of OCT

OCT is used to gain informations about the light scattering properties of an object by
illuminating it with some short laser pulse and measuring the backscattered light.

The name “Optical Coherence Tomography” is motivated by the way the scattering data
are measured: To get more precise measurements, the backscattered light is not directly
detected, but first superimposed with the original laser pulse and then the intensity of this
interference pattern is measured (this means that one measures the “coherence” of these two
light beams).

Experimentally, this is done by separating the incoming light at a beam splitter into two
identical beams which travel two different paths. One beam is simply reflected by a mirror
and sent back to the beam splitter, while the other beam is directed to the sample. At the
beam splitter, the beam reflected by the mirror and the backscattered light from the sample
are recombined and sent to the detector [15, 25, 44]. See Figure 1 for an illustration of this
procedure.

There exist different variants of the OCT regarding the way the measurements are done:

Time and frequency domain OCT: In time domain OCT, the position of the mirror is
varied and for each position one measurement is performed. On the other hand, in
frequency domain OCT, the reference mirror is fixed and the detector is replaced by a
spectrometer. Both methods provide equivalent measurements which are connected by
a Fourier transform.

Standard and full field OCT: In standard OCT, the incoming light is focused through
objective lenses to one spot in a certain depth in the sample and the backscattered
light is measured in a point detector. This means that to obtain informations of the
whole sample, a transversal-lateral scan has to be performed (by moving the light beam
over the frontal surface of the sample). In full field OCT, the entire frontal surface of
the sample is illuminated at once and the single point detector is replaced by a two-
dimensional detector array, for instance by a charge-coupled device (CCD) camera.

Polarisation sensitive OCT: In classical OCT setups, the electromagnetic wave is simply
treated as a scalar quantity. In polarisation sensitive OCT, however, the illuminating
light beams are polarised and the detectors measure the intensity of the two polarisation
components of the interfered light.

There are also further modifications such as Doppler OCT and quantum OCT, which are
not addressed here. In this chapter, the focus is mainly on time domain full field OCT, but
also the others are discussed.
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Figure 1. Schematic diagram of the light travelling in an OCT system. The laser
beam emitted by the source is divided at the beam splitter into two light beams; one is
reflected at a mirror, the other one backscattered from the sample. The superposition
of the two reflected beams is then measured at the detector.

3 The Direct Scattering Problem

To derive a mathematical model for an OCT system, one has to describe on one hand the
propagation and the scattering of the laser beam in the presence of the sample and on the
other hand the way how this scattered wave is measured at the detectors. For the first
part, the interaction of the incoming light with the sample can be modelled with Maxwell’s
macroscopic equations.

3.1 Maxwell’s Equations

Maxwell’s equations in matter consist of the partial differential equations

divx D(t, x) = 4πρ(t, x), t ∈ R, x ∈ R3, (1a)

divx B(t, x) = 0, t ∈ R, x ∈ R3, (1b)

curlx E(t, x) = −1

c

∂B

∂t
(t, x), t ∈ R, x ∈ R3, (1c)

curlx H(t, x) =
4π

c
J(t, x) +

1

c

∂D

∂t
(t, x), t ∈ R, x ∈ R3, (1d)

relating the following physical quantities (at some time t ∈ R and some location x ∈ R3):

speed of light c R

external charge density ρ(t, x) R

external electric current density J(t, x) R3

electric field E(t, x) R3

electric displacement D(t, x) R3

magnetic induction B(t, x) R3

magnetic field H(t, x) R3
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Maxwell’s equations do not yet completely describe the propagation of the light (even
assuming that the charge density ρ and the current density J are known, there are only 8
equations for the 12 unknowns E, D, B, and H).

Additionally to Maxwell’s equations, it is therefore necessary to specify the relations
between the fields D and E as well as between B and H.

Let Ω ⊂ R3 denote the domain where the sample is located. It is considered as a non-
magnetic, dielectric medium without external charges or currents, this means that for all
t ∈ R and all x ∈ Ω the electric and magnetic fields fulfil the relations

D(t, x) = E(t, x) +

∫ ∞
0

χ(τ, x)E(t− τ, x)dτ, (2a)

B(t, x) = H(t, x), (2b)

ρ(t, x) = 0, (2c)

J(t, x) = 0, (2d)

where the function χ : R×R3 → R3×3 (for convenience, χ is also defined for negative times
by χ(t, x) = 0 for t < 0, x ∈ R3) is called the (electric) susceptibility and is the quantity
to be recovered. The time dependence of χ hereby describes the fact that a change in the
electric field E cannot immediately cause a change in the electric displacement D. Since
this delay is quite small, it is sometimes ignored and χ(t, x) is then replaced by δ(t)χ(x).
Moreover, the medium is often considered to be isotropic, which means that χ is a multiple
of the identity matrix.

The sample is situated in vacuum and the assumptions (2) are modified by setting for all
t ∈ R and all x ∈ R3 \ Ω

D(t, x) = E(t, x), (3a)

B(t, x) = H(t, x), (3b)

ρ(t, x) = 0, (3c)

J(t, x) = 0. (3d)

This simply corresponds to extend the equations (2) to R ×R3 and to assume χ(t, x) = 0
for all t ∈ R, x ∈ R3 \ Ω.

In this case of a non-magnetic medium, Maxwell’s equations result into one equation for
the electric field E. To get rid of the convolution in (2a), it is practical to consider the
Fourier transform with respect to time. In the following, the convention

f̂(ω, x) =

∫ ∞
−∞

f(t, x)eiωtdt,

for the Fourier transform of a function f with respect to t is used.

Proposition 3.1 Let E, D, B, and H fulfil Maxwell’s equations (1). Moreover, let assump-
tions (2) and (3) be satisfied. Then the Fourier transform Ê of E fulfils the vector Helmholtz
equation

curlx curlx Ê(ω, x)− ω2

c2
(1+ χ̂(ω, x))Ê(ω, x) = 0, ω ∈ R, x ∈ R3. (4)

Proof: Applying the curl to (1c) and using (1d) with the assumptions B = H and J = 0,
yields

curlx curlx E(t, x) = −1

c

∂ curlx B

∂t
(t, x) = − 1

c2
∂2D

∂t2
(t, x). (5)

The Fourier transform of (2a) and (3a) and the Fourier convolution theorem (recall that χ
is set to zero outside Ω) imply that

D̂(ω, x) = (1+ χ̂(ω, x))Ê(ω, x), for all ω ∈ R, x ∈ R3.

Therefore, the equation (4) follows by taking the Fourier transform of (5). �
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3.2 Initial Conditions

The sample is illuminated with a laser beam described initially (before it interacts with the
sample) by the electric field E(0) : R × R3 → R3 which is (together with some magnetic
field) a solution of Maxwell’s equations (1) with the assumptions (3) for all x ∈ R3. Then,
it follows from the proof of the Proposition 3.1, for χ = 0, that

curlx curlx Ê
(0)(ω, x)− ω2

c2
Ê(0)(ω, x) = 0, ω ∈ R, x ∈ R3. (6)

Moreover, it is assumed that E(0) does not interact with the sample until the time t = 0,
which means that suppE(0)(t, ·) ∩ Ω = ∅ for all t ≤ 0.

The electric field E : R×R3 → R3 generated by this incoming light beam in the presence
of the sample is then a solution of Maxwell’s equations (1) with the assumptions (2) and the
initial condition

E(t, x) = E(0)(t, x) for all t ≤ 0, x ∈ R3. (7)

Since Maxwell’s equations for E in Proposition 3.1 are reformulated as an equation for
the Fourier transform Ê, it is helpful to rewrite the initial condition in terms of Ê.

Proposition 3.2 Let E (together with some magnetic field H) fulfil Maxwell’s equations (1)
with the assumptions (2) and (3) and with the initial condition (7).

Then the Fourier transform of E−E(0) fulfils that the function ω 7→ Ê(ω, x)−Ê(0)(ω, x),
defined on R, can be extended to a square integrable, holomorphic function on the upper half
plane H = {ω ∈ C | =m(ω) > 0} for every x ∈ R3.

Proof: From the initial condition (7) it follows that E(t, x) − E(0)(t, x) = 0 for all t ≤ 0.
Thus, the result is a direct consequence form the Paley–Wiener theorem, which is based on
the fact that in this case

Ê(ω, x)− Ê(0)(ω, x) =

∫ ∞
0

(E − E(0))(t, x)eiωtdt

is well defined for all ω ∈ H and complex differentiable with respect to ω ∈ H. �

Remark that the electric field E is uniquely defined by (4) and Proposition 3.2.

