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Abstract

We study the design and approximation of optimal crowdsourcing contests. Crowdsourcing contests
can be modeled as all-pay auctions because entrants must exert effort up-front to enter. Unlike all-
pay auctions where a usual design objective would be to maximize revenue, in crowdsourcing contests,
the principal only benefits from the submission with the highest quality. We give a theory for optimal
crowdsourcing contests that mirrors the theory of optimal auction design: the optimal crowdsourcing
contest is a virtual valuation optimizer (the virtual valuation function depends on the distribution of
contestant skills and the number of contestants). We also compare crowdsourcing contests with more
conventional means of procurement. In this comparison, crowdsourcing contests are relatively disad-
vantaged because the effort of losing contestants is wasted. Nonetheless, we show that crowdsourcing
contests are 2-approximations to conventional methods for a large family of “regular” distributions, and
4-approximations, otherwise.
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1 Introduction

Crowdsourcing contests have become increasingly important and prevalent with the ubiquity of the Internet.
For instance, instead of hiring a research team to develop a better collaborative filtering algorithm, Netflix
issued the “Netflix challenge” offering a million dollars to the team that develops an algorithm that beats
the Neflix algorithm by 10%. More generally, Taskcn allows users to post tasks with monetary rewards,
collects submissions by other users, and rewards the best submission; and many Q&A sites allow users to
post questions and reward the best answer with much-coveted “points”. We address two questions in this
paper, (a) what format of crowdsourcing competition induces the highest-quality winning contribution, and
(b) how inefficient is crowdsourcing over more conventional means of contracting.

Crowdsourcing competitions can be modeled as all-pay auctions. In the highest-bid-wins single-item
all-pay auction, the auctioneer solicits payments (as bids), awards the item to the agent with the highest pay-
ment, and keeps all the agent payments. These auctions are well understood in settings where each agent has
an independent private value for obtaining the item. In the connection to crowdsourcing contests, the “item”
is the monetary reward, the payments are the submissions, and the private value is the rate at which the con-
testant works. However, unlike all-pay auctions, in crowdsourcing competitions the principal usually only
values the winning submission and has no value for lesser submissions. Therefore, while the performance
metric for auctions is usually revenue which is the sum of the agent payments, in crowdsourcing contests
where payments are submissions, the relevant performance metric is the quality of the best submission, i.e.,
the maximum agent “payment”.

The revenue equivalence principle implies that in equilibrium the revenue of the highest-bid-wins all-
pay auction is the same as that of first- and second-price auction formats; however, in these latter auction
formats only the winner makes a payment. Since non-winners make payments in all-pay auctions, the max-
imum agent payment in all-pay auctions is lower than that of first- and second-price auctions. To connect
this auction theory back to the setting of procurement, first- and second-price auctions are analogous to con-
ventional procurement mechanisms, e.g., for government contracts, whereas the all-pay format is analogous
to crowdsourcing contests. Importantly, the performance metric for first- and second-price procurement
auctions is their revenue, that is, the winner’s payment. While the all-pay auction obtains the same total
revenue, the principal in crowdsourcing cannot attain this full revenue and therefore suffers a loss relative to
conventional methods.

Our first result is to show that in expectation the maximum agent payment in highest-bid-wins all-
pay auctions is at least half its total revenue. Consequently crowdsourcing contests can extract from the
best submission at least half of the total contribution from the crowd, which in turn implies that they
are 2-approximate with respect to conventional procurement via highest-bid-wins auctions. Of course,
highest-bid-wins auctions are not necessarily revenue optimal. However, for a large class of distribu-
tions (termed regular), auctions that award the item to the highest bidder that meets a reservation price
are optimal [Mye81]. In these settings crowdsourcing contests that require submissions to be of a mini-
mum quality (e.g., the Netflix challenge required submissions to beat the Netflix algorithm by 10%) are 2-
approximations. For more general distributional settings reserve pricing gives a 2-approximation to the opti-
mal auction revenue [CHMS10] and crowdsourcing contests with minimum quality conditions are, therefore,
4-approximations to conventional procurement. This approximation also implies a “simple versus optimal”
style result, i.e., that the gains from precisely optimizing a contest based on the distribution versus running
a simple highest-bid-wins crowdsourcing contest with a minimum quality condition are at most a factor of
4.

Our second result derives the optimal static crowdsourcing format that maximizes the quality of the
best submission. Specifically, suppose we fix the reward for the k-th best submission to be ak (where we
normalize the ak’s to

∑n
k=1 ak = 1). What should the ak’s be? For instance on computer programming
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crowdsourcing site TopCoder.com, the best submission receives 2/3rds and the second-best submission re-
ceives 1/3rd of the total reward. Is this a better format than awarding the entire amount to the best submission
in terms of the quality of that submission? We prove that it is not: a1 = 1 and ak = 0 for k > 1, or winner-
takes-all, is the optimal choice over all such static contests.

Of course in some settings it may be better to adjust the number of rewards and their distribution across
the participants dynamically as functions of the observed submission qualities. Our third result derives the
format of crowdsourcing contests that dynamically optimizes the quality of the best submission. We give a
complete characterization of optimal crowdsourcing contests. In what would be a familiar result to auction
theorists, optimal crowdsourcing contests are “ironed virtual value optimizers” in that the reward is divided
evenly among all contestants whose submissions are tied under a weakly monotone transformation (via
the ironed virtual value function) of the submission quality. Importantly, the number of contestants who
share the reward is determined dynamically and each contestant’s share is the same. Perhaps surprisingly,
and unlike the case of classical auction theory, the transformation to ironed virtual values depends on the
number of contestants.

Optimal crowdsourcing contests require the auctioneer to know the distribution of agents’ skills, e.g. in
order to pick an appropriate minimum submission quality. In our fourth result we consider the loss from not
knowing the distribution. For the revenue objective, Bulow and Klemperer [BK96] proved that for regular
distributions recruiting an extra bidder is more profitable to the auctioneer than knowing the distribution. We
show that this result implies that a simple highest-bid-wins contest approximates the optimal contest within
a factor approaching 2; this limits the benefit of knowing the skill distribution.

