Skip to main content
  • 5864 Accesses

Abstract

The aim of this chapter is to review recent developments in the mathematical and numerical modeling of anomaly detection and multi-physics biomedical imaging. Expansion methods are designed for anomaly detection. They provide robust and accurate reconstruction of the location and of some geometric features of the anomalies, even with moderately noisy data. Asymptotic analysis of the measured data in terms of the size of the unknown anomalies plays a key role in characterizing all the information about the anomaly that can be stably reconstructed from the measured data. In multi-physics imaging approaches, different physical types of waves are combined into one tomographic process to alleviate deficiencies of each separate type of waves while combining their strengths. Multi-physics systems are capable of high-resolution and high-contrast imaging. Asymptotic analysis plays a key role in multi-physics modalities as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl. 23, 2089–2102 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agranovsky, M., Kuchment, P., Kunyansky, L.: On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography. In: Wang, L.H. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 89–101. CRC, Boca Raton (2009)

    Chapter  Google Scholar 

  3. Amalu, W.C., Hobbins, W.B., Elliot, R.L.: Infrared imaging of the breast – an overview. In: Bronzino, J.D. (ed.) Medical Devices and Systems, the Biomedical Engineering Handbook, chap. 25, 3rd edn. CRC, Baton Rouge (2006)

    Google Scholar 

  4. Ambartsoumian, G., Patch, S.: Thermoacoustic tomography – implementation of exact backprojection formulas (2005). math.NA/0510638

    Google Scholar 

  5. Ammari, H.: An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume. SIAM J. Control Optim. 41, 1194–1211 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Mathématiques and Applications, vol. 62. Springer, Berlin (2008)

    Google Scholar 

  7. Ammari, H., Asch, M., Guadarrama Bustos, L., Jugnon, V., Kang, H.: Transient wave imaging with limited-view data (submitted)

    Google Scholar 

  8. Ammari, H., Bonnetier, E., Capdeboscq, Y., Tanter, M., Fink, M.: Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68, 1557–1573 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ammari, H., Bossy, E., Jugnon, V., Kang, H.: Mathematical modelling in photo-acoustic imaging of small absorbers. SIAM Rev. (to appear)

    Google Scholar 

  10. Ammari, H., Bossy, E., Jugnon, V., Kang, H.: Quantitative photoacoustic imaging of small absorbers (submitted)

    Google Scholar 

  11. Ammari, H., Capdeboscq, Y., Kang, H., Kozhemyak, A.: Mathematical models and reconstruction methods in magneto-acoustic imaging. Eur. J. Appl. Math. 20, 303–317 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ammari, H., Garapon, P., Guadarrama Bustos, L., Kang, H.: Transient anomaly imaging by the acoustic radiation force. J. Differ. Equ. (to appear)

    Google Scholar 

  13. Ammari, H., Garapon, P., Jouve, F.: Separation of scales in elasticity imaging: a numerical study. J. Comput. Math. 28, 354–370 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ammari, H., Garapon, P., Kang, H., Lee, H.: A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Q. Appl. Math. 66, 139–175 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ammari, H., Garapon, P., Kang, H., Lee, H.: Effective viscosity properties of dilute suspensions of arbitrarily shaped particles (submitted)

    Google Scholar 

  16. Ammari, H., Griesmaier, R., Hanke, M.: Identification of small inhomogeneities: asymptotic factorization. Math. Comput. 76, 1425–1448 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ammari, H., Iakovleva, E., Kang, H., Kim, K.: Direct algorithms for thermal imaging of small inclusions. SIAM Multiscale Model. Simul. 4, 1116–1136 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ammari, H., Iakovleva, E., Lesselier, D.: Two numerical methods for recovering small electromagnetic inclusions from scattering amplitude at a fixed frequency. SIAM J. Sci. Comput. 27, 130–158 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ammari, H., Iakovleva, E., Lesselier, D.: A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency. SIAM Multiscale Model. Simul. 3, 597–628 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ammari, H., Iakovleva, E., Lesselier, D., Perrusson, G.: A MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput. 29, 674–709 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ammari, H., Kang, H.: High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J. Math. Anal. 34, 1152–1166 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics, vol. 1846. Springer, Berlin (2004)

    Google Scholar 

  23. Ammari, H., Kang, H.: Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities. J. Math. Anal. Appl. 296, 190–208 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ammari, H., Kang, H.: Reconstruction of elastic inclusions of small volume via dynamic measurements. Appl. Math. Optim. 54, 223–235 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ammari, H., Kang, H.: Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical Sciences, vol. 162. Springer, New York (2007)