3.3 The Measurements

The measurements are obtained by the combination of the backscattered field from the
sample and the back-reflected field from the mirror. In practice, see Figure 1, the sample
and the mirror are in different positions. However, without loss of generality, a placement of
them around the origin is assumed in the proposed formulation, in order to avoid rotating
the coordinate system. To do so, the simultaneously illumination of the sample and the
mirror is suppressed and two different illumination schemes are considered. The gain is to
keep the same coordinate system but the reader should not be confused with illumination at
different times.

Thus, the electric field E, which is obtained by illuminating the sample with the initial
field E(0) (that is E solves (4) with the initial condition (7)), is combined with Er which
is the electric field obtained by replacing the sample by a mirror and illuminating with the
same initial field E(0).

The mirror is placed orthogonal to the unit vector e3 = (0, 0, 1) through the point re3.
As in (7), it is assumed that suppE(0)(t, ·) does not interact with the mirror for t < 0, so
that

Er(t, x) = E(0)(t, x) for all t < 0, x ∈ R3. (8)
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Then the resulting electric field Er : R×R3 → R3 is given as the solution of the same equa-
tions as E (Maxwell’s equations (1) together with the assumptions (2) and initial condition
(8)) with the susceptibility χ replaced by the susceptibility χr of the mirror at position r.
One sort of (ideal) mirror can be described via the susceptibility χr(t, x) = 0 for x3 > r and
χr(t, x) = Cδ(t)1 for x3 ≤ r with an (infinitely) large constant C > 0.

Figure 2. The two scattering problems involved in OCT: On the left hand side the
scattering of the initial wave on the sample Ω; on the right hand side the reference
problem where the initial wave E(0) is reflected by a perfect mirror at a tunable
position r ∈ (−∞, R). The two resulting electric fields, E and Er, are then combined
and this superposition E + Er is measured at the detector surface D.

The intensity Ir of each component of the superposition of the electric fields E and Er
averaged over all time is measured at some detector points. The detectors are positioned at
all points on the plane

D = {x ∈ R3 | x3 = d}

parallel to the mirror at a distance d > 0 from the origin. The mirror and the sample are
both located in the lower half plane of the detector surface with some minimal distance to D.
Moreover, the highest possible position R ∈ (δ, d−2δ) of the mirror shall be by some distance
δ > 0 closer to the detector than the sample, this means (see Figure 2)

sup
x∈Ω

x3 < R− δ and r ∈ (−∞, R). (9)

To simplify the argument, let us additionally assume that the incoming electric field E(0)

does not influence the detector after the time t = 0, meaning that

E(0)(t, x) = 0 for all t ≥ 0, x ∈ D. (10)

At the detector array, the data are obtained by measuring

Ir,j(x) =

∫ ∞
0

|Ej(t, x) + Er,j(t, x)|2dt, x ∈ D, j ∈ {1, 2, 3}. (11)

In standard OCT, the polarisation is usually ignored. In this case, only the total intensity
Ir =

∑3
j=1 Ir,j needs to be measured, see Section 5.1 for the corresponding reconstruction

formulas.
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In this measurement setup, it is easy to acquire besides the intensity Ir also the intensity
of the two waves E and Er separately by blocking one of the two waves E and Er at a time.
Practically, it is sometimes not even necessary to measure them since the intensity of the
reflected laser beam Er can be explicitly calculated from the knowledge of the initial beam
E(0), and the intensity of E is usually negligible compared with the intensity Ir (because of
the assumption (10), the field E contains only backscattered light at the detector after the
measurement starts). Therefore, one can consider instead of Ir the function

Mr,j(x) =
1

2

(
Ir,j −

∫ ∞
0

|Ej(t, x)|2dt−
∫ ∞

0

|Er,j(t, x)|2dt

)
(12)

for r ∈ (−∞, R), j ∈ {1, 2, 3}, and x ∈ D as the measurement data.

Proposition 3.3 Let the initial conditions (7) and (8) and the additional assumption (10)
be satisfied. Then, for all x ∈ D, r ∈ (−∞, R), and j ∈ {1, 2, 3} the measurements Mr,
defined by (12), fulfil

Mr,j(x) =

∫ ∞
−∞

(Ej − E(0)
j )(t, x)(Er,j − E(0)

j )(t, x)dt (13a)

=

∫ ∞
−∞

(Êj − Ê(0)
j )(ω, x)(Êr,j − Ê(0)

j )(ω, x)dω, (13b)

Proof: Expanding the function Ir,j , given by (11), gives

Ir,j(x) =

∫ ∞
0

(
|Ej(t, x)|2 + |Er,j(t, x)|2 + 2Ej(t, x)Er,j(t, x)

)
dt.

Thus, by the definition (12) of Mr, it follows that

Mr,j(x) =

∫ ∞
0

Ej(t, x)Er,j(t, x)dt,

which, using the assumption (10), can be rewritten in the form

Mr,j(x) =

∫ ∞
0

(Ej − E(0)
j )(t, x)(Er,j − E(0)

j )(t, x)dt.

Then, since E and Er coincide with E(0) for t < 0, see (7) and (8), the integration can be
extended to all times. This proves the formula (13a) for Mr. The second formula follows
from Plancherel’s theorem. �

4 Solution of the Direct Problem

In this section the solution of the direct problem, to determine the measurements Mr, defined
by (13a), from the susceptibility χ, is derived using Born and far field approximation for the
electric field.

Proposition 4.1 Let E be a solution of the equations (4) and (7). Then, the Fourier
transform Ê solves the Lippmann–Schwinger integral equation

Ê(ω, x) = Ê(0)(ω, x) +

(
ω2

c2
1+ gradx divx

)∫
R3

G(ω, x− y)χ̂(ω, y)Ê(ω, y)dy, (14)

where G is the fundamental solution of the Helmholtz equation given by

G(ω, x) =
eiωc |x|

4π|x|
, x 6= 0, ω ∈ R.
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Proof: Equation (4) can be rewritten in the form

curlx curlx Ê(ω, x)− ω2

c2
Ê(ω, x) = φ(ω, x)

with the inhomogeneity

φ(ω, x) =
ω2

c2
χ̂(ω, x)Ê(ω, x). (15)

Using that Ê(0) solves (6), the difference Ê − Ê(0) satisfies the inhomogeneous vector
Helmholtz equation

curlx curlx (Ê − Ê(0))(ω, x)− ω2

c2
(Ê − Ê(0))(ω, x) = φ(ω, x). (16)

The divergence of this equation, using that divx curlx (Ê − Ê(0)) = 0, implies

divx (Ê − Ê(0))(ω, x) = − c
2

ω2
divx φ(ω, x). (17)

Applying the vector identity

curlx curlx (Ê − Ê(0)) = gradx divx (Ê − Ê(0))−∆x (Ê − Ê(0))

in (16) and using (17) yields

∆x (Ê − Ê(0))(ω, x) +
ω2

c2
(Ê − Ê(0))(ω, x) = − c

2

ω2
gradx divx φ(ω, x)− φ(ω, x).

This is a Helmholtz equation for Ê − Ê(0) and the general solution which is (with respect
to ω) holomorphic in the upper half plane (equivalent to (7) by Proposition 3.2) is given by,
see [8]

(Ê − Ê(0))(ω, x) = − c
2

ω2

∫
R3

G(ω, x− y)

(
ω2

c2
1+ grady divy

)
φ(ω, y)dy

= − c
2

ω2

(
ω2

c2
1+ gradx divx

)∫
R3

G(ω, x− y)φ(ω, y)dy.

For the last equality, integration by parts and gradx G(ω, x− y) = − grady G(ω, x− y) were
used. The Lippmann–Schwinger equation (14) follows from the last expression inserting the
expression (15) for φ. �

This integral equation uniquely defines the electric field E. The reader is refered to [1, 8]
for the isotropic case and to [33] for an anisotropic medium.