Related Work. This paper follows the connection made between crowdsourcing contests and all-pay auc-
tions from DiPalantino and Vojnovic [DV09] and questions from Archak and Sundararajan [AS09] and
Moldovanu and Sela [MS01, MS06] on optimizing the reward structure to improve the quality of the best
submissions. [AS09] and [MS01] compare winner-take-all crowdsourcing contests against ones with a stat-
ically determined division of the reward among top agents, e.g., as in the TopCoder.com mechanism. The
objective in [MS01] is the sum of the qualities of submissions (analogous to revenue in our discussion) and
the Archak-Sundararajan objective is the cumulative effort from the top k agents less the monetary reward.
Both papers show that when agents’ submission qualities are linear in their effort winner-take-all is opti-
mal over other static divisions. The Moldovanu-Sela result also holds when quality is a convex function
of effort, but not generally for concave functions. Minor [Min11] studies a generalization of the problem
of Moldovanu and Sela, and derives the optimal crowdsourcing contest via a Myersonian ironing approach
(again, to maximize the sum of qualities).

Moldovanu and Sela [MS06] study both the highest quality submission objective and the revenue (sum of
all submission qualities) objective with the total reward normalized to 1. They compare the performance of
two-stage contests against one-stage contests. Among one-stage contests they consider both a single grand
contest, as well as many sub-contests in parallel, with the winner of each sub-contest receiving a prize. In
two-stage contests, the winners of the first stage sub-contests compete in a final round. These are all static
contests in the sense that the division of reward among winners of different sub-contests is predetermined.
For the sum-of-qualities objective, [MS06] prove that a single grand contest is best among these contest
formats. For the highest quality objective, if there are sufficiently many competitors then it is optimal to
split the competitors in two divisions and to have a final among the two divisional winners. Further, as the
number of competitors tends to infinity, [MS06] show that the optimal highest quality objective is at least
half of the optimal sum-of-qualities objective — we generalize this result and show that the factor of two
ratio holds for any number of competitors.

In this paper our goal is to optimize the quality of the best submission (unlike [MS01, Min11] which
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consider total quality) with a total reward normalized to one (unlike [AS09] which optimizes the quality of
the best submissions less the monetary reward). We study optimal crowdsourcing contests over all single-
stage all-pay formats, unlike [MS06] which limits the format of one-stage contests but also studies two-
stage contests. Our main results are to show that the wasted effort is not large and to characterize optimal
crowdsourcing contests that can potentially divide the award between agents dynamically depending on the
qualities of submissions. We also show that our model is consistent with that of [MS01, AS09] in that the
optimal static allocation of the award is winner-take-all1.

The following other results relating to crowdsourcing contests are technically unrelated to ours. Di-
Palantino and Vojnovic [DV09] study crowdsourcing websites as a matching market. They discuss equi-
libria where contestants first choose which contest to participate in and then their level of effort. Yang et
al. [YAA08] and DiPalantino and Vojnovic [DV09] empirically study bidder behavior from crowdsourcing
website Taskcn and conclude that experienced contestants strategize better than others and their strategizes
match the BNE predictions fairly well.

There have been a number of studies of all-pay auctions in complete information settings (e.g., Baye et
al. [BKdV96]), but these works are also technically unrelated to ours.

2 Preliminaries

Auction Theory. Consider the standard auction-theoretic problem of selling a single item to n agents.
Each agent i has a private value vi for receiving the object and is risk-neutral with linear utility ui = vixi−pi
for receiving the item with probability xi and making payment pi. An auctionA solicits bids and determines
the outcome which consists of an allocation x = (x1, . . . , xn) and payments p = (p1, . . . , pn).

Suppose that the agents’ values are drawn i.i.d. from continuous distribution F (that is, having no point-
masses) with distribution function F (z) = Pr[vi ≤ z] and density function f(z). A Bayes-Nash equilibrium
(BNE) in auction A is a profile of strategies for mapping values to bids in the auction that are a mutual best
response, i.e., when the values are drawn from F and other agents follow their equilibrium strategies then
each agent (weakly) prefers to also follow the prescribed strategy over taking any other action.

Formally, on valuation profile v = (v1, . . . , vn), denote the composition of an auction and a strategy
profile by allocation rule x(v) and payment rule p(v). When agent i is bidding in the auction, she knows
her own value vi and assumes that the other agent values are drawn from the distribution F . Denote her
interim allocation and payment rules as xi(vi) = Ev[xi(v) | vi] and pi(vi) = Ev[pi(v) | vi], respectively.
Bayes-Nash equilibrium requires that vixi(vi)− pi(vi) ≥ vixi(z)− pi(z) for all z and from this constraint
is derived the standard characterization of BNE:

Theorem 2.1 [Mye81] Allocation and payment rules x(·) and p(·) are in BNE if and only if for all i

1. xi(vi) is monotone non-decreasing in vi and

2. pi(vi) = vixi(vi)−
∫ vi

0 xi(z)dz + pi(0)

where usually pi(0) = 0.

A simple consequence of this characterization is the revenue equivalence principle which states that two
mechanisms with the same equilibrium allocation have the same equilibrium revenue—in fact each agent’s
expected interim payment is the same.

There are three standard formats for highest-bid-wins single-item auctions: first-price, second-price,
and all-pay. In the first-price variant the highest bidder wins and pays her bid, in the second-price variant

1Moldovanu and Sela in [MS06] also state that this should be true but do not provide a reference or a proof.
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(a.k.a. the Vickrey auction) the highest bidder wins and pays the second highest bid, and in the all-pay
variant the highest bidder wins and all bidders pay their bids. These auction formats all have BNE in which
the agent with the highest valuation wins; Therefore, revenue equivalence implies that they have the same
expected revenue (sum of payments) in equilibrium.

The highest-bid-win auction formats do not always yield the highest expected revenue. To solve for op-
timal auctions, Myerson [Mye81] defined virtual valuations for revenue as φ(vi) = vi− 1−F (vi)

f(vi)
and proved

that the expected payment of an agent, Evi [pi(vi)] is equal to her expected virtual value Evi [φ(vi)xi(vi)].
The distribution F is said to be regular if the virtual valuation function is monotone. For regular distribu-
tions, maximizing virtual values point-wise is a monotone allocation rule, and therefore can be implemented
in BNE. The corresponding revenue-optimal auction serves the agent with the highest positive virtual value.
By symmetry, this agent is identically the agent with the highest value that meets a reserve price of φ−1(0).

