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Problem Definition

A phylogeny is an evolutionary tree tracing the shared history, including common ancestors, of a
set of extant species or “taxa”. Phylogenies are increasingly reconstructed on the basis of
molecular data (DNA and protein sequences) using statistical techniques such as likelihood and
Bayesian methods. Algorithmically, these techniques suffer from the discrete nature of tree
topology space. Since the number of tree topologies increases exponentially as a function of the
number of taxa, and each topology requires a separate likelihood calculation, it is important to
restrict the search space and to design efficient heuristics. Distance methods for phylogeny
reconstruction serve this purpose by inferring trees in a fraction of the time required for the
more statistically rigorous methods. Distance methods also provide fairly accurate starting trees
to be further refined by more sophisticated methods. Moreover, the input to a distance method is
the matrix of pairwise evolutionary distances among taxa, which are estimated by maximum

likelihood, so that distance methods also have sound statistical justifications.

Mathematically, a phylogenetic tree is a triple T = (V, E, [) where V is the set of nodes
(extant taxa correspond to leaves, ancestors to internal nodes), E is the set of edges (branches)
representing relations of descent, and [ is a function that assigns positive lengths to each edge in
E, representing a measure of evolutionary divergence, for example in terms of time, or amount of
change between DNA or protein sequences. Any phylogenetic tree T defines a metric Dron its leaf

set L: let Pr(u,v) define the unique path through T from u to v, then the distance from u to v is set

to DT (u, U) = ZeEPT(‘u,v) l(e)



Distance methods for phylogeny reconstruction rely on the fundamental result [21] that
the map T — Dr is reversible; i.e., a tree T can be reconstructed from its tree metric, a problem
that can be solved in O(nlogn) time [13]. However, in practice Dr is not known, and one must
use molecular sequence data to estimate a distance matrix D that approximates Dr [9]. As the
amount of sequence data increases, D can be assumed to converge to Dr. A minimal requirement
for any distance method is consistency: for any tree T, and for distance matrices D “close enough”
to Dr, the algorithm should output a tree with the same topology as T (that is, with the same
underlying graph (V,E)). The present chapter deals with the question of when any distance
algorithm for phylogeny reconstruction can be guaranteed to output the correct phylogeny as a
function of the divergence between D and Dr. Atteson [1] demonstrated that this question can be
precisely answered for Neighbor Joining (N]) [17], one of the most cited algorithms in
computational biology (with more than 35,000 citations up to 2014), and a number of NJ’s

variants.

The Neighbor Joining (N]) algorithm of Saitou and Nei (1987)

N]J is agglomerative: it works by using the input matrix D to identify a pair of taxa x, y € L that are
neighbors in T, i.e. there exists a node u € V such that {(u,x), (uy)} C E. Then, the algorithm
creates a node c that is connected to x and y, extends the distance matrix to ¢, and solves the

reduced problem on LU{c}\{x,y}. The pair (x,y) is chosen to minimize the following sum:

Sp(xy) = (L1=2) - D(x,y) = ) (D(zx) + Dz y).

Z€L

The soundness of NJ is based on the observation that, if D = Dr for a tree T, the value Sp(x,y) will

be minimized for a pair (x,y) that are neighbors in T.

Balanced Minimum Evolution and algorithms inspired by it

A number of papers (reviewed in [11]) have been dedicated to the various interpretations and
properties of the Sp criterion. One of these interpretations consists in observing that
agglomerating the pair of nodes that minimizes Sp is equivalent to choosing, among all the trees
that can be obtained in this way, the one that minimizes a simple linear formula [15] to calculate
the length of a tree from the distances between its leaves [11], thus connecting distance and
parsimony methods [9]. As the optimization principle seeking the tree that minimizes this
formula has been named Balanced Minimum Evolution (BME) [6], N]J can then be seen as a

greedy algorithm for BME.

This remarkable connection between NJ and BME naturally spurred the proposal of
alternative algorithms for BME. One of these, GreedyBME, consists of iteratively adding taxa to a
tree so that, at each step, the resulting tree is the one that minimizes BME among all the binary
trees that can be obtained in this way [6]. More involved algorithms can be obtained by

combining a simple tree construction algorithm such as NJ or GreedyBME, with a local search



based on the traditional tree rearrangements used in phylogenetics [9], such as nearest-neighbor

interchange (NNI) or subtree pruning and regrafting (SPR).

The Fast Neighbor Joining (FNJ) Algorithm of Elias and Lagergren (2005)

Standard implementations of NJ require O(n3) computations, where n is the number of taxa in the
data set. Since a distance matrix only has n? entries, many attempts have been made to construct
a distance algorithm that would only require O(n?) computations while retaining the accuracy of
NJ. To this end, one of the most interesting results is the Fast Neighbor Joining (FNJ) algorithm of

Elias and Lagergren [7].

Most of the computation of NJ is used in the recalculations of the sums Sp(x,y) after each
agglomeration step. Although each recalculation can be performed in constant time, and although
it is not necessary to consider all pairs of taxa (x,y) in order to find the one that minimizes this
sum [19], the number of pairs to consider remains, in the worst case, O(k%) when k nodes are left

to agglomerate. Thus, summing over k, O(n3) computations are required in all.

Elias and Lagergren take a related approach to agglomeration, which does not
exhaustively seek the minimum value of Sp(x,y) at each step, but instead uses a heuristic to
maintain a list of candidates of “visible pairs” (x,y) for agglomeration. At the (n - k)t step, when
two neighbors are agglomerated from a k-taxa tree to form a (k - 1)-taxa tree, FNJ has a list of
0(k) visible pairs for which Sp(x,y) is calculated. The pair joined is selected from this list. By
trimming the number of pairs considered, Elias and Lagergren achieved an algorithm which
requires only O(n%) computations. Other similar improvements to Neighbor Joining have also

been proposed in recent years [8,12,19].