4.1 Born and Far Field Approximation

To solve the Lippmann–Schwinger equation (14), the medium is assumed to be weakly scat-
tering, which means that χ̂ is sufficiently small (implying that the difference E−Ê(0) becomes
small compared to E(0)) so that the Born approximation E(1), defined by

Ê(1)(ω, x) = Ê(0)(ω, x) +

(
ω2

c2
1+ gradx divx

)∫
R3

G(ω, x− y)χ̂(ω, y)Ê(0)(ω, y)dy, (18)

is considered a good approximation for the electric field E, see [3]. To describe multiple
scattering events, one considers higher order Born approximations. For different linearisation
techniques the reader is referred to [1, 23]. Moreover, since the detector in OCT is typically
quite far away from the sample, one can simplify the expression (18) for the electric field at
the detector array by replacing it with its asymptotic behaviour for |x| → ∞, that is replace
the formula for E(1) by its far field approximation (the far field approximation could also be
applied to the solution E of the Lippmann–Schwinger equation (14)).
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Proposition 4.2 Consider, for a given function φ : R3 → R3 with compact support and
some parameter a ∈ R, the function

g : R3 → R
3, g(x) =

∫
R3

eia|x−y|

|x− y|
φ(y)dy.

Then, it follows, asymptotically for ρ→∞ and uniformly in ϑ ∈ S2, that

(a2 + gradx divx )g(ρϑ) ' −a
2eiaρ

ρ

∫
R3

ϑ× (ϑ× φ(y))e−ia〈ϑ,y〉dy (19)

Proof: Consider the function

Γ : R3 → C, Γ(x) =
eia|x|

|x|
.

Then

∂2Γ

∂xj∂xk
(x) =

∂

∂xj

[(
ia

|x|2
− 1

|x|3

)
xkeia|x|

]
=

[(
ia

|x|2
− 1

|x|3

)
δjk +

(
ia

|x|2
− 1

|x|3

)
iaxjxk
|x|

+

(
−2

ia

|x|3
+ 3

1

|x|4

)
xjxk
|x|

]
eia|x|.

Therefore, writing x in spherical coordinates: x = ρϑ with ρ > 0, ϑ ∈ S2, for ρ → ∞
uniformly in ϑ, it can be seen that

∂2Γ

∂xj∂xk
(ρϑ) = −a

2eiaρ

ρ
ϑjϑk +O

(
1

ρ2

)
,

The approximation (local uniformly in y ∈ R3)

|ρϑ− y| = ρ

√
|ϑ|2 − 2

ρ
〈ϑ, y〉+

1

ρ2
|y|2 = ρ− 〈ϑ, y〉+O

(
1

ρ

)
,

implies that (again uniformly in ϑ ∈ S2)

∂2Γ

∂xj∂xk
(ρϑ− y) = −a

2eia(ρ−〈ϑ,y〉)

ρ
ϑjϑk +O

(
1

ρ

)
.

Now, considering the compact support of φ and using that x ∈ R3 \ suppφ

(gradx divx g)j(x) =

3∑
k=1

∂

∂xj

∫
R3

∂Γ

∂xk
(x− y)φk(y)dy =

∫
R3

3∑
k=1

∂2Γ

∂xj∂xk
(x− y)φk(y)dy.

Asymptotically for |x| → ∞ (again using the compact support of φ) one obtains

a2gj(ρϑ) + (gradx divx g)j(ρϑ) ' a2

∫
R3

3∑
k=1

eia(ρ−〈ϑ,y〉)

ρ
(δjk − ϑjϑk)φk(y)dy.

The approximation (19) follows from the vector identity ϑ × (ϑ × φ) = 〈ϑ, φ〉ϑ − |ϑ|2φ and
|ϑ| = 1. �

The application of both the far field and the Born approximation, this means Propo-
sition 4.2 for the expression (18) of E(1), that is setting a = ω/c and φ = 1

4π χ̂Ê
(0) in

Proposition 4.2, imply the asymptotic behaviour

Ê(1)(ω, ρϑ) ' Ê(0)(ω, ρϑ)− ω2eiωc ρ

4πρc2

∫
R3

ϑ×
(
ϑ× (χ̂(ω, y)Ê(0)(ω, y))

)
e−iωc 〈ϑ,y〉dy. (20)

9



4.2 The Forward Operator

To obtain a forward model for the measurements described in Section 3.3, the (approxi-
mative) formula (20) is considered as the model for the solution of the scattering problem.
To make this formula concrete, one has to plug in a function E(0) describing the initial
illumination (recall that E(0) has to solve (6)).

The specific illumination is a laser pulse propagating in the direction −e3, orthogonal to
the detector surface D = {x ∈ R3 | x3 = d}, this means

E(0)(t, x) = f(t+ x3

c )p, (21)

which solves Maxwell’s equations (1) with the assumptions (3) for some fixed vector p ∈ R3,
with p3 = 〈p, e3〉 = 0, describing the polarisation of the initial laser beam.

Proposition 4.3 The function E(0), defined by (21) with 〈p, e3〉 = 0, solves together with
the magnetic field H(0), defined by

H(0)(t, x) = f(t+ x3

c )p× e3,

Maxwell’s equations (1) in the vacuum, that is with the additional assumptions (3).

Proof: The four equations of (1) can be directly verified:

divx E
(0)(t, x) =

1

c
f ′(t+ x3

c ) 〈e3, p〉 = 0,

divx H
(0)(t, x) =

1

c
f ′(t+ x3

c ) 〈e3, p× e3〉 = 0,

curlx E
(0)(t, x) =

1

c
f ′(t+ x3

c )e3 × p = −1

c

∂H(0)

∂t
(t, x),

curlx H
(0)(t, x) =

1

c
f ′(t+ x3

c )e3 × (p× e3) =
1

c
f ′(t+ x3

c )p =
1

c

∂E(0)

∂t
(t, x). �

To guarantee that the initial field E(0) (and also the magnetic field H(0)) does not interact
with the sample or the mirror for t ≤ 0 and neither contributes to the measurement at the
detectors for t ≥ 0 as required by (8) and (10) the vertical distribution f : R → R should
satisfy (see Figure 2)

supp f ⊂ (Rc ,
d
c ). (22)

In the case of an illumination E(0) of the form (21), the electric field Er produced by an
ideal mirror at the position r is given by

Er(t, x) =

{(
f(t+ x3

c )− f(t+ x3

c + 2 r−x3

c )
)
p if x3 > r,

0 if x3 ≤ r.
(23)

This just corresponds to the superposition of the initial wave with the (orthogonally) reflected
wave, which travels additionally the distance 2x3−r

c . The change in polarisation of the
reflected wave (from p to −p) comes from the fact that the tangential components of the
electric field have to be continuous across the border of the mirror.

The following proposition gives the form of the measurements Mr, described in Sec-
tion 3.3, on the detector surface D for the specific illumination (21).

Proposition 4.4 Let E(0) be an initial illumination of the form (21) satisfying (22). Then,
the equations for the measurements Mr from Proposition 3.3 are given by

Mr,j(x) = −pj
∫ ∞
−∞

(Ej − E(0)
j )(t, x)f(t+ 2r−x3

c )dt, (24a)

= − pj
2π

∫ ∞
−∞

(Êj − Ê(0)
j )(ω, x)f̂(−ω)eiωc (2r−x3)dω (24b)

for all j ∈ {1, 2, 3}, r ∈ (−∞, R), and x ∈ D.
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Proof: Since the electric field Er reflected on a mirror at vertical position r ∈ (−∞, R) is
according to (23) given by

Er(t, x) =
(
f(t+ x3

c )− f(t+ 2r−x3

c )
)
p for all t ∈ R, x ∈ D,

the measurement functions Mr (defined by (12) and computed with (13a)) are simplified,
for the particular initial illumination E(0) of the form (21), to (24a) for x ∈ D.

Since formula (24a) is just a convolution, the electric field E − E(0) can be rewritten, in
terms of its Fourier transform, in the form

Mr,j(x) = − pj
2π

∫ ∞
−∞

∫ ∞
−∞

(Êj − Ê(0)
j )(ω, x)e−iωtf(t+ 2r−x3

c )dωdt.

Interchanging the order of integration and applying the Fourier transform f̂ of f, it follows
equation (24b). �

In the limiting case of a delta impulse as initial wave, that is for f(ξ) = δ(ξ − ξ0) with
some constant ξ0 ∈ (Rc ,

d
c ) satisfying (22), the measurements provide directly the electric

field. Indeed, it can be seen from (24a) that

Mr,j(x) = −pj(Ej − E(0)
j )(x3−2r

c + ξ0, x).

By varying r ∈ (−∞, R), the electric field E can be obtained (to be more precise, its
component in direction of the initial polarisation) as a function of time at every detector
position.