Theorem 2.2 [Mye81] When the virtual valuation function φ(·) is monotone, the optimal auction format is
highest-bid-wins with a reservation value of φ−1(0), a.k.a., the monopoly price.

It will be useful to be able to solve for the equilibrium strategies in all-pay auctions with reserves.
Revenue equivalence makes this easy: the expected payment of an agent with value vi is the same in both
the all-pay and the second-price auction formats. Of course in the all-pay format the agent always pays
her bid; therefore, her bid b(vi) must be equal to her expected payment in the second-price auction. Let
v(j) denote the jth largest value. Agent i’s expected payment in the second-price auction when vi ≥ r, is
exactly Ev−i

[
max(v(2), r) | vi = v(1)

]
Prv−i

[
vi = v(1)

]
, so her bid in the all-pay auction must be equal to

this expectation.

Lemma 2.3 In a highest-bid-wins all-pay auction with value reserve r an agent with value vi bids

b(vi) = Ev−i

[
max(v(2), r) | vi = v(1)

]
Prv−i

[
vi = v(1)

]
.

if vi ≥ r and 0 otherwise.

The reserve specified above is in value-space. To implement such a reserve in an auction, one must
translate it to a reserve in bid-space. For first- and second-price auctions this transformation is the identity
function. For all-pay auctions, it can be calculated as follows. An agent with value equal to the reserve r
in the second price auction pays the reserve if she wins, i.e., her expected payment is rPrv−i

[
r = v(1)

]
=

rF (r)n−1. By revenue equivalence the same agent in the equivalent all-pay auction must bid this expected
payment; as this bid is the minimum bid that should be accepted, it is the reserve.

Lemma 2.4 The highest-bid-win all-pay auction with reserve bid rF (r)n−1 implements the highest-value-
wins allocation rule with a reserve value of r.

For irregular distributions, i.e., when φ(·) is non-monotone, the revenue-optimal auction is not reserve-
price based. Instead it selects the highest virtual value subject to monotonicity of the allocation rule. This
optimization can be simplified by a very general ironing technique.

Theorem 2.5 [Mye81, HR08] There is an ironing procedure that converts any virtual valuation function
φ(·) to a ironed virtual valuation function φ̄(·) that is monotone and has the property that maximizing φ(·)
subject to monotonicity (of the allocation rule) is equivalent to maximizing φ̄(·) point-wise, with ties broken
randomly. The BNE with this outcome is optimal.
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Crowdsourcing. The following model for crowdsourcing contests and its connection to all-pay auctions
was proposed in [DV09]. To outsource a task to the crowd a principal announces a monetary reward (nor-
malized to 1). Each of n agents (the crowd) enters a submission. Agent i’s skill is denoted by vi and with
effort, ei, she can produce a submission with quality pi = viei, i.e., her skill can be thought of as a rate
of work and her effort the amount of work. Each agent’s skill is her private information. If xi fraction of
the reward is awarded to agent i then her utility is ui = xi − ei. From her perspective vi is a constant
so maximizing utility is equivalent to maximizing viui = vixi − pi. Notice that this latter formulation of
the agent’s objective mirrors that from the single-item auction setting discussed previously; furthermore, as
the agents exert effort up-front, crowdsourcing contests intrinsically have all-pay semantics. Because of this
connection, it will be convenient to refer interchangeably to contests as auctions, skills as values, submission
qualities as payments, and rewards as allocations.

The objective for crowdsourcing contests A is to maximize the quality of the best submission. Because
of the connection to all-pay auctions we refer to this objective as the maximum payment objective and denote
its value for an auction A as MP[A] = Ev[maxi pi(v)]. This objective is quite different from the standard
revenue maximization objective Rev[A] = Ev[

∑
i pi(v)].

One aim of this paper is to quantify the loss the principal incurs from running an all-pay auction versus a
more conventional means of contracting. For instance, standard formats for procurement auctions are first-
or second-price. Importantly, in first- and second-price auctions A all the payment comes from the highest
bidder, therefore MP[A] = Rev[A] and the principal is able to extract quality workmanship with no loss. In
contrast, in all-pay auctions which are revenue equivalent to first- and second-price auctions the maximum
payment is not equal to the total revenue and thus the efforts of non-winners constitute a loss in performance.
We thus quantify the utilization ratio of an auction A as Rev[A]

MP[A] .
We will see that the all-pay auction that optimizes maximum payment is not the same as the auction

(all-pay or otherwise) that maximizes revenue. We define the approximation ratio of an all-pay auction to
quantify its maximum payment relative to the revenue of the optimal (first-price or second-price) auction,
i.e., A’s approximation ratio is Rev[OPT]

MP[A] . The cost of crowdsourcing (over conventional procurement) is

then the approximation ratio of the best all-pay auction, i.e., infA
Rev[OPT]

MP[A] .

Non-zero density Assumption. For the rest of this paper, the space of valuations V is assumed to be an
interval and the density function f(·) is assumed to be non-zero everywhere in V .

3 Utilization and approximation ratios

As noted previously, the maximum payment of a second- or first-price auction is equal to its total payment
or revenue. On the other hand, in all-pay auctions the payment made by non-winners leads to a loss in
performance. In this section we quantify this loss for a special class of all-pay auctions, namely those that
always reward the highest bidder subject to an anonymous reserve price. This further allows us to find a
simple all-pay auction that approximates optimal procurement.

In this section we consider highest-bidder-wins reserve-price auctions under either second-price or all-
pay semantics. It is easy to see that under all-pay semantics these auctions induce symmetric continuous
increasing bid functions at BNE and therefore their allocation function is identical to a second-price auction
with an appropriate reserve price.