Safety radius performance analysis (Atteson 1999)

In order to provide accuracy guarantees for distance-based algorithms, Atteson [1] tackled the
following question: if D is a distance matrix that approximates a tree metric Dy, can one have
some confidence in algorithm’s ability to reconstruct T, or parts of it, given D, based on some
measure of the distance between D and D7? For two matrices, D; and D;, the L« distance between
them is defined by ||D; - D;||w = max;; |D1(i, j) - Dz(i, j)|. Moreover, let u(T) denote the length of
the shortest internal edge of a tree T. This is an important quantity, as short branches in a
phylogeny are difficult to resolve, because of the relatively few (if any) molecular changes

occurring on a short branch.

The safety radius of an algorithm A is then the greatest value of r with the property that:
given any phylogeny T, and any distance matrix D satisfying ||D - Dr||e < r - u(T), A will return a
tree T with the same topology as T. Similarly, the edge radius of A is the greatest value of r, for
which the presence in T of an edge e € E is guaranteed whenever ||D - Dr||w < r - I(e). As an easy
consequence of these definitions, the safety radius is always at least as large as the edge radius.
Moreover, both the safety radius and the edge radius can also be attributed to an optimization

principle, assuming an exact optimization algorithm.



Key Results

Atteson [1] proved the following theorems.
Theorem 1: The safety radius of NJ is %.
Theorem 2: The largest possible safety radius for any algorithm is %.

Indeed, given any u, one can find two different trees T4, T> and a distance matrix D such that y =
((T1) = u(T2), and ||D — DT1||oo = '“/2 =|p - DTsz' Since D is equidistant from two distinct tree

metrics, no algorithm could assign it to the “closest” tree.

In their presentation of FNJ, Elias and Lagergren updated Atteson’s results for their

algorithm. They showed
Theorem 3: The safety radius of FNJ is %.

An insight on the above results on neighbor-joining-type algorithms is provided by the fact that
the optimization principle they are linked to, BME, has itself safety radius % [14]. A simple
consequence of this [14] is the fact that also GreedyBME has safety radius %, a result first proven
by Shigezumi [18]. Finally, performing a local search guided by BME and based on SPR leads to an
algorithm with safety radius greater or equal to %, regardless of the method used to construct

the initial tree [2].

The edge radius of a number of algorithms has also been studied. As conjectured by
Atteson [1] and formally proven by Dai et al. [5], the edge radius of N]J is %. Interestingly, other
heuristics, related to NJ via the principle they seek to optimize (BME), perform better than NJ in
terms of edge radius: GreedyBME has edge radius % [3]; moreover, building an initial tree with
GreedyBME and then performing a local search guided by BME and based on NNI or SPR

operations, constitutes an algorithm with edge radius %3 [3].

Finally we note that the safety radius framework has also been applied to the ultrametric
setting where the correct tree T is rooted and all tree leaves are at the same distance from the

“«

root [10]. These trees are called “molecular clock” trees in phylogenetics and “indexed
hierarchies” in data analysis. In this setting, the optimal safety radius is equal to 1 (instead of %2)
and a number of standard algorithms (e.g. UPGMA, with time complexity in 0(n?)) have a safety

radius of 1.

Open Problems

With increasing amounts of sequence data becoming available for an increasing number of
species, distance algorithms such as NJ should be useful for quite some time. Currently, the
bottleneck in the process of building phylogenies is estimating distances, rather than exploring

tree topologies. Two algorithms were recently developed to reconstruct trees from incomplete



distance matrices. These algorithms use character information as well as distances, and hence

cannot be categorized as pure distance methods.

FastTree [16] is an NJ-like heuristic that avoids computing the full distance matrix. For
each taxon, FastTree computes the distances to 0(v/n) close neighbours. FastTree also uses
sequence profiles to approximate Sp(xy) values in constant time. The overall algorithm
takes O(sanynlogn) time and O(san + nyn) memory, where s is the length of the input
sequences and a is their alphabet size. FastTree has been shown to be highly accurate with

simulated data [16], but no formal guarantee has yet been shown for this algorithm.

The only known o(n?) algorithm with theoretical guarantees is LSHTree [4]. It uses
locality-sensitive hashing to rapidly find candidate pairs of close sequences for merging. After
each merge, LSHTree reconstructs ancestral sequences at new internal nodes to ensure that a
close pair of sequences can be found at each iteration. LSHTree is guaranteed to reconstruct the
correct tree from sequences of logarithmic length under a Markov model of sequence evolution.

The exact running time of LSHTree depends on the branch lengths.

As we have shown, a number of distance-based tree building algorithms have been
analyzed in the safety radius framework. However, computer simulations (e.g. [6,7]) have shown
that not all algorithms with optimal safety radius achieve the same accuracy: for example, N]J is
slightly more accurate than FNJ (both having safety radius = %2), but is beaten by heuristics based
on NNI or SPR moves (with demonstrated safety radius >= 4, but possibly = %2). Moreover, some
well-established methods (e.g. based on least-squares [10,20]) have safety radius converging to 0
when the number of taxa increases, which contradicts the common practice. These experimental
observations indicate that the safety radius approach should be sharpened to provide better
theoretical analysis of method performance [22]. In particular, the choice of the L., norm to

measure the error in a distance matrix seems to have little statistical or biological justification.

An alternative analysis framework, strictly linked to the one presented here, is the one
seeking to estimate the minimum sequence length required for accurate reconstruction of the

correct tree. It is discussed in a separate entry of this Encyclopaedia [A].
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