The following assumptions are made:

Assumption 4.5 The susceptibility χ is sufficiently small so that the Born approxima-
tion E(1) for the solution E of the Lippmann–Schwinger equation (14) can be applied.

Assumption 4.6 The detectors are sufficiently far away from the object so that one can
use the far field asymptotics (20) for the measured field.

Under these assumptions, one can approximate the electric field by the far field expression
of the Born approximation E(1) and plug in the expression in (20) to obtain the measurements
Mr,j , j ∈ {1, 2, 3}.

The above analysis, introducing appropriate operators, can then be formulated as an
operator equation. The integral equation (20) can be formally written as

(Ê(1) − Ê(0))(ω, x) = (K0χ̂)(ω, x),

for a given Ê(0) where the operator K0 : χ̂ 7→ Ê(1) − Ê(0) is given by

(K0v)(ω, ρϑ) = −ω
2eiωc ρ

4πρc2

∫
R3

ϑ×
(
ϑ× (v(ω, y)Ê(0)(ω, y))

)
e−iωc 〈ϑ,y〉dy, ρ > 0, ϑ ∈ S2.

It is emphasized that χ̂ : R×R3 → C3×3 and E(1) − Ê(0) : R×R3 → C3, that is K0v is a
function from R×R3 into C3. Equivalently, considering the equation (13b), one has

M(r, x) = (Mr,j(x))
3
j=1 =

(
M(Ê(1) − Ê(0))

)
(r, x),

where the operator M is defined by

(Mv)(r, x) =

(∫ ∞
−∞

vj(ω, x)(Êr,j − Ê(0)
j )(ω, x)dω

)3

j=1

, x ∈ D.

11



Here, Mv is a function from R × D to R3. Thus, combining the operators K0 and M, the
forward operator F : χ̂ 7→ M, F = MK0 models the direct problem. The inverse problem
of OCT is then formulated as an operator equation

F χ̂ = M. (25)

For the specific illumination (21), one has

Ê(0)(ω, x) =

(∫ ∞
−∞

f(t+ x3

c )eiωtdt

)
p = f̂(ω)e−iωc x3p. (26)

Then, the operators K0 and M simplify to

(K0v)(ω, ρϑ) = −ω
2eiωc ρ

4πρc2
f̂(ω)

∫
R3

ϑ×
(
ϑ× (v(ω, y) p)

)
e−iωc 〈ϑ+e3,y〉dy (27)

and, recalling that Mr,3 = 0 since p3 = 0 (the polarisation in the incident direction is zero),

(Mv)(r, x) =

(
− pj

2π

∫ ∞
−∞

vj(ω, x)f̂(−ω)eiωc (2r−x3)dω

)2

j=1

. (28)

The operator K0 is derived from the Born approximation taking into account the far field
approximation for the solution of the Lippmann–Schwinger equation (14). But, one could
also neglect Assumption 4.5 and Assumption 4.6 and use the operator K corresponding to
equation (14), that is,

(Kv)(ω, x) =

(
ω2

c2
1+ gradx divx

)∫
R3

G(ω, x− y)v(ω, y)Ê(ω, y)dy,

and considering the non-linear forward operator F =MK.
The next section focuses on the solution of (25), considering the operators K0 and M,

given by (27) and (28), respectively. The inversion of F is performed in two steps, first M
is inverted and then K0.

5 The Inverse Scattering Problem

In optical coherence tomography, the susceptibility χ of the sample is imaged from the
measurements Mr(x), r ∈ (−∞, R), x ∈ D. In a first step, it is shown that the measurements
allow us to reconstruct the scattered field on the detector D, that is inverting the operator
(28).

The vertical distribution f : R→ R should additionally satisfy (see Figure 2)

supp f ⊂ (Rc ,
R
c + 2δ

c ) ⊂ (Rc ,
d
c ) for some δ > 0. (29)

This guarantees that the initial field E(0) (and also the magnetic field H(0)) not interact
with the sample or the mirror for t ≤ 0 and neither contribute to the measurement at the
detectors for t ≥ 0 as required by (8) and (10).

The condition that the length of the support of E(0) is at most 2δ (the assumption that
the support starts at R

c is only made to simplify the notation) is required for Proposition 5.1.
It ensures that the formula (13a) for the measurement data Mr(x), x ∈ D, vanishes for values
r ≥ R so that the integral on the right hand side of (30) is only over the interval (−∞, R)
where measurement data are obtained (recall that measurements are only performed for
positions r < R of the mirror).

12



Proposition 5.1 Let E(0) be an initial illumination of the form (21) satisfying (29). Then,
the measurements Mr from Proposition 4.4 imply for the electric field E:

(Êj − Ê(0)
j )(ω, x)f̂(ω)pj = −2

c

∫ R

−∞
Mr,j(x)e−iωc (2r−x3)dr (30)

for all j ∈ {1, 2, 3}, ω ∈ R, and x ∈ D.

Proof: Remark that the formula (24a) can be extended to all r ∈ R by setting Mr,j(x) = 0
for r ≥ R. Indeed, from (29) it follows that E(t, ·) = E(0)(t, ·) for all t < δ

c . Since E is a
solution of the linear wave equation with constant wave speed c on the half space given by
x3 > R − δ, the difference between E and E(0) caused by the sample needs at least time
d−R+δ

c to travel from the point at x3 = R− δ to the detector at x3 = d, so:

E(t, x) = E(0)(t, x) for all x ∈ R3 with x3 = d and ct < 2δ + d−R.

This means, that the integrand vanishes for t < 2δ+d−R
c . In the case of t ≥ 2δ+d−R

c , it holds
for r ≥ R that

ct+ 2r − d ≥ 2δ + d−R+ 2R− d = R+ 2δ,

so that f(t + 2r−d
c ) = 0 by the assumption (29) on the support of f. Therefore, for r ≥ R,

always one of the factors in the integrand in (24a) is zero which implies that Mr(x) = 0 for
r ≥ R and x ∈ D.

Thus, equation (24b) holds for all r ∈ R and applying the inverse Fourier transform with

respect to r, using that f̂(−ω) = f̂(ω) because f is real valued, yields

2

c

∫ ∞
−∞

Mr,j(x)e−i 2ωrc dr = −pj(Êj − Ê(0)
j )(ω, x)f̂(ω)e−iωc x3 ,

which can equivalently be written as (30). �

This means that one can calculate from the Fourier transform of the measurements r 7→
Mr(x) at some frequency ω the Fourier transform of the electric field at ω as long as the

Fourier transform of the initial wave E(0) does not vanish at ω, that is for f̂(ω) 6= 0. Thus,
under the Assumption 4.5 and Assumption 4.6, equation (30) can be solved for the electric
field Ê. Proposition 5.1 thus provides the inverse of the operator M defined by (28). Now,
the inversion of the operator K0 given by (27) is performed considering the optical properties
of the sample.

Proposition 5.2 Let E(0)(t, x) be given by the form (21) with p3 = 0 and the additional

assumption (29). Then, for every ω ∈ R \ {0} with f̂(ω) 6= 0, the formula

pj
[
ϑ× (ϑ× χ̃(ω, ωc (ϑ+ e3))p)

]
j
' 8πρc

ω2|f̂(ω)|2

∫ R

−∞
Mr,j(ρϑ)e−iωc (2r−ρ(ϑ3−1))dr (31)

holds for all j ∈ {1, 2}, ϑ ∈ S2
+ := {η ∈ S2 | η3 > 0}, and ρ = d

ϑ3
(asymptotically for χ→ 0

and ρ→∞).
Here χ̃ denotes the Fourier transform of χ with respect to time and space, that is

χ̃(ω, k) =

∫ ∞
−∞

∫
R3

χ(t, x)e−i〈k,x〉eiωtdxdt =

∫
R3

χ̂(ω, x)e−i〈k,x〉dx. (32)

Proof: Because of (26), the Fourier transform of the electric field E − E(0) can be approxi-
mated, using (20) with E ' E(1) (by Assumption 4.5 and Assumption 4.6), by

(Ê − Ê(0))(ω, ρϑ) ' −ω
2f̂(ω)eiωc ρ

4πρc2

∫
R3

e−iωc (〈y,ϑ〉+y3)ϑ× (ϑ× χ̂(ω, y)p)dy.
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Then, applying (32), one obtains

(Ê − Ê(0))(ω, ρϑ) ' −ω
2f̂(ω)eiωc ρ

4πρc2
ϑ× (ϑ× χ̃(ω, ωc (ϑ+ e3))p). (33)

From (30), it is known that, for f̂(ω) 6= 0 and pj 6= 0,

(Êj − Ê(0)
j )(ω, ρϑ) = − 2

pjcf̂(ω)

∫ R

−∞
Mr,j(ρϑ)e−iωc (2r−ρϑ3)dr.