Theorem 3.1 Let A be any highest-bidder-wins reserve-price all-pay auction. Then Rev[A] ≤ 2MP[A].
That is, its utilization ratio is bounded by 2.
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Proof: Let x denote the allocation function of the auction and suppose that the bid function that it induces
in BNE is given by b(v). We can write the expected revenue of the auction as the sum of the contribution
from the winning agent (i.e. the agent with the maximum payment), and the contribution from other agents.
Call the first term A and the second B.

Rev[A] =
∑
i

∫
v
b(v)Prv−i

[
v = v(1)

]
f(v) dv︸ ︷︷ ︸

A

+
∑
i

∫
v
b(v)(1− Prv−i

[
v = v(1)

]
)f(v) dv︸ ︷︷ ︸

B

Note that A is precisely MP[A]. We will now show that A ≥ B, or A−B ≥ 0. By the revenue equivalence
principle, b(v) is equal to the expected payment that an agent with value v makes in a second-price auction
with the same allocation rule (Lemma 2.3). Let g(v) denote the expected payment in the second-price
auction with reserve, given that v is the highest value. Then we get that b(v) = g(v)Prv−i

[
v = v(1)

]
. We

note that Prv−i

[
v = v(1)

]
= F (v)n−1 is a strictly increasing function since f(v) 6= 0 for all v ∈ V . Now

we can write A−B as

A−B =
∑
i

∫
v
b(v)(2Prv−i

[
v = v(1)

]
− 1)f(v) dv

=
∑
i

∫
v
g(v)F (v)n−1(2F (v)n−1 − 1)f(v) dv

= n ·
∫
v
g(F−1(t))tn−1(2tn−1 − 1) dt

where, in the third equality, we substituted t for F (v).
Next we note that ignoring the g term, the integral is non-negative:∫ 1

0
tn−1(2tn−1 − 1) dt =

2

2n− 1
− 1

n
> 0

Let us consider the effect of the g term. The function tn−1(2tn−1 − 1) vanishes for two values of t namely
0 and (1/2)

1
n−1 . Between these two values the function is negative, and for t > (1/2)

1
n−1 , the function

is positive. So when the function is multiplied by g(F−1(t)), a non-decreasing function of t, the negative
portion of the integral is magnified to a smaller extent than the positive portion, implying that the integral
stays positive. This completes the proof.

Tightness of Theorem 3.1. We now exhibit an example where the utilization ratio of 2 is tight. Consider a
setting with n agents, with each agent’s value distributed independently according to the U [0, 1] distribution.
Consider the second-price auction with no reserve price. The expected revenue of this auction can be
computed to be n−1

n+1 . The corresponding all-pay auction induces a bid function b(v) = n−1
n vn. The expected

revenue of the all-pay auction is the same as that of the second-price auction, namely, n−1
n+1 , which approaches

1 as n increases. On the other hand, the expected maximum payment can be computed to be n−1
2n which

approaches 1/2 as n increases. In Section 4 we will revisit this example and show that even the optimal
all-pay auction (which is slightly better) only achieves an expected maximum payment approaching 1/2 for
this setting.
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Utilization ratio for other all-pay auctions. We note that the bound on utilization ratio does not hold for
arbitrary symmetric all-pay auctions. For example, the all-pay auction corresponding to a revenue-optimal
auction that requires ironing over large intervals of values induces a bidding function that is constant over
those intervals. This results in many agents being tied for the reward, all making the same (low) payments
but only one contributing to the maximum payment.

Approximation ratio. Recall that the approximation ratio of an all-pay auction A is Rev[OPT]
MP[A] , where

OPT is the revenue optimal auction. We now use the bound on utilization ratio to prove that all-pay auctions
achieve good approximation ratios. In particular, we note that for regular distributions highest-bidder-wins
reserve-price auctions are revenue-optimal (Theorem 2.2). For irregular distributions, [CHMS10] show that
highest-bidder-wins auctions with an anonymous reserve price are within a factor of 2 of optimal2. The
following corollaries then follow from Theorem 3.1 upon applying the revenue equivalence principle.

Corollary 3.2 When agents’ value distributions are regular, there exists an α such that the highest-bid-wins
all-pay auction with reserve bid α achieves an approximation ratio at most 2.

Corollary 3.3 For all i.i.d. value distributions, there exists an α such that the highest-bid-wins all-pay
auction with reserve bid α achieves an approximation ratio at most 4.

These corollaries imply that the cost of crowdsourcing is always small — no more than 4. The above
example with uniform distributions shows that the approximation factor in Corollary 3.2 is tight. An exten-
sion of the same example in Section 4 shows that the worst-case cost of crowdsourcing can be no smaller
than 2.

4 Optimal crowdsourcing contests

In this section we characterize optimal crowdsourcing contests, first over a limited class of so-called “static”
contests, and then over all contests.

Static Contests. Consider the class of contests that predetermine the division of the reward into a1, . . . an,
with

∑
i ai = 1. Agents are ordered by their submission qualities and awarded the corresponding fraction of

reward, i.e., the ith best submission gets an ai fraction of the reward. Note that the Topcoder.com example
mentioned in the introduction, where the best submission receives 2/3rds and the second-best submission
receives 1/3rd of the total reward, falls under this class of contests. For this class, the following theorem
shows that the optimal contest allocates the entire reward to the best submission; we defer the proof to
Appendix A.

Theorem 4.1 When the bidders’ valuations are i.i.d., the optimal static all-pay auction is a highest-bid-wins
auction.

Symmetric Contests. For the rest of this section, we focus on the class of arbitrary symmetric contests.
A symmetric auction is one where a permutation of bids results in the same permutation of the allocation
and payments. Since agents’ private values are identically distributed, any such symmetric allocation rule

2While highest-bidder-wins auctions with a non-anonymous reserve give a better approximation to the optimal revenue, they
induce an asymmetric all-pay auction and Theorem 3.1 does not apply.
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induces a symmetric equilibrium in which all agents use an identical bidding function. This in turn implies
that the allocation as a function of agents’ values is also symmetric across agents.

We first present a characterization of the expected maximum payment of any symmetric all-pay auction
in terms of an appropriately defined virtual value function. This characterization immediately implies that
the optimal mechanism is a virtual value maximizer.

