Skip to main content

Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction

  • Chapter
  • First Online:
Book cover Cloud Computing for Data-Intensive Applications
  • 1515 Accesses

Abstract

In loosely coupled distributed computing systems, one of the major duties performed by the scheduler is to efficiently manage the allocation of computational tasks to computing resources. Such matchmaking services become difficult to implement when resources belong to different administrative domains, each of which has unique and diverse valuation for task bundles. In order to cope with the heterogeneity, we introduce a novel combinatorial auction approach that solves the task-resource matchmaking problem in a utility computing environment. This auction based approach is characterized as “self-adaptive” in two senses. First, efficient allocation is achieved through adaptive adjustment of task pricing towards the market equilibrium point. Second, payment accounting is adaptive to the changing auction states at various stages that discourages strategic bidding from egocentric bidders. The objective of the research presented in this chapter is to examine the applicability of the combinatorial auction based approaches in utility computing, and to develop efficient task allocation schemes using the self-adaptive auction. Through simulations, we show that the proposed combinatorial auction approach optimizes allocative efficiency for task-resource matchmaking when valuation functions are concave, and achieves incentive compatibility once the auction process finalizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, the task allocation result might incur certain efficiency loss due to possible tie breaks in our strategy design. Compare to the overall efficiency, such efficiency loss is in general negligible.

  2. 2.

    Jain’s fairness index: \(f_{i} = (\sum _{i=1}^{n}t_{i})^{2}/n\sum _{i=1}^{n}t_{i}^{2}\), where t i is i’s task processing time. The more f i is close to 1, the better of fairness.

References

  1. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for scheduling selfish related machines. Theor. Comp. Sys. 40, 423–436 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. American Economic Review 94(5), 1452–1475 (2004)

    Article  Google Scholar 

  3. Ausubel, L.M.: An efficient dynamic auction for heterogeneous commodities. American Economic Review 96(3), 602–629 (2006)

    Article  Google Scholar 

  4. Ausubel, L.M., Cramton, P.: Demand reduction and inefficiency in multi-unit auctions. Tech. rep., University of Maryland, Department of Economics (2002)

    Google Scholar 

  5. Bharadwaj, V., Ghose, D., Robertazzi, T.G.: Divisible load theory: A new paradigm for load scheduling in distributed systems. Cluster Computing 6(1), 7–17 (2003)

    Article  Google Scholar 

  6. Bikhchandani, S., Ostroy, J.M.: The package assignment model. Journal of Economic Theory 107(2), 377–406 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blumrosen, L., Nisan, N.: On the computational power of iterative auctions. In: ACM EC’05, pp. 29–43 (2005)

    Google Scholar 

  8. Buyya, R.: Market-Oriented cloud computing: Vision, hype, and reality of delivering computing as the 5th utility. In: IEEE CCGrid’09, p. 1 (2009)

    Google Scholar 

  9. Buyya, R., Abramson, D., Giddy, J.: Nimrod/g: an architecture for a resource management and scheduling system in a global computational grid. In: Proceedings of the fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, pp. 283–289 (2000)

    Google Scholar 

  10. Buyya, R., Ranjan, R., Calheiros, R.N.: Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services. In: Proceedings of the 10th International Conference on Algorithms and Architectures for Parallel Processing - Volume Part I (ICA3PP’10), pp. 13–31 (2010)

    Google Scholar 

  11. Casanova, H., Legrand, A., Quinson, M.: Simgrid: A generic framework for large-scale distributed experiments. In: UKSIM ’08, pp. 126–131 (2008)

    Google Scholar 

  12. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for scheduling parameter sweep applications in grid environments. In: HCW’00, pp. 349–363 (2000)

    Google Scholar 

  13. Catlett, C.: The philosophy of teragrid: Building an open, extensible, distributed terascale facility. In: Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID ’02) (2002)

    Google Scholar 

  14. Cramton, P.: Competitive bidding behavior in uniform-price auction markets. In: HICSS’04 (2004)

    Google Scholar 

  15. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press (2006)

    Google Scholar 

  16. Danak, A., Mannor, S.: Resource allocation with supply adjustment in distributed computing systems. In: IEEE ICDCS’10, pp. 498–506 (2010)

    Google Scholar 

  17. Das, A., Grosu, D.: Combinatorial auction-based protocols for resource allocation in grids. In: IEEE IPDPS workshop, PDSEC’05, p. 251a (2005)

    Google Scholar 

  18. Fujiwara, I., Aida, K., Ono, I.: Applying double-sided combinational auctions to resource allocation in cloud computing. In: IEEE/IPSJ SAINT’10, pp. 7–14 (2010)

    Google Scholar 

  19. FutureGrid. https://portal.futuregrid.org/

  20. Garg, S.K., Venugopal, S., Buyya, R.: A meta-scheduler with auction based resource allocation for global grids. 14th IEEE International Conference on Parallel and Distributed Systems (ICPADS ’08). pp. 187–194 (2008)

    Google Scholar 

  21. Ghosh, P., Roy, N., Das, S.K., Basu, K.: A pricing strategy for job allocation in mobile grids using a non-cooperative bargaining theory framework. J. Parallel Distrib. Comput. 65, 1366–1383 (2005)

