Skip to main content

Quantum Dense Coding

  • Reference work entry
  • First Online:
  • 120 Accesses

Years and Authors of Summarized Original Work

  • 1992; Bennett, Wiesner

Problem Definition

Quantum information theory distinguishes classical bits from quantum bits or qubits. The quantum state of n qubits is represented by a complex vector in \((\mathbb{C}^{2})^{\otimes n}\), where \((\mathbb{C}^{2})^{\otimes n}\) is the tensor product of n 2-dimensional complex vector spaces. Classical n-bit strings form a basis for the vector space \((\mathbb{C}^{2})^{\otimes n}\). Column vectors in \((\mathbb{C}^{2})^{\otimes n}\) are denoted as \(\vert \uppsi \rangle\) and row vectors are denoted as \(\vert \uppsi \rangle ^{\dag } =\vert \uppsi \rangle ^{{\ast}T} \equiv \langle \uppsi \vert\). The complex inner product between vectors \(\vert \uppsi \rangle\) and \(\vert \upphi \rangle\) is conveniently written as \(\langle \uppsi \vert \upphi \rangle\).

Entangled quantum states \(\vert \psi \rangle \in (\mathbb{C}^{2})^{\otimes n}\)are those quantum states that cannot be written as a product of...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Barreiro J, Wei Tzu-Chieh, Kwiat P (2008) Beating the channel capacity limit for linear photonic superdense coding. Nat Phys 4:282–286

    Article  Google Scholar 

  2. Braunstein S, Kimble HJ (2000) Dense coding for continuous variables. Phys Rev A 61(4):042302

    Article  MathSciNet  Google Scholar 

  3. Bennett CH, Wiesner SJ (1992) Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett 69:2881–2884

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett CH, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett 70:1895–1899

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett CH, DiVincenzo DP, Smolin JA, Terhal BM, Wootters WK (2001) Remote state preparation. Phys Rev Lett 87:077902

    Article  Google Scholar 

  6. Devetak I, Harrow A, Winter A (2008) A resource framework for quantum Shannon theory. IEEE Trans Inf Theory 54(10), 4587–4618

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang X, Zhu X, Feng M, Mao X, Du F (2000) Experimental implementation of dense coding using nuclear magnetic resonance. Phys Rev A 61:022307

    Article  Google Scholar 

  8. Harrow AW (2004) Coherent communication of classical messages. Phys Rev Lett 92:097902

    Article  MathSciNet  Google Scholar 

  9. Harrow A, Hayden P, Leung D (2004) Superdense coding of quantum states. Phys Rev Lett 92:187901

    Article  Google Scholar 

  10. Holevo AS (1973) Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii 9:3–11. English translation in: Probl Inf Transm 9:177–183 (1973)

    Google Scholar 

  11. Mattle K, Weinfurter H, Kwiat PG, Zeilinger A (1996) Dense coding in experimental quantum communication. Phys Rev Lett 76:4656–4659

    Article  Google Scholar 

  12. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Schaetz T, Barrett MD, Leibfried D, Chiaverini J, Britton J, Itano WM, Jost JD, Langer C, Wineland DJ (2004) Quantum dense coding with atomic qubits. Phys Rev Lett 93:040505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara M. Terhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Terhal, B.M. (2016). Quantum Dense Coding. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_314

Download citation

Publish with us

Policies and ethics