Definition 1 For a given distribution F with density function f and an integer n, we define the virtual value
for maximum payment, ψn(z) as

ψn(z) = zF (z)n−1 − 1− F (z)n

nf(z)

Lemma 4.2 Consider a setting with n agents and values distributed i.i.d. according to distribution F . LetA
be a symmetric all-pay auction implementing the allocation function x. Then MP[A] = E[

∑
i xi(v)ψn(vi)].

Proof: Suppose that the allocation function x induces a symmetric bid function b(·) on the agents. Recall
that by the revenue equivalence principle, b(v) is equal to the expected payment that an agent with value
v makes under x(·). From Theorem 2.1 we get the following expression for b(v) where xi is the expected
allocation to agent i in expectation over v−i.

b(vi) = vixi(vi)−
∫ vi

z=0
xi(z) dz

Because the equilibrium is symmetric, one of the agents with the highest bid is the agent with the highest
value3, i.e., with vi = v(1). We attribute the maximum payment received by the mechanism to this agent.
We can now use the above formulation of the bid function to calculate the expected contribution of agent i
to the maximum payment objective.

MPi[A] =

∫
vi

b(vi)Prv−i

[
vi = v(1)

]
f(vi) dvi

=

∫
vi

[
vixi(vi)−

∫ vi

z=0
xi(z) dz

]
F (vi)

n−1fi(vi) dvi

In order to simplify the second term in the integral we interchange the order of integration over z and vi,
integrate over vi, and then rename z as vi. We get:

MPi[A] =

∫
vi

vixi(vi)F (vi)
n−1fi(vi) dvi −

∫
vi

xi(vi)

(
1− F (vi)

n

n

)
dvi

=

∫
vi

{
viF (vi)

n−1 − 1− F (vi)
n

nf(vi)

}
× xi(vi)fi(vi) dvi

=

∫
vi

xi(vi)ψn(vi)fi(vi) dvi

= Ev[xi(v)ψn(vi)]

Summing over i implies the lemma.

3Note that the bid function need only be weakly increasing, so there may be ties for the highest bid.
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Optimal allocation rules and regularity. The characterization of Lemma 4.2 immediately implies that in
order to maximize the expected maximum payment, we should maximize the virtual surplus of the mech-
anism for maximum payment. In other words, we should allocate the entire reward to the agent that has
the maximum virtual value ψn(vi) (subject to this value being non-negative). However, this results in a
monotone allocation function only if the virtual value function is monotone non-decreasing. To this end, we
define regularity for maximum payment as follows.

Definition 2 A distribution F is said to be n-regular with respect to maximum payment if ψn(·) is a mono-
tone non-decreasing function. The distribution is said to be regular w.r.t. maximum payment if ψn(·) is
monotone non-decreasing for all positive integers n.

For distributions that are regular w.r.t. maximum payment, allocating to the agent with the highest non-
negative virtual value is monotone and therefore can be implemented in BNE. Since agents have i.i.d. values,
this outcome corresponds to allocating to the agent with the highest value, who is in turn the agent with the
highest bid. Therefore, the optimal mechanism is a highest-bid-wins reserve-price mechanism. The reserve
value for the mechanism is given by ψ−1

n (0) and the reserve bid can be computed by applying Lemma 2.4
to this value. We note that generally the reserve price is a function of n and decreases with n, even for
distributions that are regular for all n.

Theorem 4.3 Let F be a distribution that is n-regular w.r.t. maximum payment. Then the optimal all-pay
auction for n agents with values distributed independently according to F is a highest-bid-wins auction with
a reserve price.

Two examples. We now revisit the example with n agents and values distributed according to U [0, 1] that
was discussed in Section 3. The following expression defines the virtual value for maximum payment in this
case:

ψn(z) = zn(1 + 1/n)− 1/n for z ∈ [0, 1]

This is an increasing function for all n. Therefore, the U [0, 1] distribution is regular. The optimal reserve
value is given by ψ−1

n (0) = (n + 1)−1/n, and the optimal reserve bid is 1/(n + 1). Therefore, the optimal
all-pay auction serves the highest bidder subject to her bid being at least 1/(n+ 1). The expected maximum
payment of this auction can be calculated to be n

2(n+1) which approaches 1/2 as n increases.
Next consider a setting with two agents and values distributed i.i.d. according to the exponential dis-

tribution. That is, F (v) = 1 − e−v for v ≥ 0. We can calculate the virtual value function as ψ2(z) =
(z − 1) + e−z(1/2 − z). This function is negative below 1.21 and positive thereafter. Furthermore, it is
non-decreasing above 0.24, particularly throughout the range where it is non-negative. So although the ex-
ponential distribution is not regular w.r.t. maximum payment, the optimal all-pay auction still turns out to
be a highest-bid-wins auction with a reserve price of 1.21 and a corresponding reserve bid of 0.85.

An interesting point to note about the above example is that distributions that are regular with respect to
the usual notion of virtual value for revenue, are not necessarily regular with respect to maximum payment
even for n = 2. However, for a large subset of such distributions, namely those that satisfy the monotone
hazard rate condition (Definition 3 below), the optimal all-pay auction continues to have the simple form
given in Theorem 4.3.

Regularity and MHR. A common assumption in mechanism design literature is that value distributions
satisfy the monotone hazard rate (MHR) condition defined below. Many common distributions such as the
uniform, Gaussian, and exponential distributions satisfy this property. Distributions that satisfy MHR are
regular and therefore do not require ironing in the context of revenue maximization. As our example above
shows, MHR distributions are not necessarily regular with respect to maximum payment.
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Definition 3 The hazard rate of a distribution F with density function f is defined as h(x) = f(x)
1−F (x) . A

distribution is said to have a monotone hazard rate (MHR) if the hazard rate function is monotone non-
decreasing.

Lemma 4.4 Let F be a distribution satisfying the MHR condition. Then for any n and any interval of values
over which ψn is non-negative, ψn is monotone non-decreasing.

Proof: We can rewrite the virtual value function in terms of the hazard rate h(z) of the distribution as
follows.

