Skip to main content

Planar Maximum s- t Flow

  • Reference work entry
  • First Online:
  • 65 Accesses

Years and Authors of Summarized Original Work

  • 2006; Borradaile, Klein

  • 2009; Borradaile, Klein

  • 2010; Erickson

Problem Definition

Given a directed, planar graph G = (V, E) with arc capacities \(c : E \rightarrow \mathfrak{R}^{+}\), a source vertex s, and a sink vertex t, the goal is to find a flow assignment f e for each arc eE such that

$$\displaystyle\begin{array}{rcl} \max & & \sum _{su:su\in E}f_{su} \\ \mathrm{s.t.}& & \sum _{uv:uv\in E}f_{uv} -\sum _{vw:vw\in E}f_{vw} = 0 \\ & & \qquad \forall v \in V \setminus \{s,t\} {}\end{array}$$
(1)
$$\displaystyle\begin{array}{rcl} & & 0 \leq f_{e} \leq c_{e}\qquad \forall e \in E{}\end{array}$$
(2)

Key Results

In the paper proposing the maximum flow problem in general graphs, Ford and Fulkerson [5] gave a generic method for computing a maximum flow: the augmenting-path algorithm. The algorithm is iterative: find a path P from the source to the sink such that capacity constraint (2) is loose for each arc on P (residual); increase the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Coupry L (1997) A simple linear algorithm for the edge-disjoint (s,t)-paths problem in undirected planar graphs. Inf Process Lett 64:83–86

    Article  MathSciNet  Google Scholar 

  2. Eisenstat D (2013) Trickle: linear-time maximum flow in planar graphs with unit capacities (java). http://www.davideisenstat.com/trickle/

  3. Erickson J (2010) Maximum flows and parametric shortest paths in planar graphs. In: 21st SODA, Austin, pp 794–804

    Google Scholar 

  4. Fakcharoenphol J, Rao S (2006) Planar graphs, negative weight edges, shortest paths, and near linear time. J Comput Syst Sci 72(5):868–889. doi:http://dx.doi.org/10.1016/j.jcss.2005.05.007

  5. Ford C, Fulkerson D (1956) Maximal flow through a network. Can J Math 8:399–404

    Article  MathSciNet  MATH  Google Scholar 

  6. Greig D, Porteous B, Seheult A (1989) Exact maximum a posteriori estimation for binary images. J R Stat Soc B 51(2):271–279

    Google Scholar 

  7. Hassin R (1981) Maximum flow in (s, t) planar networks. Inf Process Lett 13(3):107

    Article  MathSciNet  Google Scholar 

  8. Hassin R, Johnson DB (1985) An \(O(n\log ^{2}n)\) algorithm for maximum flow in undirected planar networks. SIAM J Comput 14:612–624. doi:http://locus.siam.org/SICOMP/volume-14/art_0214045.html

  9. Henzinger MR, Klein PN, Rao S, Subramanian S (1997) Faster shortest-path algorithms for planar graphs. J Comput Syst Sci 55(1):3–23. doi:10.1145/195058.195092

    MathSciNet  MATH  Google Scholar 

  10. Hoch J, Wang J (2012) Max flow in a directed planar graph. https://github.com/jrshoch/msmsmaxflow

  11. Itai A, Shiloach Y (1979) Maximum flow in planar networks. SIAM J Comput 8:135–150

    Article  MathSciNet  MATH  Google Scholar 

  12. Italiano GF, Nussbaum Y, Sankowski P, Wulff-Nilsen C (2011) Improved algorithms for min cut and max flow in undirected planar graphs. In: 43rd STOC, San Jose, pp 313–322

    Google Scholar 

  13. Johnson DB, Venkatesan SM (1983) Partition of planar flow networks. In: 24th FOCS, Tucson, pp 259–264. doi:10.1109/SFCS.1983.44

    Google Scholar 

  14. Khuller S, Naor J, Klein P (1993) The lattice structure of flow in planar graphs. SIAM J Discret Math 6(3):477–490. doi:10.1137/0406038

    MathSciNet  MATH  Google Scholar 

  15. Klein PN (2005) Multiple-source shortest paths in planar graphs. In: 16th SODA, Vancouver, pp 146–155. doi:10.1145/1070454

    Google Scholar 

  16. Klein PN, Mozes S, Weimann O (2010) Shortest paths in directed planar graphs with negative lengths: a linear-space \(O(n\log ^{2}n)\)-time algorithm. TALG 6(2):1–18. doi:http://doi.acm.org/10.1145/1721837.1721846

  17. Miller GL, Naor J (1995) Flow in planar graphs with multiple sources and sinks. SIAM J Comput 24(5):1002–1017. doi:10.1137/S0097539789162997

    Article  MathSciNet  MATH  Google Scholar 

  18. Mozes S, Wulff-Nilsen C (2010) Shortest paths in planar graphs with real lengths in \(O(n\log ^{2}n/\log \log n)\) time. In: 18th ESA, Liverpool, pp 206–217

    Google Scholar 

  19. Reif J (1983) Minimum s-t cut of a planar undirected network in \(O(n\log ^{2}n)\) time. SIAM J Comput 12:71–81. doi:http://locus.siam.org/SICOMP/volume-12/art_0212005.html

  20. Schmidt FR, Toeppe E, Cremers D (2009) Efficient planar graph cuts with applications in computer vision. In: CVPR, Miami, pp 351–356

    Google Scholar 

  21. Weihe K (1994) Edge-disjoint (s,t)-paths in undirected planar graphs in linear time. In: Proceedings of the European symposium on algorithms, Edinburgh. LNCS, vol 855, pp 130–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glencora Borradaile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Borradaile, G. (2016). Planar Maximum s- t Flow. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_626

Download citation

Publish with us

Policies and ethics