This identity together with (33), asymptotically for ω 6= 0, yields the statement (31). �

To derive reconstruction formulas, Proposition 5.2 is used, which states that from the
measurements Mr (under the Assumption 4.5 and Assumption 4.6) the expression

pj
[
ϑ× (ϑ× χ̃(ω, ωc (ϑ+ e3))p)

]
j
, j = 1, 2, (34)

can be calculated. Here, p ∈ R2×{0} denotes the polarisation of the initial illumination E(0),
see (21), and ϑ ∈ S2

+ is the direction from the origin (where the sample is located) to a
detector.

5.1 The Isotropic Case

This section analyses the special case of an isotropic medium, meaning that the susceptibility
matrix χ is just a multiple of the unit matrix, so in the following χ is identified with a scalar.

Then, from the sum of the measurements Mr,1 and Mr,2, using the formula (31), one
obtains the expression

χ̃(ω, ωc (ϑ+ e3)) 〈p, ϑ× (ϑ× p)〉 = χ̃(ω, ωc (ϑ+ e3))(〈ϑ, p〉2 − |p|2).

Since 〈ϑ, p〉2 < |p|2 for every combination of p ∈ R2 ×{0} and ϑ ∈ S2
+, one has direct access

to the spatial and temporal Fourier transform

χ̃(ω, ωc (ϑ+ e3)), ω ∈ R \ {0}, ϑ ∈ S2
+, (35)

of χ in a subset of R×R3.
However, it remains the problem of reconstructing the four dimensional susceptibility

data χ from the three dimensional measurement data (35). In the following, some different
additional assumptions are discussed to compensate the lack of dimension, see Table 1.

5.1.1 Non-dispersive Medium in Full Field OCT

The model is simplified by assuming an immediate reaction of the sample to the exterior
electric field in (2a). This means that χ can be considered as a delta distribution in time so
that its temporal Fourier transform χ̂ does not depend on frequency, that is χ̂(ω, x) = χ̂(x).
Thus, the reconstruction reduces to the problem of finding χ̂ from its partial (spatial) Fourier
data

χ̃(k) for k ∈ {ωc (ϑ+ e3) ∈ R3 | ϑ ∈ S2
+, ω ∈ R \ {0}}

= {κ ∈ R3 \ {0} | arccos(〈 κ|κ| , e3〉) ∈ (−π4 ,
π
4 )}.

Thus, only the Fourier data of χ in the right circular cone C with axis along e3 and
aperture π

2 are observed (see Figure 3). In practice, these data are usually only available for
a small range of frequencies ω.

Inverse scattering for full field OCT, under the Born approximation, has been considered
by Marks et al [28, 29] where algorithms to recover the scalar susceptibility were proposed.
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Assumptions Reconstruction method Section

χ̃(ω, k) = χ̃(k) Reconstruction from partial (three di-
mensional) Fourier data:
χ̃(k), k ∈ R3, ](k, e3) ∈ (−π

4 ,
π
4 )

5.1.1

χ̃(ω, k) = χ̃(k3) Reconstruction from full (one dimen-
sional) Fourier data:
χ̃(k3), k3 ∈ R \ {0}

5.1.2

suppχ(·, x) ⊂ [0, T ]
R(χ(τ, ·))(·, ϕ) is piecewise con-
stant

Recursive formula to get limited angle
Radon data
R(χ(τ, ·))(σ, ϕ), σ ∈ R, ϕ ∈ S2

with ](ϕ, e3) ∈ (−π
4 ,

π
4 )

5.1.3

χ(τ, x) = δ(x1)δ(x2)χ(τ, x3),
suppχ(·, x) ⊂ [0, T ], and
χ(τ, ·) is piecewise constant

Recursive formula to
reconstruct χ

5.1.4

Table 1. Different assumptions about the susceptibility and the corresponding re-
construction formulas. Here, (Rg)(σ, ϕ) =

∫
{x∈R3|〈x,ϕ〉=σ} g(y)ds(y), σ ∈ R, ϕ ∈ S2,

denotes the Radon transform of a function g : R3 → R.

5.1.2 Non-dispersive Medium with Focused Illumination

In standard OCT, the illumination is focused to a small region inside the object so that the
function χ can be assumed to be constant in the directions e1 and e2 (locally the illumination
is still assumed to be properly described by a plane wave). Then, the problem can be reduced
by two dimensions assuming that the illumination is described by a delta distribution in these
two directions. As before, χ is assumed to be frequency independent, so that

χ̂(ω, x) = δ(x1)δ(x2)χ̂(x3),

this means that the spatial and temporal Fourier transform (32) fulfils χ̃(ω, k) = χ̃(k3). In
this case, the two dimensional detector array can be replaced by a single point detector
located at de3.

Then, the measurement data (35) in direction ϑ = e3 provide the Fourier transform

χ̃( 2ω
c ) for all ω ∈ R \ {0}.

Therefore, the reconstruction of the (one dimensional) susceptibility x3 7→ χ̂(x3) can be
simply obtained by an inverse Fourier transform.

This one dimensional analysis, has been used initially by Fercher et al [18], reviewed in [13]
and by Hellmuth [22] to describe time domain OCT. Ralston et al [34, 35] described the
OCT system using a single backscattering model. The solution was given through numerical
simulation using regularised least squares methods.

5.1.3 Dispersive Medium

However, in the case of a dispersive medium, that is frequency dependent χ̂, the difficulty
is to reconstruct the four dimensional function χ : R×R3 → C from the three dimensional
data

m̂ : R× S2
+ → C, m̂(ω, ϑ) = χ̃(ω, ωc (ϑ+ e3)). (36)
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Figure 3. Region C ∼= R× (S2
+ + e3) of the available Fourier data of χ.

Lemma 5.3 Let m̂ be given by (36). Then its inverse Fourier transform m : R× S2
+ → C

with respect to the first variable is given by

m(t, ϑ) =
c√

2(1 + ϑ3)

∫ ∞
−∞

χ̄(τ ; τ − t, ϑ)dτ, t ∈ R, ϑ ∈ S2
+, (37)

where

χ̄(τ ;σ, ϑ) =

∫
Eσ,ϑ

χ(τ, y)ds(y), τ, σ ∈ R, ϑ ∈ S2
+,

and Eσ,ϑ denotes the plane

Eσ,ϑ = {y ∈ R3 | 〈ϑ+ e3, y〉 = cσ}, σ ∈ R, ϑ ∈ S2
+. (38)

Proof: Taking the inverse temporal Fourier transform of m̂ and using (32), it follows that

m(t, ϑ) =
1

2π

∫ ∞
−∞

χ̃(ω, ωc (ϑ+ e3))e−iωtdω

=
1

2π

∫ ∞
−∞

∫
R3

χ̂(ω, x)e−iωc 〈ϑ+e3,x〉e−iωtdxdω.

Interchanging the order of integration, the integral over ω is again described by an inverse
Fourier transform and the previous equation becomes

m(t, ϑ) =

∫
R3

χ(t+ 1
c 〈ϑ+ e3, x〉 , x)dx.

Substituting then the variable x3 by τ = t+ 1
c 〈ϑ+ e3, x〉, this can be written as

m(t, ϑ) =
c

1 + ϑ3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

χ(τ, ψτ−t,ϑ(x1, x2))dx1dx2dτ (39)

with the function

ψσ,ϑ : R2 → R
3, ψσ,ϑ(x1, x2) =

(
x1, x2,

cσ

1 + ϑ3
− ϑ1x1 + ϑ2x2

1 + ϑ3

)
.
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Figure 4. Discretisation of χ with respect to the detection points.