ψn(z) = zF (z)n−1 − 1

nh(z)

n−1∑
j=0

F (z)j

= F (z)n−1

z − 1

nh(z)

n−1∑
j=0

F (z)−j


The function h(z) is a non-negative non-decreasing function. Therefore, (−1/nh(z)) is a negative non-
decreasing function. On the other hand,

∑n−1
j=0 F (z)−j is a decreasing function of z. The product of a

negative non-decreasing function and a decreasing function is a non-decreasing function. Therefore, the
term within brackets is a non-decreasing function of z. The term outside brackets, F (z)n−1, is also an
always positive increasing function. Therefore, the product of the two terms is an increasing function over
any interval where it is positive.

We obtain the following corollary.

Corollary 4.5 Let F be a distribution that satisfies MHR. Then the optimal all-pay auction for values dis-
tributed independently according to F is a highest-bid-wins auction with a reserve price.

Irregular distributions and ironing. For distributions that are not regular according to the definition
above, we can apply an ironing procedure from Theorem 2.5 to ψn to obtain an ironed virtual value function
ψn. This function is monotone non-decreasing and by Theorem 2.5 the BNE that optimizes it point-wise
optimizes the maximum payment objective.

The optimal mechanism in this case allocates the entire reward to the agent with the maximum ironed
virtual value, in the case of ties distributing the reward equally among the tied agents4. Since the ironed
virtual value function is a weakly increasing function, the induced bid function is constant in the intervals
where the ironed virtual value is constant, and discontinuous at the ends of those intervals. In effect, this
creates intervals of bids that are suboptimal to make at any value; call these bid intervals “forbidden”. In
order to implement the mechanism as an all-pay auction, we identify the forbidden bid intervals; then we
round every bid in a forbidden bid interval down to the closest “allowed” bid, and distribute the reward
equally among the highest bidders (subject to an appropriate reserve price defined by (ψn)−1(0)). We
therefore get the following theorem:

Theorem 4.6 For any setting with i.i.d. values, the optimal all-pay auction is defined by a reserve price
and a subset of bids called forbidden bid intervals, that has the following format: the auction solicits bids
and rounds them down to the nearest non-forbidden bids; it then distributes the reward equally among the
highest bidders subject to the bids being above the reserve price.

4An equivalent way of resolving ties in the maximum ironed virtual value is to allocate the reward to a random tied agent.
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Figure 1: The Ironing Procedure

An example of ironing. We now present a simple example of a distribution that is irregular w.r.t. maximum
payment, and derive its ironed virtual value and as well as forbidden bid intervals. There are two agents,
each with a value drawn independently from U [1, 2] with probability 3/4 and from U [2, 3] with probability
1/4. Figure 1 below shows the virtual value function ψ2 and its integral with respect to q = F (v) using thick
grey lines; their ironed counterparts are shown in thin red lines. The integral of the virtual value function
as a function of q is given by the expression 1

2F
−1(q)(1 − q2). We iron this function by taking its convex

envelope; ψ2 is then the derivative with respect to q of that convex envelope.
The ironed virtual value is constant in the interval [1.918, 2.167]. The probability of allocation (not

plotted), and therefore the bid function, are also constant over this interval. The corresponding bid func-
tion is plotted with a thin black line below; there are two forbidden bid intervals, namely [1.10, 1.199) and
(1.199, 1.31], with the intermediate value of 1.199 being allowed. The two forbidden bid intervals corre-
spond to the two discontinuities in the probability of allocation at the end points of the ironed interval.

Irregularity as a function of n. An interesting point to note is that irregularity increases with n. Specifi-
cally, the intervals of values that require ironing under ψn increase with n.5 This does not necessarily imply
that as n increases a larger and larger number of agents are tied for the reward, for two reasons: (1) reserve
value (not the reserve bid) could increase with n, and (2), due to the form of the virtual value function,
ironing is typically necessary at low values rather than at high values.

Asymmetric contests. We remark that even for symmetric instances (i.e. i.i.d. values) asymmetric all-
pay auctions can be more powerful than symmetric all-pay auctions. We now present an example that
exhibits this. Consider two contestants with values drawn i.i.d. from [0, 1] according to the distribution
F (x) = x1.5. The optimal symmetric auction studied in this paper sets a reserve value of (0.25)1/3 = 0.63
(which translates to a reserve bid of (0.25)5/6 = 0.315) and serves the highest bidder who exceeds this
reserve bid. This gives an expected maximum payment of 0.396.

5This happens because the intervals requiring ironing are precisely those where the integral of the virtual value function is non-
concave; Increasing n amounts to multiplying the integral with a convex function resulting in non-concave intervals continuing to
stay non-concave.
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We now define a better auction that favors contestant 1 over contestant 2. The rules of the contest in value
space are as follows. When contestant 1’s value is more than 0.75 we serve him irrespective of contestant
2’s value, otherwise we serve the contestant with the higher value subject to a reserve value of 0.63. This
allocation rule creates a discontinuous increase in the expected allocation probability of player 1 at 0.75,
and hence a discontinuity in his bid function at 0.75. In bid space, this corresponds to the following contest:

1. We set a reserve bid of 0.315 as before.

2. All bids of contestant 1 in the range [0.418, 0.681) get rounded down to 0.418.

3. When contestant 1 bids at least 0.681 he wins irrespective of 2’s bid.

4. Otherwise, the highest bidder wins with ties broken in favor of contestant 2.

By guaranteeing victory for contestant 1 beyond a certain bid, the above auction encourages contestant
1 to bid higher, thus boosting maximum payment. Since the objective is maximum payment, this type of
bias is useful: the asymmetric auction obtains a smaller revenue but a larger expected maximum payment of
0.397. We remark that in a real-world setting with a priori identical agents, favoring one agent over another
may be socially unacceptable.

5 Prior-independent approximation

As we show above, optimal crowdsourcing contests depend on knowing the agents’ value distribution. To
what extent is it important to know the distribution? In particular, under what conditions does the simple
highest-bidder-wins contest without any reserve bid approximate the optimal one? We now show that for
distributions that are regular w.r.t. revenue the simple highest-bidder-wins contest obtains an approximation
ratio of 2n/(n− 1), thus limiting the power of distributional knowledge.

