Skip to main content

Context and Granularity

  • Chapter
  • First Online:
  • 904 Accesses

Abstract

Granularity is one of the core aspects of context. This chapter gives an overview of three perspectives on granularity—size-based granularity, partition-based granularity, granularity in contextual reasoning—and discusses their interrelation. The author identifies three types of granularity: perceptual granularity refers to the fact that any perceptual system has a certain limited resolution; conceptual granularity indicates that the categories in which we think are tied to levels of granularity; physical granularity, finally, refers to the structures, sizes, and densities that exist in the physical world. This chapter discusses the interplay between the three types of granularity and how perceptual granularity could have been fundamental in the evolution of cognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The representational granularity of Galton (2000) corresponds to what is called here perceptual granularity, his intrinsic granularity is related to the notion of physical granularity employed in this chapter.

References

  • Benerecetti, M., Bouquet, P., Ghidini, C.: Contextual reasoning distilled. J. Exp. Theor. Artif. Intell. 12(3), 279–305 (2000)

    Article  MATH  Google Scholar 

  • Bennett, B.: What is a forest? On the vagueness of certain geographic concepts. Topoi 20(2), 189–201 (2001)

    Article  Google Scholar 

  • Bettini, C., Montanari, A.: Temporal representation and reasoning. Data Knowl. Eng. 44(2), 139–141 (2003)

    Article  Google Scholar 

  • Bettini, C., Jajodia, S., Wang, X.S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer, Secaucus (2000)

    Book  MATH  Google Scholar 

  • Bittner, T.: Vagueness and the trade-off between the classification and delineation of geographic regions—an ontological analysis. Int. J. Geogr. Inf. Sci. 25(5), 825–850 (2011)

    Article  Google Scholar 

  • Bittner, T., Smith, B.: A theory of granular partitions. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations of Geographic Information Science, pp. 117–151. Taylor & Francis, London (2003)

    Chapter  Google Scholar 

  • Bittner, T., Stell, J.G.: Stratified rough sets and vagueness. In: Kuhn, W., Worboys, M., Timpf, S. (eds.) Spatial Information Theory: Foundations of Geographic Information Science, pp. 270–286. Springer, Berlin (2003)

    Chapter  Google Scholar 

  • Brézillon, P.: Context modeling: Task model and practice model. In: Kokinov, B. (ed.) Modeling and Using Context, pp. 122–135. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Brézillon , P.: Contextualization of scientific workflows. In: Beigl, M. et al. (eds.) Modeling and Using Context, pp. 40–53. Springer, Heidelberg (2011)

    Google Scholar 

  • Brézillon, P.: Context-based development of experience bases. In: Goebel, R., Tanaka, Y., Wahlster, W. (eds.) Modeling and Using Context, pp. 87–100. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  • Bronowski, J.: New concepts in the evolution of complexity: Stratified stability and unbounded plans. Synthese 21, 228–246 (1970)

    Article  Google Scholar 

  • Dorn, C., Schall, D., Dustdar, S.: Granular context in collaborative mobile environments. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM Confederated International Workshops, pp. 1904–1913. Springer (2006)

    Google Scholar 

  • Euzenat, J.: An algebraic approach to granularity in qualitative time and space representation. In: Mellish, C. (ed.) Fourteenth International Joint Conference on Artificial Intelligence, pp. 894–900. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  • Euzenat, J.: Granularity in relational formalisms—with application to time and space representation. Comput. Intell. 17(3), 703–737 (2001)

    Article  MathSciNet  Google Scholar 

  • Euzenat, J., Montanari, A.: Time granularity. In: Fisher, M., Gabbay, D., Vila, L. (eds.)  Handbook of Temporal Reasoning in Artificial Intelligence, chap. 3, pp. 59–118. Elsevier, New York (2005)

    Chapter  Google Scholar 

  • Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Spatio-Temporal Reasoning, LNCS, vol. 639, pp. 162–178. Springer, Berlin (1992)

    Google Scholar 

  • Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)

    Google Scholar 

  • Gärdenfors, P.: The detachment of thought. In: Erneling, C., Johnson, D. (eds.) The Mind as a Scientific Subject: Between Brain and Culture, pp. 323–341. Oxford University Press, Oxford (2005)

    Google Scholar 

  • Han, J., Schmidtke, H.R., Xie, X., Woo, W.: Adaptive content recommendation for mobile users: Ordering recommendations using a hierarchical context model with granularity. Pervasive Mobile Comput. (2013). doi: http://dx.doi.org/10.1016/j.pmcj.2013.11.002. http://www.sciencedirect.com/science/article/pii/S1574119213001417

  • Hobbs, J.: Granularity. In: Josh, A.K. (ed.) Ninth International Joint Conference on Artificial Intelligence, pp. 432–435. Morgan Kaufmann, Los Angeles (1985)

    Google Scholar 

  • Hobbs, J.R.: Half orders of magnitude. In: Papers from the Workshop on Semantic Approximation, Granularity, and Vagueness, pp. 28–38. Citeseer (2000)

    Google Scholar 

  • Hobbs, J.R., Kreinovich, V.: Optimal choice of granularity in commonsense estimation: Why half-orders of magnitude. In: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th, IEEE, vol. 3, pp. 1343–1348 (2001)