Now, ψσ,ϑ is seen to be the parametrisation of the plane

Eσ,ϑ = {y ∈ R3 | 〈vϑ, y〉 = aσ,ϑ} with vϑ =

 ϑ1

1+ϑ3
ϑ2

1+ϑ3

1

 and aσ,ϑ =
cσ

1 + ϑ3
,

see Figure 4. The square root of the Gram determinant of the parametrisation ψσ,ϑ is now

given by the length of the vector vϑ =
∂ψσ,ϑ
∂x1

× ∂ψσ,ϑ
∂x2

, which implies that∫ ∞
−∞

∫ ∞
−∞

χ(τ, ψτ−t,ϑ(x1, x2))dx1dx2 =

√
1 + ϑ3

2

∫
Eτ−t,ϑ

χ(τ, y)ds(y).

Plugging this into (39) yields the claim. �

Thus, the measurements give the combination (37) of values χ̄ of the Radon transform of
the function χ(τ, ·). It seems, however, impossible to recover the values χ̄(τ ;σ, ϑ) from this
combination

m(t, ϑ) =
c√

2(1 + ϑ3)

∫ ∞
−∞

χ̄(τ ; τ − t, ϑ)dτ,

since (for every fixed angle ϑ ∈ S2
+) one would have to reconstruct a function on R2 from

one dimensional data.
To overcome this problem, the function χ̄(τ ; ·, ϑ) is going to be discretised for every τ ∈ R

and ϑ ∈ S2
+, where the step size will depend on the size of the support of χ(·, x).

Let us therefore consider the following assumption.
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Assumption 5.4 The support of χ in the time variable is contained in a small interval
[0, T ] for some T > 0:

suppχ(·, x) ⊂ [0, T ] for all x ∈ R3.

Then, the following discretisation

χ̄n(τ, ϑ) =

∫
EnT,ϑ

χ(τ, y)ds(y), n ∈ Z, τ ∈ (0, T ), ϑ ∈ S2
+,

of the Radon transform of the functions χ(τ, ·) is considered, where Eσ,ϑ denotes the plane
defined in (38).

Assumption 5.5 The value χ̄n(τ, ϑ) is a good approximation for the integral of the function
χ(τ, ·) over the planes EnT+ε,ϑ for all ε ∈ [−T2 ,

T
2 ) (see Figure 4), that is

χ̄n(τ, ϑ) ≈
∫
EnT+ε,ϑ

χ(τ, y)ds(y), ε ∈ [−T2 ,
T
2 ), n ∈ Z, τ ∈ (0, T ), ϑ ∈ S2

+.

Under the Assumption 5.5, equation (37) can be rewritten in the form

m(t, ϑ) ≈ c√
2(1 + ϑ3)

∫ T

0

χ̄N(τ−t)(τ, ϑ)dτ,

where N(σ) =
⌊
σ
T + 1

2

⌋
denotes the integer closest to σ

T . This (approximate) identity can
now be iteratively solved for χ̄.

Proposition 5.6 Let

m̄(t, ϑ) =
c√

2(1 + ϑ3)

∫ T

0

χ̄N(τ−t)(τ, ϑ)dτ, ϑ ∈ S2
+, t ∈ R,

for some constant T > 0 with the integer valued function N(σ) =
⌊
σ
T + 1

2

⌋
.

Then, χ̄ fulfils the recursion relation

χ̄n(τ, ϑ) = χ̄n+1(τ, ϑ)+

√
2(1 + ϑ3)

c

∂m̄

∂t
(τ−(n+ 1

2 )T, ϑ), n ∈ Z, τ ∈ (0, T ), ϑ ∈ S2
+. (40)

Proof: Let t = −nT + ε with ε ∈ [−T2 ,
T
2 ) and n ∈ Z, then

N(τ − t) =

{
n if τ ∈ (0, T2 + ε),

n+ 1 if τ ∈ [T2 + ε, T ).

Taking an arbitrary ε ∈ [−T2 ,
T
2 ) and n ∈ Z, m̄ can be formulated as

m̄(−nT + ε, ϑ) =
c√

2(1 + ϑ3)

(∫ T
2 +ε

0

χ̄n(τ, ϑ)dτ +

∫ T

T
2 +ε

χ̄n+1(τ, ϑ)dτ

)
.

Differentiating this equation with respect to ε, it follows that

∂m̄

∂t
(−nT + ε, ϑ) =

c√
2(1 + ϑ3)

(
χ̄n(T2 + ε, ϑ)− χ̄n+1(T2 + ε, ϑ)

)
,

which (with τ = T
2 + ε) is equivalent to (40). �
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Thus, given that χ̄n(t, ϑ) = 0 for sufficiently large n ∈ Z (recall that suppχ(τ, ·) ⊂ Ω for
all τ ∈ (0, T )), one can recursively reconstruct χ̄, to obtain the data∫

Eσ,ϑ

χ(τ, y)ds(y) for all τ ∈ [0, T ), σ ∈ R, ϑ ∈ S2
+

for the Radon transform of χ(τ, ·).
However, since the plane Eσ,ϑ is by its definition (38) orthogonal to the vector ϑ+ e3 for

ϑ ∈ S2
+, this provides only the values of the Radon transform corresponding to planes which

are orthogonal to a vector in the cone C, see Figure 3. For the reconstruction, one therefore
still has to invert a limited angle Radon transform.

5.1.4 Dispersive Layered Medium with Focused Illumination

Except from ophthalmology, OCT is also widely used for investigation of skin deceases, such
as cancer. From the mathematical point of view, this simplifies the main model since the
human skin can be described as a multi-layer structure with different optical properties and
varying thicknesses in each layer.

As in Section 5.1.2, the incident field is considered to propagate with normal incidence
to the interface x3 = L and the detector array is replaced by a single point detector located
at de3. The susceptibility is simplified as

χ(t, x) = δ(x1)δ(x2)χ(t, x3),

and therefore the measurements provide the data, see (37) with χ̃(ω, k) = χ̃(ω, k3),

m̂(ω) = χ̃(ω, ωc 2e3), ω ∈ R \ {0}.

Considering the special structure of a layered medium, the susceptibility is described by
a piecewise constant function in x3. This means explicitly that χ has the form

χ(t, x3) =

{
χ0 := 0, x3 /∈ [0, L]
χn(t), x3 ∈ [Ln, Ln+1)

, n = 1, . . . , N (41)

with (unknown) parameters L = L1 > L2 > . . . > LN+1 = 0 characterising the thicknesses
of the N layers and (unknown) functions χn.

Lemma 5.3, for ϑ = e3, gives

m(t) =
c

2

∫ ∞
−∞

χ̄(τ ; τ − t)dτ, where χ̄(τ ;σ) = χ(τ, cσ2 ).

Remarking that χ̄ is piecewise constant (41) and additionally assuming that χ(·, x3) has
compact support, see Assumption 5.4, with T < 2

c minn(Ln − Ln+1) Proposition 5.6 can be
applied for ϑ = e3 to iteratively reconstruct χ starting from χ0 = 0.

Modified Born Approximation
In the proposed iteration scheme, Proposition 5.6, the travelling of the incident field

through the sample before reaching a “specific” layer, where the susceptibility is to be re-
constructed, is not considered. To do so, a modified iteration method is presented describing
the travelling of the light through the different layers using Frensel’s equations.

The main idea is to consider, for example, in the second step of the recursive formula,
given χ1 to find χ2, as incident the field Ê(0), given by (26), travelled also through the first
layer. This process can be continued to the next steps.

Let us first introduce some notations which will be used in the following. The fields Ê
(r)
n

and Ê
(t)
n denote the reflected and the transmitted fields, with respect to the boundary Ln,
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respectively. The transmitted field Ê
(t)
n after travelling through the n-th layer is incident on

the Ln+1 boundary and is denoted by Ê
(0)
n+1. The reflected field by the Ln+1 boundary back

to the Ln boundary will be denoted by Ê
(r)
n+1 and by Ê

(r′)
n after travelling through the n-th

layer (see Figure 5). To simplify this model, multiple reflections are not included and the
electric fields are taken to be tangential to the interface planes.

Figure 5. Layered medium. Propagation of the initial field through the sample
incident on the second layer (left image) and in general on the nth layer, for n =
3, ..., N (right image).

Lemma 5.7 Let the sample have susceptibility given by (41) and let ρn and τn denote the
reflection and the corresponding transmission coefficients for the Ln boundary, respectively.