    Google Scholar 

  26. Ammari, H., Kang, H., Lee, H.: A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids. J. Comput. Math. 25, 2–12 (2007)

    MathSciNet  Google Scholar 

  27. Ammari, H., Kang, H., Nakamura, G., Tanuma, K.: Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion. J. Elast. 67, 97–129 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ammari, H., Khelifi, A.: Electromagnetic scattering by small dielectric inhomogeneities. J. Math. Pures Appl. 82, 749–842 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ammari, H., Kozhemyak, A., Volkov, D.: Asymptotic formulas for thermography based recovery of anomalies. Numer. Math. TMA 2, 18–42 (2009)

    MATH  MathSciNet  Google Scholar 

  30. Ammari, H., Kwon, O., Seo, J.K., Woo, E.J.: Anomaly detection in Tscan trans-admittance imaging system. SIAM J. Appl. Math. 65, 252–266 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ammari, H., Seo, J.K.: An accurate formula for the reconstruction of conductivity inhomogeneities. Adv. Appl. Math. 30, 679–705 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Assenheimer, M., Laver-Moskovitz, O., Malonek, D., Manor, D., Nahliel, U., Nitzan, R., Saad, A.: The T-scan technology: electrical impedance as a diagnostic tool for breast cancer detection. Physiol. Meas. 22, 1–8 (2001)

    Article  Google Scholar 

  33. Bardos, C.: A mathematical and deterministic analysis of the time-reversal mirror. In: Inside Out: Inverse Problems and Applications. Mathematical Science Research Institute Publication, vol. 47, pp. 381–400. Cambridge University of Press, Cambridge (2003)

    Google Scholar 

  34. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Bercoff, J., Tanter, M., Fink, M.: Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396–409 (2004)

    Article  Google Scholar 

  36. Bercoff, J., Tanter, M., Fink, M.: The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1523–1536 (2004)

    Article  Google Scholar 

  37. Borcea, L., Papanicolaou, G.C., Tsogka, C., Berrymann, J.G.: Imaging and time reversal in random media. Inverse Probl. 18, 1247–1279 (2002)

    Article  MATH  Google Scholar 

  38. Brühl, M., Hanke, M., Vogelius, M.S.: A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93, 635–654 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. Capdeboscq, Y., De Gournay, F., Fehrenbach, J., Kavian, O.: An optimal control approach to imaging by modification. SIAM J. Imaging Sci. 2, 1003–1030 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Capdeboscq, Y., Kang, H.: Improved bounds on the polarization tensor for thick domains. In: Inverse Problems, Multi-scale Analysis and Effective Medium Theory. Contemporary Mathematics, vol. 408, pp. 69–74. American Mathematical Society, Providence (2006)

    Chapter  Google Scholar 

  41. Capdeboscq, Y., Kang, H.: Improved Hashin-Shtrikman bounds for elastic moment tensors and an application. Appl. Math. Optim. 57, 263–288 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Capdeboscq, Y., Vogelius, M.S.: A general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37, 159–173 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Capdeboscq, Y., Vogelius, M.S.: Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. Math. Model. Numer. Anal. 37, 227–240 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Cedio-Fengya, D.J., Moskow, S., Vogelius, M.S.: Identification of conductivity imperfections of small diameter by boundary measurements: continuous dependence and computational reconstruction. Inverse Probl. 14, 553–595 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  45. Chambers, D.H., Berryman, J.G.: Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field. IEEE Trans. Antennas Propag. 52, 1729–1738 (2004)

    Article  Google Scholar 

  46. Chambers, D.H., Berryman, J.G.: Time-reversal analysis for scatterer characterization. Phys. Rev. Lett. 92, 023902–1 (2004)

    Article  Google Scholar 

  47. Devaney, A.J.: Time reversal imaging of obscured targets from multistatic data. IEEE Trans. Antennas Propag. 523, 1600–1610 (2005)

    Article  Google Scholar 

  48. Fink, M.: Time-reversal acoustics. Contemp. Math. 408, 151–179 (2006)

    MathSciNet  Google Scholar 

  49. Fisher, A.R., Schissler, A.J., Schotland, J.C.: Photoacoustic effect of multiply scattered light. Phys. Rev. E 76, 036604 (2007)

    Article  Google Scholar 

  50. Fouque, J.P., Garnier, J., Papanicolaou, G., Solna, K.: Wave Propagation and Time Reversal in Randomly Layered Media. Springer, New York (2007)

