Skip to main content

Perfect Phylogeny (Bounded Number of States)

  • Reference work entry
  • First Online:
  • 81 Accesses

Years and Authors of Summarized Original Work

  • 1994; Agarwala, Fernández-Baca

  • 1997; Kannan, Warnow

Problem Definition

Let \(S =\{ s_{1},s_{2},\ldots ,s_{n}\}\) be a set of elements called objects and let \(C =\{ c_{1},c_{2},\ldots ,c_{m}\}\) be a set of functions called characters such that each c j C is a function from S to the set \(\{0,1,\ldots ,r_{j} - 1\}\) for some integer r j . For every c j C, the set \(\{0,1,\ldots ,r_{j} - 1\}\) is called the set of allowed states of character c j , and for any s i S and c j C, it is said that the state of sion cj is α, or that the state of cjfor si is α, where α = c j (s i ). The character state matrix for S and C is the (n × m)-matrix in which entry (i, j) for any \(i \in \{ 1,2,\ldots ,n\}\) and \(j \in \{ 1,2,\ldots ,m\}\) equals the state of s i on c j .

Perfect Phylogeny (Bounded Number of States), Fig. 1
figure 1610 figure 1610

(a) An example of a character state matrix M for \(S =\{ s_{1},s_{2},\ldots ,s_{6}\}\) and C = { c1, c2, c3} with r1 = 3, r2...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Agarwala R, Fernández-Baca D (1994) A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J Comput 23(6):1216–1224

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender HL, Fellows MR, Warnow T (1992) Two strikes against perfect phylogeny. In: Proceedings of the 19th international colloquium on automata, languages and programming (ICALP 1992), Vienna. Lecture notes in computer science, vol 623. Springer, Berlin/Heidelberg, pp 273–283

    Google Scholar 

  3. Dress A, Steel M (1992) Convex tree realizations of partitions. Appl Math Lett 5(3):3–6

    Article  MathSciNet  MATH  Google Scholar 

  4. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  5. Fernández-Baca D (2001) The perfect phylogeny problem. In: Cheng X, Du DZ (eds) Steiner trees in industry. Kluwer Academic, Dordrecht, pp 203–234

    Chapter  Google Scholar 

  6. Fernández-Baca D, Lagergren J (2003) A polynomial-time algorithm for near-perfect phylogeny. SIAM J Comput 32(5):1115–1127

    Article  MathSciNet  MATH  Google Scholar 

  7. Gusfield DM (1991) Efficient algorithms for inferring evolutionary trees. Networks 21:19–28

    Article  MathSciNet  MATH  Google Scholar 

  8. Kanj IA, Nakhleh L, Xia G (2006) Reconstructing evolution of natural languages: Complexity and parameterized algorithms. In: Proceedings of the 12th annual international computing and combinatorics conference (COCOON 2006), Taipei. Lecture notes in computer science, vol 4112. Springer, Berlin/Heidelberg, pp 299–308

    Google Scholar 

  9. Kannan S, Warnow T (1994) Inferring evolutionary history from DNA sequences. SIAM J Comput 23(4):713–737

    Article  MathSciNet  MATH  Google Scholar 

  10. Kannan S, Warnow T (1997) A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM J Comput 26(6):1749–1763

    Article  MathSciNet  MATH  Google Scholar 

  11. McMorris FR (1977) On the compatibility of binary qualitative taxonomic characters. Bull Math Biol 39(2):133–138

    Article  MathSciNet  MATH  Google Scholar 

  12. Setubal JC, Meidanis J (1997) Introduction to Computational Molecular Biology. PWS Publishing Company, Boston

    Google Scholar 

  13. Sridhar S, Dhamdhere K, Blelloch GE, Halperin E, Ravi R, Schwartz R (2007) Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice. IEEE/ACM Trans Comput Biol Bioinform 4(4):561–571

    Article  Google Scholar 

  14. Steel MA (1992) The complexity of reconstructing trees from qualitative characters and subtrees. J Classif 9(1):91–116

    Article  MathSciNet  MATH  Google Scholar 

  15. Warnow T, Ringe D, Taylor A (1996) Reconstructing the evolutionary history of natural langauges. In: Proceedings of the 7th annual ACM-SIAM symposium on discrete algorithms (SODA’96), Atlanta, pp 314–322

    Google Scholar 

Download references

Acknowledgements

JJ was funded by the Hakubi Project at Kyoto University and KAKENHI grant number 26330014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Jansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Jansson, J. (2016). Perfect Phylogeny (Bounded Number of States). In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_288

Download citation

Publish with us

Policies and ethics