Then, the field incident on the nth layer with respect to the initial incident field Ê(0) := Ê
(0)
1

is given by (
Ê

(0)
n

0

)
= (M1 · M2 · ... · Mn−1)

−1

(
Ê(0)

Ê
(r)
1

)
for n = N − 1, ..., 2

assuming no backward field in the n-th layer, where

Mn =
1

τn

(
ei
ω
c
√
χn+1(Ln−Ln+1) ρne−i

ω
c
√
χn+1(Ln−Ln+1)

ρnei
ω
c
√
χn+1(Ln−Ln+1) e−i

ω
c
√
χn+1(Ln−Ln+1)

)
.

Proof: Because of the assumptions (normal incidence, Ê(0) tangential to the boundary) the
boundary conditions require the continuity of the total (upward and downward) electric and
magnetic fields. Then, the reflection ρn and the corresponding transmission τn coefficients
for the Ln boundary in terms of the susceptibility are given by [21]

ρn =

√
χn−1 + 1−

√
χn + 1√

χn−1 + 1 +
√
χn + 1

, τn = 1 + ρn.
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To determine the propagation equations for the electric fields, the transfer matrices formu-
lation is applied [30]. In particular, the fields at the top of the nth layer can be computed
with respect to the fields at the top of the (n+ 1)th using(

Ê
(0)
n

Ê
(r)
n

)
=Mn

(
Ê

(0)
n+1

Ê
(r)
n+1

)
for n = N − 1, ..., 1.

and with respect to the incident field,(
Ê

(0)
1

Ê
(r)
1

)
=M1 · ... · Mn−1

(
Ê

(0)
n

Ê
(r)
n

)
for n = N − 1, ..., 2. �

From the previous result, given χn (by the recursion relation of Proposition 5.6), the

matrix Mn+1 is computed to obtain the update Ê
(0)
n+1 which is then incident to the rest

part of the sample. This means, that Ê(0) is replaced by Ê
(0)
n+1 in the derivation of the

measurements and the recursion relation (Lemma 5.3 and Proposition 5.6) for computing
χn+1. For example, in the second step to reconstruct χ2, the incident field is simply given
by

Ê
(0)
2 = τ1e

−i
ω
c
√
χ1+1(L1−L2)Ê(0).

The only unknown in this representation is the boundary L2 which can be approximated
considering the point where change in the value of the measured function m̄ is observed. The
following analysis can be also extended for anisotropic media, but in a more complicated
context since the displacement D and the electric field E are not always parallel.

A simplification usually made here is to consider the sample field as the sum of all the
discrete reflections and neglect dispersion. This mathematical model was adopted by Bruno
and Chaubell [7] for solving the inverse scattering problem of determining the refractive
index and the width of each layer from the output data. The solution was obtained using
the Gauss–Newton method and the effect of the initial guesses was also considered.

Concluding, the travelling of the scattered field from the n-th layer through the sample
could also be considered. Since the spherical waves can be represented as a superposition
of plane waves by using similar techniques, in a more complicated form, one can obtain the
transmitted scattered field.

5.2 The Anisotropic Case

In the anisotropic case, the susceptibility χ cannot be considered a multiple of the identity.
Therefore, the problem is to reconstruct from the expressions

pj
[
ϑ× (ϑ× χ̃(ω, ωc (ϑ+ e3))p)

]
j
, j = 1, 2,

see (34), the matrix valued function χ : R×R3 → R3×3, where it is assumed that measure-
ments for every polarisation p ∈ R2 × {0} of the initial field E(0) are available.

Introducing in analogy to (36) the function

m̂p,j : R× S2
+ → C, m̂p,j(ω, ϑ) = χ̃ϑ,p,j(ω,

ω
c (ϑ+ e3)),

where χ̃ϑ,p,j is for every ϑ ∈ S2
+, p ∈ R2 × {0}, and j ∈ {1, 2} the (spatial and temporal)

Fourier transform of

χϑ,p,j : R×R3 → R, χϑ,p,j(t, x) = pj
[
ϑ× (ϑ× χ(t, x)p)

]
j
,
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Lemma 5.3 (with m replaced by mp,j and χ replaced by χϑ,p,j) can be applied to find that
the inverse Fourier transform of m̂p,j with respect to its first variable fulfils

mp,j(t, ϑ) =
c√

2(1 + ϑ3)

∫ ∞
−∞

∫
Eτ−t,ϑ

χϑ,p,j(τ, y)ds(y)dτ.

Now, the same assumptions as in Section 5.1.3 are considered, namely Assumption 5.4
and similar to Assumption 5.5:

Assumption 5.8 The approximation∫
EnT,ϑ

χϑ,p,j(τ, y)ds(y) ≈
∫
EnT+ε,ϑ

χϑ,p,j(τ, y)ds(y) for all ε ∈ [−T2 ,
T
2 )

is for every τ ∈ R, ϑ ∈ S2
+, n ∈ Z, p ∈ R2 × {0}, and j ∈ {1, 2} justified.

Then, Proposition 5.6 provides an approximate reconstruction formula for the functions

χ̄p,j(τ ;σ, ϑ) =

∫
Eσ,ϑ

χϑ,p,j(τ, y)ds(y) = pj [ϑ× (ϑ× χ̄(τ ;σ, ϑ)p)]j (42)

for all p ∈ R2 × {0}, τ ∈ R, σ ∈ R, ϑ ∈ S2
+, and j ∈ {1, 2}, where

χ̄(τ ;σ, ϑ) =

∫
Eσ,ϑ

χ(τ, y)ds(y) (43)

denotes the two dimensional Radon transform data of the function χ(τ, ·).

Proposition 5.9 Let ϑ ∈ S2
+ be fixed and ap,j, p ∈ R2 × {0}, j = 1, 2, be such that the

equations
pj [ϑ× (ϑ×Xp)]j = ap,j for all p ∈ R2 × {0}, j ∈ {1, 2}, (44)

for the matrix X ∈ R3×3 have a solution.
Then X ∈ R3×3 is a solution of (44) if and only if

(PϑX)k` = Bk`, B =

(
−ae1,1 ae1,1 − ae1+e2,1

ae2,2 − ae1+e2,2 −ae2,2

)
, k, ` ∈ {1, 2}, (45)

where Pϑ ∈ R3×3 denotes the orthogonal projection in direction ϑ.

Proof: First, remark that the equation system (44) is equivalent to the four equations

ae1,1 = [ϑ× (ϑ×Xe1)]1, ae1+e2,1 = ae1,1 + [ϑ× (ϑ×Xe2)]1,

ae2,2 = [ϑ× (ϑ×Xe2)]2, ae1+e2,2 = ae2,2 + [ϑ× (ϑ×Xe1)]2,
(46)

which correspond to the equations (44) for (p, j) ∈ {(e1, 1), (e2, 2), (e1 + e2, 1), (e1 + e2, 2)}.
Indeed, for arbitrary polarisation p = p1e1 + p2e2, the expression pj [ϑ × (ϑ ×Xp)]j can be
written as a linear combination of the four expressions [ϑ× (ϑ×Xei)]k, i, k = 1, 2:

p1[ϑ× (ϑ×Xp)]1 = p2
1[ϑ× (ϑ×Xe1)]1 + p1p2[ϑ× (ϑ×Xe2)]1,

p2[ϑ× (ϑ×Xp)]2 = p1p2[ϑ× (ϑ×Xe1)]2 + p2
2[ϑ× (ϑ×Xe2)]2,

and is thus determined by (46).
Now, the equation system (46) written in matrix form reads

[ϑ× (ϑ×Xp)]k = −
[
B

(
p1

p2

)]
k

, k ∈ {1, 2}, (47)
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for all p ∈ R2 × {0} with B defined by (45).
Decomposing Xp = 〈ϑ,Xp〉ϑ+ PϑXp, where Pϑ ∈ R3×3 denotes the orthogonal projec-

tion in direction ϑ, and using that

ϑ× (ϑ×Xp) = ϑ× (ϑ× PϑXp) = 〈ϑ, PϑXp〉ϑ− PϑXp = −PϑXp,

the equation (47) can be written in the form (45). �

Proposition 5.9 applied to the equations (42) for the matrix X = χ̄(τ ;σ, ϑ) for some
fixed values τ, σ ∈ R and ϑ ∈ S2

+ shows that the data ap,j = pj [ϑ × (ϑ × χ̄(τ ;σ, ϑ))]j for
j = 1, 2 and the three different polarisation vectors p = e1, p = e2, and p = e1 + e2 uniquely
determine with equation (45) the projection

(Pϑχ̄(τ ;σ, ϑ))k,` =

∫
Eσ,ϑ

(Pϑχ(τ, y))k,` ds(y) for k, ` ∈ {1, 2}.