    MATH  Google Scholar 

  51. Friedman, A., Vogelius, M.S.: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105, 299–326 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  52. Gebauer, B., Scherzer, O.: Impedance-acoustic tomography. SIAM J. Appl. Math. 69, 565–576 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  53. Greenleaf, J.F., Fatemi, M., Insana, M.: Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5, 57–78 (2003)

    Article  Google Scholar 

  54. Haider, S., Hrbek, A., Xu, Y.: Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance. Physiol. Meas. 29, 41–50 (2008)

    Article  Google Scholar 

  55. Haltmeier, M., Scherzer, O., Burgholzer, P., Nuster, R., Paltauf, G.: Thermoacoustic tomography and the circular Radon transform: exact inversion formula. Math. Model. Methods Appl. Sci. 17(4), 635–655 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  56. Haltmeier, M., Schuster, T., Scherzer, O.: Filtered backprojection for thermoacoustic computed tomography in spherical geometry. Math. Methods Appl. Sci. 28, 1919–1937 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  57. Hanke, M.: On real-time algorithms for the location search of discontinuous conductivities with one measurement. Inverse Probl. 24, 045005 (2008)

    Article  MathSciNet  Google Scholar 

  58. Harrach, B., Seo, J.K.: Detecting inclusions in electrical impedance tomography without reference measurements. SIAM J. Appl. Math. 69, 1662–1681 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  59. Isakov, V.: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol. 127. Springer, New York (1998)

    Google Scholar 

  60. Kang, H., Kim, E., Kim, K.: Anisotropic polarization tensors and determination of an anisotropic inclusion. SIAM J. Appl. Math. 65, 1276–1291 (2003)

    MathSciNet  Google Scholar 

  61. Kang, H., Seo, J.K.: Layer potential technique for the inverse conductivity problem. Inverse Probl. 12, 267–278 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  62. Kang, H., Seo, J.K.: Identification of domains with near-extreme conductivity: global stability and error estimates. Inverse Probl. 15, 851–867 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  63. Kang, H., Seo, J.K.: Inverse conductivity problem with one measurement: uniqueness of balls in R3. SIAM J. Appl. Math. 59, 1533–1539 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  64. Kang, H., Seo, J.K.: Recent progress in the inverse conductivity problem with single measurement. In: Inverse Problems and Related Fields, pp. 69–80. CRC, Boca Raton (2000)

    Google Scholar 

  65. Kim, Y.J., Kwon, O., Seo, J.K., Woo, E.J.: Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography. Inverse Probl. 19, 1213–1225 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  66. Kim, S., Kwon, O., Seo, J.K., Yoon, J.R.: On a nonlinear partial differential equation arising in magnetic resonance electrical impedance imaging. SIAM J. Math. Anal. 34, 511–526 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  67. Kim, S., Lee, J., Seo, J.K., Woo, E.J., Zribi, H.: Multifrequency transadmittance scanner: mathematical framework and feasibility. SIAM J. Appl. Math. 69, 22–36 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  68. Kohn, R., Vogelius, M.: Identification of an unknown conductivity by means of measurements at the boundary. In: McLaughlin, D. (ed.) Inverse Problems. SIAM-AMS Proceedings, vol. 14, pp. 113–123. American Mathmetical Society, Providence (1984)

    Google Scholar 

  69. Kolehmainen, V., Lassas, M., Ola, P.: The inverse conductivity problem with an imperfectly known boundary. SIAM J. Appl. Math. 66, 365–383 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  70. Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. Euro. J. Appl. Math. 19, 191–224 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  71. Kuchment, P., Kunyansky, L.: Synthetic focusing in ultrasound modulated tomography. Inverse Probl. Imaging (to appear)

    Google Scholar 

  72. Kwon, O., Seo, J.K.: Total size estimation and identification of multiple anomalies in the inverse electrical impedance tomography. Inverse Probl. 17, 59–75 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  73. Kwon, O., Seo, J.K., Yoon, J.R.: A real-time algorithm for the location search of discontinuous conductivities with one measurement. Commun. Pure Appl. Math. 55, 1–29 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  74. Kwon, O., Yoon, J.R., Seo, J.K., Woo, E.J., Cho, Y.G.: Estimation of anomaly location and size using impedance tomography. IEEE Trans. Biomed. Eng. 50, 89–96 (2003)

    Article  Google Scholar 

  75. Li, X., Xu, Y., He, B.: Magnetoacoustic tomography with magnetic induction for imaging electrical impedance of biological tissue. J. Appl. Phys. 99, Art. No. 066112 (2006)