For the standard goal of maximizing expected revenue, Bulow and Klemperer showed that for i.i.d. value
distributions that are regular w.r.t. revenue, it is better to run a Vickrey auction with no reserve price on n+1
agents than to run an optimal auction on only n agents. That is, the ability to recruit an extra agent in the
auction is more profitable to the auctioneer than knowing the distribution.

We first note that Bulow and Klemperer’s result implies that for distributions that are regular w.r.t.
revenue, the highest-value-wins auction with no reserve price on n agents is within a factor of (1 − 1/n)
of the optimal mechanism in terms of revenue. This combined with Theorem 3.1 gives us the following
theorem.

Theorem 5.1 For i.i.d. distributions that are regular w.r.t. revenue, the highest-bid-wins all-pay auction
without a reserve bid obtains an approximation ratio of 2n/(n− 1).

We remark that for the highest-value-wins auction without reserve prices, the revenue converges to the
optimal as more and more agents are added. However for all-pay auctions adding more and more agents
does not improve the approximation ratio beyond 2.
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A Proof of Theorem 4.1

Proof of Theorem 4.1. We begin by noting that the class of static auctions is symmetric, i.e., a permutation
of bids results in the same permutation of the allocation and payments. Since agents’ private values are
identically distributed, any such symmetric allocation rule induces a symmetric equilibrium in which all
agents use an identical bidding function. This in turn implies that the allocation as a function of agents’
values is also symmetric across agents.

Let the agent values be distributed independently according to distribution function F , with density
function f . Consider the static allocation ruleA = (a1, . . . , ak, 0, . . . , 0), i.e, the agent with the i-th highest
bid gets ai fraction of the reward if i ≤ k, an 0 otherwise. We have

∑k
i=1 ai = 1. We focus on the symmetric

bid-function b(·) induced by this allocation rule.
In a truthful auction with allocation rule A, the expected payment made by the r-th highest bidder is

pr(z) =
∑k+1

j=r+1 vjr(z)(aj−1 − aj), where vjr(z) is the expectation of the j-th highest bid (=value) given
the r-th highest bid is z.

Let g(j, n, z) denote the expectation of the j-th highest draw among n draws from F , given that the
maximum draw is at most z. Then we have vjr(z) = g(j − r, n− r, z).
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The contribution of bidder i to the maximum payment objective is

MPi[A] =

∫
vi

b(vi)Prv−i

[
vi = v(1)

]
f(vi) dvi

=

∫
vi

b(vi)F (vi)
n−1fi(vi) dvi

Since agents values are drawn i.i.d. from F , we have MP[A] = nMPi[A].
Because the bid functions are symmetric, by the revenue equivalence principle, b(z) equals the expected

payment made by an agent with value z in a truthful auction with the same allocation rule. So,

b(z) =

k∑
r=1

Prv−i

[
z = v(r)

]
· pr(z)

=
k∑
r=1

(
n− 1

r − 1

)
(1− F (z))r−1F (z)n−r ·


k+1−r∑
j=1

g(j, n− r, z)(aj+r−1 − aj+r)


We prove the theorem by showing that dMPi[A]

dak
is negative. When we change ak we assume that all the

mass is transferred to (or drawn from) a1. This will prove that the optimal allocation rule is to put all the
mass on a1, i.e., a1 = 1.

Using the formula for b(z), it is easy to observe that for r = 2 to r = k− 1, terms corresponding to that
specific r in dMPi[A]

dak
will be an integral with an integrand of(

n− 1

r − 1

)
(1− F (z))r−1F (z)2n−r−1 · {−g(k − r, n− r, z) + g(k − r + 1, n− r, z)}

This integrand is negative because g is a decreasing function in its first argument.
The term corresponding to r = 1 in dMPi[A]

dak
will be an integral with an integrand of

F (z)2n−2 · {−g(1, n− 1, z)− g(k − 1, n− 1, z) + g(k, n− 1, z)}

Note that the above integrand is negative even if g(1, n− 1, z) term were not there.
The term corresponding to r = k in dMPi[A]

dak
will be an integral with a positive integrand of(

n− 1

k − 1

)
(1− F (z))k−1F (z)2n−k−1 · {g(1, n− k, z)}

Our proof is going to upper bound dMPi[A]
dak

by ignoring certain negative terms in it, and show that even
the upper bound is negative. In particular, we only consider terms corresponding to r = k − 1, r = k and
one term of r = 1, namely F (z)2n−2 · {−g(1, n− 1, z)}. Let this upper bound be denoted by Q.

dMPi[A]

dak
≤ Q = −

∫
z
F (z)2n−2g(1, n− 1, z) dF (z)

−
(
n− 1

k − 2

)∫
z
(1− F (z))k−2F (z)2n−kg(1, n− k + 1, z) dF (z)

+

(
n− 1

k − 2

)∫
z
(1− F (z))k−2F (z)2n−kg(2, n− k + 1, z) dF (z)

+

(
n− 1

k − 1

)∫
z
(1− F (z))k−1F (z)2n−k−1g(1, n− k, z) dF (z)
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We derive the expressions for g(1, n, z) and g(2, n, z) below.

g(1, n, z) = n

∫ z

0
y
f(y)

F (z)

(
F (y)

F (z)

)n−1

dy

= z −
∫ z

0 F (t)n dt

F (z)n

g(2, n, z) = n(n− 1)

∫ z

0
y
f(y)

F (z)

(
1− F (y)

F (z)

)(
F (y)

F (z)

)n−2

dy

= z −
[
n

∫ z
0 F (t)n−1 dt

F (z)n−1
− (n− 1)

∫ z
0 F (t)n dt

F (z)n

]
We susbtitute the expression for g into Q.