Moreover, measurements for additional polarisations p do not provide any further informa-
tions so that at every detector point, corresponding to a direction ϑ ∈ S2

+, only the four
elements (Pϑχ)k,`, k, ` = 1, 2, of the projection Pϑχ influence the measurements.

To obtain additional data which make a full reconstruction of χ possible, one can carry
out extra measurements after slight rotations of the sample.

So, let R ∈ SO(3) describe the rotation of the sample. Then the transformed susceptibility
χR is given by

χR(t, y) = Rχ(t, RTy)RT. (48)

Lemma 5.10 Let χ : R × R3 → R3×3 be the susceptibility of the sample and ϑ ∈ S2
+

be given. Furthermore, let R ∈ SO(3) be such that there exists a constant αR > 0 and a
direction ϑR ∈ S2

+ with
ϑR + e3 = αRR(ϑ+ e3) (49)

and define the susceptibility χR of the rotated sample by (48).
Then, the data

χ̄R,p,j(τ ;σ, ϑR) = pj

[
ϑR ×

(
ϑR ×

∫
Eσ,ϑR

χR(τ, y)ds(y)

)]
j

, (50)

corresponding to the measurements of the rotated sample at the detector in direction ϑR,
see (42), fulfil that

χ̄R,p,j(τ ;αRσ, ϑR) = pj [ϑR × (ϑR ×Rχ̄(τ ;σ, ϑ)RT]j (51)

for all τ, σ ∈ R, p ∈ R2 × {0}, j = 1, 2, where χ̄ is given by (43).

Proof: Inserting definition (48) and substituting z = RTy, formula (50) becomes

χ̄R,p,j(τ ;σ, ϑR) = pj

[
ϑR ×

(
ϑR ×

∫
RTEσ,ϑR

Rχ(τ, z)RTds(z)

)]
j

.

Since now, by the definition (38) of the plane Eσ,ϑ and by the definition (49) of ϑR,

RTEσ,ϑR = {RTy ∈ R3 | 〈ϑR + e3, y〉 = cσ}
= {z ∈ R3 |

〈
RT(ϑR + e3), z

〉
= cσ}

= {z ∈ R3 | αR 〈ϑ+ e3, z〉 = cσ} = E σ
αR

,ϑ,

it follows (51). �
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This means that the data χ̄R,p,j(τ ;αRσ, ϑR) obtained from a detector placed in the
direction ϑR, defined by (49), depends only on the Radon transform data χ̄(τ ;σ, ϑ). However,
it still remains the algebraic problem of solving the equations (51) for different rotations R
to obtain the matrix χ̄(τ ;σ, ϑ) ∈ R3×3.

Proposition 5.11 Let A ∈ R3×3 and ϑ ∈ S2
+ be given. Moreover, let R0, R1, R2 ∈ SO(3)

be rotations so that every proper subset of {RT
0 e3, R

T
1 e3, R

T
2 e3, ϑ+e3} is linearly independent

and such that there exist for every R ∈ {R0, R1, R2} constants αR > 0 and ϑR ∈ S2
+

fulfilling (49).
Let further P ∈ R2×3 be the orthogonal projection in direction e3, Pθ ∈ R3×3 the orthog-

onal projection in direction θ ∈ R3, and

BR =

(
−aR,e1,1 aR,e1,1 − aR,e1+e2,1

aR,e2,2 − aR,e1+e2,2 −aR,e2,2

)
, aR,p,j = pj [ϑR × (ϑR ×RARTp)]j ,

for every R ∈ {R0, R1, R2}.
Then, the equations

PPϑRRXR
TPT = BR, R ∈ {R0, R1, R2} (52)

have the unique solution X = A.

Proof: Using that ϑR = αRR(ϑ+ e3)− e3, see (49), it follows with Pe3 = 0 that

PPϑR = P (1− ϑRϑT
R) = P − αRPR(ϑ+ e3)ϑT

R.

With this identity, the equations (52) can be written in the form

PR(X − αR(ϑ+ e3)ϑT
RRX)RTPT = BR. (53)

Let now ηR ∈ R3 denote a unit vector orthogonal to ϑ + e3 and orthogonal to RTe3.
Then RηR is orthogonal to e3 and therefore, with PTP = Pe3 ,

(PRηR)TPR = (Pe3RηR)TR = (RηR)TR = ηT
R.

Thus, multiplying the equation (53) from the left with (PRηR)T, it follows that

ηT
R(X − αR(ϑ+ e3)ϑT

RRX)RTPT = (PRηR)TBR.

Since now ηR is orthogonal to ϑ+ e3 this simplifies to

ηT
RXR

TPT = (PRηR)TBR. (54)

Remarking that the orthogonal projection onto the line RηR can be written as the com-
position of two orthogonal projections onto orthogonal planes with intersection RηR:

ηRη
T
R = PνRPϑ+e3 ,

where νR is a unit vector orthogonal to ηR and ϑ+ e3, and multiplying equation (54) from
the left with ηR, one finds that

PνR(Pϑ+e3X)RTPT = ηR(PRηR)TBR.

Applying then the projection P from the right and using that RTPTP = RTPe3 = PRTe3R
T,

this can be written in the form

PνR(Pϑ+e3X)PRTe3 = ηR(PRηR)TBRPR. (55)
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Evaluating this equation now for R = R0, R1, R2 and remarking that {νR0
, νR1

, νR2
} and

{RT
0 e3, R

T
1 e3, R

T
2 e3} are linearly independent, one concludes that the 3 × 3 matrix Pϑ+e3X

is uniquely determined by (55).
However, it is also possible to calculate X (and not only its projection Pϑ+e3X) from

equation (53). Because

X = Pϑ+e3X +
1

|ϑ+ e3|2
(ϑ+ e3)(ϑ+ e3)TX,

it follows from (53) that

PR

(
ϑ+ e3

|ϑ+ e3|2
(1− αRϑT

RR(ϑ+ e3))(ϑ+ e3)TX

)
RTPT

= BR − PR(1− αR(ϑ+ e3)ϑT
RR)Pϑ+e3XR

TPT. (56)

Plugging in the identity

αRϑ
T
RR(ϑ+ e3) = ϑT

R(ϑR + e3) = 1 + ϑR,3,

which follows from the definition (49) of ϑR, applying PT from the left and P from the right,
and using as before RTPTP = PRTe3R

T, the equation (56) yields

− ϑR,3PRTe3

(
ϑ+ e3

|ϑ+ e3|2
(ϑ+ e3)TX

)
PRTe3

= RTPTBRPR− PRTe3(1− αR(ϑ+ e3)ϑT
R)Pϑ+e3XPRTe3 . (57)

Since the right hand side is already known (it depends only on Pϑ+e3X), the equation
system (57) for R = R0, R1, R2 can be uniquely solved for

ϑ+ e3

|ϑ+ e3|2
(ϑ+ e3)TX.

Therefore, the equations (52) uniquely determine X and because A is by construction a
solution of the equations, this implies that X = A. �

Thus, applying Proposition 5.11 to the matrix A = χ̄(τ ;σ, ϑ) shows that the measure-
ments aR,p,j obtained at the detectors ϑR for the polarisations p = e1, e2, e1+e2 and rotations
R = R0, R1, R2, fulfilling the assumptions of Proposition 5.11, provide sufficient information
to reconstruct the Radon data χ̄(τ ;σ, ϑ). Calculating these two dimensional Radon data for
all directions ϑ in some subset of S2

+ (by considering some additional rotations so that for
every direction ϑ, there exist three rotations fulfilling the assumptions of Proposition 5.11),
it is possible via an inversion of a limited angle Radon transform to finally recover the
susceptibility χ.

6 Conclusions

In this chapter, a general mathematical model of OCT based on Maxwell’s equations has been
presented. As a consequence of this modelling, OCT was formulated as an inverse scattering
problem for the susceptibility χ. It was shown that without additional assumptions about
the optical properties of the medium, in general, χ cannot be reconstructed due to lack
of measurements. Some reasonable physical assumptions were presented, under which the
medium can, in fact, be reconstructed. For instance, if the medium is isotropic, iterative
schemes to reconstruct the susceptibility were developed. Dispersion and focus illumination
are also considered. For an anisotropic medium, it follows that different incident fields,
with respect to direction (rotating the sample) and polarisation, should be considered to
completely recover χ.
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