    Google Scholar 

  76. Li, X., Xu, Y., He, B.: Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic induction (MAT-MI). IEEE Trans. Biomed. Eng. 54, 323–330 (2007)

    Article  Google Scholar 

  77. Lipton, R.: Inequalities for electric and elastic polarization tensors with applications to random composites. J. Mech. Phys. Solids 41, 809–833 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  78. Manduca, A., Oliphant, T.E., Dresner, M.A., Mahowald, J.L., Kruse, S.A., Amromin, E., Felmlee, J.P., Greenleaf, J.F., Ehman, R.L.: Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image Anal. 5, 237–254 (2001)

    Article  Google Scholar 

  79. Milton, G.W.: The Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  80. Montalibet, A., Jossinet, J., Matias, A., Cathignol, D.: Electric current generated by ultrasonically induced Lorentz force in biological media. Med. Biol. Eng. Comput. 39, 15–20 (2001)

    Article  Google Scholar 

  81. Muthupillai, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A., Ehman, R.L.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995)

    Article  Google Scholar 

  82. Mast, T.D., Nachman, A., Waag, R.C.: Focusing and imagining using eigenfunctions of the scattering operator. J. Acoust. Soc. Am. 102, 715–725 (1997)

    Article  Google Scholar 

  83. Parisky, Y.R., Sardi, A., Hamm, R., Hughes, K., Esserman, L., Rust, S., Callahan, K.: Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions. Am. J. Radiol. 180, 263–269 (2003)

    Google Scholar 

  84. Patch, S.K., Scherzer, O.: Guest editors’ introduction: photo- and thermo-acoustic imaging. Inverse Probl. 23, S1–S10 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  85. Pernot, M., Montaldo, G., Tanter, M., Fink, M.: “Ultrasonic stars” for time-reversal focusing using induced cavitation bubbles. Appl. Phys. Lett. 88, 034102 (2006)

    Article  Google Scholar 

  86. Pinker, S.: How the Mind Works. Penguin Science, Harmondsworth (1997)

    Google Scholar 

  87. Prada, C., Thomas, J.-L., Fink, M.: The iterative time reversal process: analysis of the convergence. J. Acoust. Soc. Am. 97, 62–71 (1995)

    Article  Google Scholar 

  88. Seo, J.K., Kwon, O., Ammari, H., Woo, E.J.: Mathematical framework and anomaly estimation algorithm for breast cancer detection using TS2000 configuration. IEEE Trans. Biomed. Eng. 51, 1898–1906 (2004)

    Article  Google Scholar 

  89. Seo, J.K., Woo, E.J.: Multi-frequency electrical impedance tomography and magnetic resonance electrical impedance tomography. In: Mathematical Modeling in Biomedical Imaging I. Lecture Notes in Mathematics: Mathematical Biosciences Subseries, vol. 1983. Springer, Berlin (2009)

    Chapter  Google Scholar 

  90. Sinkus, R., Siegmann, K., Xydeas, T., Tanter, M., Claussen, C., Fink, M.: MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn. Reson. Med. 58, 1135–1144 (2007)

    Article  Google Scholar 

  91. Sinkus, R., Tanter, M., Catheline, S., Lorenzen, J., Kuhl, C., Sondermann, E., Fink, M.: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn. Reson. Med. 53, 372–387 (2005)

    Article  Google Scholar 

  92. Sinkus, R., Tanter, M., Xydeas, T., Catheline, S., Bercoff, J., Fink, M.: Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn. Reson. Imaging 23, 159–165 (2005)

    Article  Google Scholar 

  93. Tanter, M., Fink, M.: Time reversing waves for biomedical applications. In: Mathematical Modeling in Biomedical Imaging I. Lecture Notes in Mathematics: Mathematical Biosciences Subseries, vol. 1983. Springer, Berlin (2009)

    Chapter  Google Scholar 

  94. Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  95. Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities. Math. Model. Numer. Anal. 34, 723–748 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  96. Wang, L.V., Yang, X.: Boundary conditions in photoacoustic tomography and image reconstruction. J. Biomed. Opt. 12, 014027 (2007)

    Article  Google Scholar 

  97. Xu, Y., Wang, L.V.: Ambartsoumian, G., Kuchment, P.: Reconstructions in limited view thermoacoustic tomography. Med. Phys. 31, 724–733 (2004)

    Article  Google Scholar 

  98. Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Habib Ammari or Hyeonbae Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Ammari, H., Kang, H. (2015). Expansion Methods. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_47

Download citation

Publish with us

Policies and ethics