    Google Scholar 

  • Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: A review. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  • Jakimovski, P., Schmidtke, H.R.: Delayed synapses: An LSM model for studying aspects of temporal context in memory. In: Beigl, M., Christiansen, H., Roth-Berghofer, T.R., Kofod-Petersen, A., Coventry, K.R., Schmidtke, H.R. (eds.) Modeling and Using Context, pp. 138–144. Springer, Berlin (2011)

    Chapter  Google Scholar 

  • Kosslyn, S.: Image and Brain: The Resolution of the Imagery Debate. MIT Press, Cambridge (1994)

    Google Scholar 

  • Montanari, A., Peron, A., Policriti, A.: The way to go: Multi-level temporal logics. In: Gerbrandy, J., Marx, M., de Rijke, M., Venema, Y. (eds.) Liber Amicorum for the Fiftieth Birthday of Johan van Benthem, ILLC, pp. 1–12 (1999)

    Google Scholar 

  • Mulkar-Mehta, R., Hobbs, J.R., Hovy, E.H.: Applications and discovery of granularity structures in natural language discourse. In: AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning (2011)

    Google Scholar 

  • Niu, W., Li, G., Zhao, Z., Tang, H., Shi, Z.: Multi-granularity context model for dynamic web service composition. J. Netw. Comput. Appl. 34(1), 312–326 (2011)

    Article  Google Scholar 

  • Ohlbach, H.J., Gabbay, D.M.: Calendar logic. J. Appl. Non-Classical Logics 8(4), 291–323 (1998)

    Google Scholar 

  • Palmer, S.E.: Vision Science—Photons to Phenomenology. MIT Press, Cambridge (1999)

    Google Scholar 

  • Pawlak, Z.:Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Rector, A., Rogers, J., Bittner, T.: Granularity, scale and collectivity: When size does and does not matter. J. Biomed. Informatics 39(3), 333–349 (2006)

    Article  Google Scholar 

  • Schmidtke, H.R.: A geometry for places: Representing extension and extended objects. In: Kuhn, W., Worboys, M., Timpf, S. (eds.) International Conference on Spatial Information Theory, LNCS, vol. 2825, pp. 235–252. Springer, Berlin (2003)

    Google Scholar 

  • Schmidtke, H.R.: Aggregations and constituents: Geometric specification of multi-granular objects. J. Vis. Lang. Comput. 16(4), 289–309 (2005a). doi:10.1016/j.jvlc.2004.11.007

    Google Scholar 

  • Schmidtke, H.R.: Eine axiomatische Charakterisierung räumlicher Granularität: formale Grundlagen detailgrad-abh&00E4#;ngiger Objekt- und Raumrepräsentation. Doctoral dissertation, Universität Hamburg, Fachbereich Informatik (2005b)

    Google Scholar 

  • Schmidtke, H.R.: Granularity as a parameter of context. In: Dey, A.K., Kokinov, B.N., Leake, D.B., Turner, R.M. (eds.) International Conference on Modeling and Using Context, LNCS, vol. 3554, pp. 450–463. Springer (2005c). doi: 10.1007/11508373_34

    Google Scholar 

  • Schmidtke, H.R.: Contextual reasoning in context-aware systems. In: Workshop Proceedings of the 8th International Conference on Intelligent Environments, pp. 82–93. IOS Press (2012)

    Google Scholar 

  • Schmidtke, H.R.: Path and place: the lexical specification of granular compatibility. In: Dimitrova-Vulchanova, M., van der Zee, E. (eds.) Motion Encoding in Language and Space, Explorations in Language and Space. Oxford University Press, Oxford (2013)

    Google Scholar 

  • Schmidtke, H.R., Beigl, M.: Positions, regions, and clusters: Strata of granularity in location modelling. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010, LNAI, vol. 6359, pp. 272–279. Springer (2010). http://dx.doi.org/10.1007/978-3-642-16111-7_31

  • Schmidtke, H.R., Beigl, M.: Distributed spatial reasoning for wireless sensor networks. In: Beigl, M. et al (eds.) Modeling and Using Context, pp. 264–277. Springer, Berlin (2011)

    Google Scholar 

  • Suppes, P., Zinnes, J.: Basic measurement theory. In: Luce, R., Bush, R., Galanter, E. (eds.) Handbook of Mathematical Psychology, pp. 1–76. Wiley, New York (1963)

    Google Scholar 

  • Trullier, O., Wiener, S., Berthoz, A., Meyer, J.A.: Biologically based artificial navigation systems: Review and prospects. Progress Neurobiol. 51, 483–544 (1997)

    Article  Google Scholar 

  • van Deemter, K.: The sorites fallacy and the context-dependence of vague predicates. In: Kanazawa, M., Pinon, C., de Swart, H. (eds.) Quantifiers, Deduction, and Context, pp. 59–86. CSLI Publications, Stanford (1995)

    Google Scholar 

  • Wertheimer, M.: Untersuchung zur Lehre von der Gestalt. Psychologische Forschung 4, 301–350 (1923)

    Article  Google Scholar 

  • Zadeh, L.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications. North-Holland, Amsterdam, pp. 3–18 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedda Rahel Schmidtke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidtke, H. (2014). Context and Granularity. In: Brézillon, P., Gonzalez, A. (eds) Context in Computing. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1887-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1887-4_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1886-7

  • Online ISBN: 978-1-4939-1887-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics