Skip to main content

Force-Directed Graph Drawing

  • Reference work entry
  • First Online:

Years and Authors of Summarized Original Work

  • 1963; Tutte

  • 1984; Eades

Problem Definition

Given a connected undirected graph, the problem is to determine a straight-line layout such that the structure of the graph is represented in a readable and unbiased way. Part of the problem is the definition of readable and unbiased.

Formally, we are given a simple, undirected graph G = (V, E) with vertex set V and edge set \(E \subseteq \binom{V }{2}\). Let n =  | V | be the number of vertices and m =  | E | the number of edges. The neighbors of a vertex v are defined as N(v) = { u : { u, v} ∈ E}, and \(\deg (v) = \vert N(v)\vert \) is its degree. We assume that G is connected, for otherwise the connected components can be treated separately.

A (two-dimensional) layout for G is a vector p = (p v )v ∈ V of vertex positions \(p_{v} =\langle x_{y},y_{v}\rangle \in \mathbb{R}^{2}\). Since edges are drawn as line segments, the drawing is completely determined by these vertex positions. All approaches...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Brandes U (2001) Drawing on physical analogies. In: Kaufmann M, Wagner D (eds) Drawing graphs: methods and models. Lecture notes in computer science, vol 2025. Springer, Berlin/Heidelberg, pp 71–86

    Chapter  Google Scholar 

  2. Brandes U, Pich C (2009) An experimental study on distance-based graph drawing. In: Proceedings of the 16th international symposium on graph drawing (GD’08), Heraklion. Lecture notes in computer science, vol 5417. Springer, pp 218–229

    Google Scholar 

  3. Chen L, Buja A (2013) Stress functions for nonlinear dimension reduction, proximity analysis, and graph drawing. J Mach Learn Res 14:1145–1173

    MathSciNet  MATH  Google Scholar 

  4. Eades P (1984) A heuristic for graph drawing. Congr Numerantium 42:149–160

    MathSciNet  Google Scholar 

  5. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp 21(11):1129–1164

    Article  Google Scholar 

  6. Gansner ER, Koren Y, North SC (2005) Graph drawing by stress majorization. In: Proceedings of the 12th international symposium on graph drawing (GD’04), New York. Lecture notes in computer science, vol 3383. Springer, New York, pp 239–250. doi: 10.1007/978-3-540-31843-9_25

    Google Scholar 

  7. Hall KM (1970) An r-dimensional quadratic placement algorithm. Manag Sci 17(3):219–229

    Article  MATH  Google Scholar 

  8. Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31:7–15

    Article  MathSciNet  MATH  Google Scholar 

  9. Kirchhoff GR (1847) Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann Phys Chem 72:497–508

    Article  Google Scholar 

  10. Kobourov SG (2013) Force-directed drawing algorithms. In: Tamassia R (ed) Handbook of graph drawing and visualization. CRC, Boca Raton, pp 383–408

    Google Scholar 

  11. Koren Y (2005) Drawing graphs by eigenvectors: theory and practice. Comput Math Appl 49(11–12):1867–1888. doi:10.1016/j.camwa.2004.08.015

    Article  MathSciNet  MATH  Google Scholar 

  12. Kruskal JB (1964) Multidimensional scaling for optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27

    Article  MathSciNet  MATH  Google Scholar 

  13. de Leeuw J (1977) Applications of convex analysis to multidimensional scaling. In: Barra JR, Brodeau F, Romier G, van Cutsem B (eds) Recent developments in statistics. North-Holland, Amsterdam, pp 133–145

    Google Scholar 

  14. Noack A (2009) Modularity clustering is force-directed layout. Phys Rev E 79:026,102

    Google Scholar 

  15. Tutte WT (1963) How to draw a graph. Proc Lond Math Soc 13(3):743–768

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrik Brandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Brandes, U. (2016). Force-Directed Graph Drawing. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_648

Download citation

Publish with us

Policies and ethics