Q = −
∫
z
F (z)n−2

[
zF (z)n −

∫
z
F (t)n dt

]
dF (z)

+

(
n− 1

k − 1

)∫
z
(1− F (z))k−1F (z)2n−k−1z dF (z)

+

(
n− 1

k − 2

)∫
z
(1− F (z))k−2F (z)n−1

(∫ z

0
F (t)n−k+1 dt

)
dF (z)

+

(
n− 1

k − 2

)
(n− k)

∫
z
(1− F (z))k−2F (z)n−1

(∫ z

0
F (t)n−k+1 dt

)
dF (z)

−
(
n− 1

k − 2

)
(n− k + 1)

∫
z
(1− F (z))k−2F (z)n

(∫ z

0
F (t)n−k dt

)
dF (z)

−
(
n− 1

k − 1

)∫
z
(1− F (z))k−1F (z)n−1

(∫ z

0
F (t)n−k dt

)
dF (z)

We now factor the term (1− F (z))k−1 as (1− F (z))k−2 · (1− F (z)) and then group terms. We get

Q = −
∫
z
F (z)n−2

[
zF (z)n −

∫
z
F (t)n dt

]
dF (z)

−
(
n− 1

k − 1

)∫
z
(1− F (z))k−2F (z)2n−kz dF (z)

+

(
n− 1

k − 1

)∫
z
(1− F (z))k−2F (z)2n−k−1z dF (z)

+

(
n− 1

k − 2

)
(n− k + 1)

∫
z
(1− F (z))k−2F (z)n−1

(∫ z

0
F (t)n−k+1 dt

)
dF (z)

−
(
n− 1

k − 2

)[
(n− k + 1)− n− k + 1

k − 1

] ∫
z
(1− F (z))k−2F (z)n

(∫ z

0
F (t)n−k dt

)
dF (z)

−
(
n− 1

k − 1

)∫
z
(1− F (z))k−2F (z)n−1

(∫ z

0
F (t)n−k dt

)
dF (z)
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We have to prove that Q ≤ 0. This is equivalent to proving that∫
z
F (z)n−2

[
zF (z)n −

∫ z

0
F (t)n dt

]
dF (z)

+

(
n− 1

k − 1

)∫
z
(1− F (z))k−2F (z)n−1

[
zF (z)n−k+1 −

∫ z

0
F (t)n−k+1 dt

]
dF (z)

−
(
n− 1

k − 1

)∫
z
(1− F (z))k−2F (z)n−1

[
zF (z)n−k −

∫ z

0
F (t)n−k dt

]
dF (z)

≥(
n− 1

k − 1

)
(k − 2)

∫
z
(1− F (z))k−2F (z)n−1

(∫ z

0
F (t)n−k+1 dt

)
dF (z)

−
(
n− 1

k − 1

)
(k − 2)

∫
z
(1− F (z))k−2F (z)n

(∫ z

0
F (t)n−k dt

)
dF (z)

The RHS can be seen to be negative. Thus it is enough to prove that the LHS is positive. Rewriting the
terms in the square bracket via integration by parts,

n

∫
z
F (z)n−2

(∫ z

0
tF (t)n−1 dF (t)

)
dF (z)

+

(
n− 1

k − 1

)
(n− k + 1)

∫
z
(1− F (z))k−2F (z)n−1

(∫ z

0
tF (t)n−k dF (t)

)
dF (z)

−
(
n− 1

k − 1

)
(n− k)

∫
z
(1− F (z))k−2F (z)n−1

(∫ z

0
tF (t)n−k−1 dF (t)

)
dF (z)

Changing the order of integration, we have the LHS as,

∫ ∞
t=0

tF (t)n−k−1f(t)



(
n− 1

k − 1

)
(n− k + 1)

(∫ 1

F (t)
(1− F (z))k−2F (z)n−1 dF (z)

)[
F (t)− n− k

n− k + 1

]

+n

(∫ 1

F (t)
F (z)n−2 dF (z)

)
F (t)k

 dt

Applying integration by parts again, (this time taking t as one term and the rest as the differential part) we
get the LHS as,

∫ ∞
t=0


∫ 1

F (t)
un−k−1


(
n− 1

k − 1

)
(n− k + 1)

(∫ 1

u
(1− F (z))k−2F (z)n−1 dF (z)

)[
u− n− k

n− k + 1

]
+n

(∫ 1

u
F (z)n−2 dF (z)

)
uk

 du

 dt

Rewrite the above integral as
∫∞
t=0Hn(F (t)) dt where

Hn(x) =

∫ 1

x
un−k−1

{(
n− 1

k − 1

)
(n− k + 1)

(∫ 1

u
(1− v)k−2vn−1 dv

)[
u− n− k

n− k + 1

]
+ n

(∫ 1

u
vn−2 dv

)
uk
}
du

If we prove that Hn(x) is always non-negative for x ∈ [0, 1] we are done. We have

−H ′n(x) = xn−k−1

{(
n− 1

k − 1

)
(n− k + 1)

(∫ 1

x
(1− v)k−2vn−1 dv

)[
x− n− k

n− k + 1

]
+ n

(∫ 1

x
vn−2 dv

)
xk
}
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Observe that −H ′n(x) is negative for small values of x and positive for large values of x and never
becomes negative after it has become positive. Thus, Hn(x) is first increasing and then decreasing. We
know that Hn(1) = 0. If we prove that Hn(0) ≥ 0, we would have proven that Hn(x) is always non-
negative.

Hn(0) =

(
n− 1

k − 1

)
(n− k + 1)

∫ 1

0
un−k−1

(∫ 1

u
(1− v)k−2vn−1 dv

)[
u− n− k

n− k + 1

]
du

+ n

∫ 1

0

(∫ 1

u
vn−2 dv

)
un−1 du

=

(
n− 1

k − 1

)
(n− k + 1)

∫ 1

0
(1− v)k−2vn−1

(∫ v

0
un−k−1

[
u− n− k

n− k + 1

]
du

)
dv

+ n

∫ 1

0
vn−2

(∫ v

0
un−1 du

)
dv

=

(
n− 1

k − 1

)∫ 1

0
(1− v)k−2v2n−k−1(v − 1) dv +

1

2n− 1

= −2

(
n− 1

k − 1

)∫ π/2

0
cos4n−2k−1(θ)sin2k−1(θ) dθ +

1

2n− 1

The integral
∫ π/2

0 cosm(θ)sinn(θ) dθ =
Γ(m+1

2
)Γ(n+1

2
)

2Γ(m+n+2
2

)
Accordingly, we have

Hn(0) = −
(
n− 1

k − 1

)
Γ(2n− k)Γ(k)

Γ(2n)
+

1

2n− 1

> 0
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