    Article  MATH  Google Scholar 

  22. Grosu, D., Das, A.: Auction-based resource allocation protocols in grids. In: PDCS’04, pp. 20–27 (2004)

    Google Scholar 

  23. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On profit-maximizing envy-free pricing. In: ACM SODA’05, pp. 1164–1173 (2005)

    Google Scholar 

  24. Kale, L., Kumar, S., Potnuru, M., DeSouza, J., Bandhakavi, S.: Faucets: efficient resource allocation on the computational grid. In: Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04), pp. 396–405 (2004)

    Google Scholar 

  25. Lai, K., Rasmusson, L., Adar, E., Zhang, L., Huberman, B.A.: Tycoon: An implementation of a distributed, market-based resource allocation system. Multiagent Grid Syst. 1, 169–182 (2005)

    MATH  Google Scholar 

  26. Lau, H.C., Cheng, S.F., Leong, T.Y., Park, J.H., Zhao, Z.: Multi-period combinatorial auction mechanism for distributed resource allocation and scheduling. In: IAT’07, pp. 407–411 (2007)

    Google Scholar 

  27. Leme, R.P., Tardos, E.: Pure and Bayes-Nash price of anarchy for generalized second price auction. In: IEEE FOCS’10, vol. 0, pp. 735–744 (2010)

    Google Scholar 

  28. Lin, W.Y., Lin, G.Y., Wei, H.Y.: Dynamic auction mechanism for cloud resource allocation. In: IEEE CCGrid’10, pp. 591–592 (2010)

    Google Scholar 

  29. Ma, R.T., Chiu, D.M., Lui, J.C., Misra, V., Rubenstein, D.: On resource management for cloud users: A generalized kelly mechanism approach. Tech. rep., Electrical Engineering (2010)

    Google Scholar 

  30. Mihailescu, M., Teo, Y.M.: Dynamic resource pricing on federated clouds. In: 2010-10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 513–517 (2010)

    Google Scholar 

  31. PlanetLab. http://www.planet-lab.org/

  32. Regev, O., Nisan, N.: The POPCORN market. online markets for computational resources. Decision Support Systems 28(1–2), 177–189 (2000)

    Google Scholar 

  33. Rzadca, K., Trystram, D., Wierzbicki, A.: Fair game-theoretic resource management in dedicated grids. In: IEEE CCGrid’07, pp. 343–350 (2007)

    Google Scholar 

  34. Shang, S., Jiang, J., Wu, Y., Yang, G., Zheng, W.: A knowledge-based continuous double auction model for cloud market. In: SKG’10, pp. 129–134 (2010)

    Google Scholar 

  35. Sherwani, J., Ali, N., Lotia, N., Hayat, Z., Buyya, R.: Libra: A computational economy-based job scheduling system for clusters. Softw. Pract. Exper. 34(6), 573–590 (2004)

    Article  Google Scholar 

  36. SimBoinc. http://simboinc.gforge.inria.fr/

  37. Song, B., Hassan, M., Huh, E.N.: A novel cloud market infrastructure for trading service. In: ICCSA’09, pp. 44–50 (2009)

    Google Scholar 

  38. Amazon Spot Instance. http://aws.amazon.com/ec2/spot-instances/

  39. Stokely, M., Winget, J., Keyes, E., Grimes, C., Yolken, B.: Using a market economy to provision compute resources across planet-wide clusters. In: Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed Processing (IPDPS 2009), pp. 1–8 (2009)

    Google Scholar 

  40. de Vries, S., Schummer, J., Vohra, R.V.: On ascending Vickrey auctions for heterogeneous objects. Journal of Economic Theory 132(1), 95–118 (2007)

    Google Scholar 

  41. Waldspurger, C., Hogg, T., Huberman, B., Kephart, J., Stornetta, W.: Spawn: a distributed computational economy. IEEE Transactions on Software Engineering 18(2), 103–117 (1992)

    Article  Google Scholar 

  42. Wang, Q., Ren, K., Meng, X.: When cloud meets ebay: Towards effective pricing for cloud computing. In: 2012 Proceedings IEEE INFOCOM, pp. 936–944 (2012)

    Google Scholar 

  43. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: G-commerce: Market formulations controlling resource allocation on the computational grid. In: IEEE IPDPS’01, pp. 46–53 (2001)

    Google Scholar 

  44. Zaman, S., Grosu, D.: Combinatorial auction-based allocation of virtual machine instances in clouds. J. Parallel Distrib. Comput. 73(4), 495–508 (2013)

    Article  Google Scholar 

  45. Zhao, H., Yu, Z., Tiwari, S., Mao, X., Lee, K., Wolinsky, D., Li, X., Figueiredo, R.: Cloudbay: Enabling an online resource market place for open clouds. In: IEEE Fifth International Conference on Utility and Cloud Computing (UCC’12), pp. 135 –142 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhao, H., Li, X. (2014). Efficient Task-Resource Matchmaking Using Self-adaptive Combinatorial Auction. In: Li, X., Qiu, J. (eds) Cloud Computing for Data-Intensive Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1905-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1905-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1904-8

  • Online ISBN: 978-1-4939-1905-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics