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1 Problem Definition

This problem is concerned with the development of quantum methods to
speed up classical algorithms based on simulated annealing (SA).

SA is a well known and powerful strategy to solve discrete combinatorial
optimization problems [1]. The search space Σ = {σ0, . . . , σd−1} consists of
d configurations σi and the goal is to find the (optimal) configuration that
corresponds to the global minimum of a given cost function E : Σ → R.
Monte Carlo implementations of SA generate a stochastic sequence of con-
figurations via a sequence of Markov processes that converges to the low-
temperature Gibbs (probability) distribution, πβm(Σ) ∝ exp(−βmE(Σ)). If
βm is sufficiently large, sampling from the Gibbs distribution outputs an
optimal configuration with large probability, thus solving the combinato-
rial optimization problem. The annealing process depends on the choice
of an annealing schedule, which consists of a sequence of d × d stochas-
tic matrices (transition rules) S(β1), S(β2), . . . , S(βm). Such matrices
are determined, e.g., by using Metropolis-Hastings [2]. The real parame-
ters βj denote a sequence of “inverse temperatures”. The implementation
complexity of SA is given by m, the number of times that transition rules
must be applied to converge to the desired Gibbs distribution (within ar-
bitrary precision). Commonly, the stochastic matrices are sparse and each
list of nonzero conditional probabilities and corresponding configurations,
{Prβ(σj |σi), j : Prβ(σj |σi) > 0}, can be efficiently computed on input (i, β).
This implies an efficient Monte Carlo implementation of each Markov pro-
cess. When a lower bound on the spectral gap of the stochastic matrices
(i.e., the difference between the two largest eigenvalues) is known and given
by ∆ > 0, one can choose (βk+1 − βk) ∝ ∆/Emax and β0 = 0, βm ∝ log

√
d.
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Emax is an upper bound on maxσ |E(σ)|. The constants of proportionality
depend on the error probability ε, which is the probability of not finding an
optimal solution after the transition rules have been applied. These choices
result in a complexity m ∝ Emax log

√
d/∆ for SA [3].

Quantum computers can theoretically solve some problems, such as in-
teger factorization, more efficiently than classical computers [4]. This work
addresses the question of whether quantum computers could also solve com-
binatorial optimization problems more efficiently or not. The answer is
satisfactory in terms of ∆ (Key Results). The complexity of a quantum al-
gorithm is determined by the number of elementary steps needed to prepare
a quantum state that allows one to sample from the Gibbs distribution after
measurement. Similar to SA, such a complexity is given by the number of
times a unitary corresponding to the stochastic matrix is used. For sim-
plicity, we assume that the stochastic matrices are sparse and disregard the
cost of computing each list of nonzero conditional probabilities and config-
urations, as well as the cost of computing E(σ). We also assume d = 2n

and the space of configurations Σ is represented by n-bit strings. Some
assumptions can be relaxed.

1.1 Problem

INPUT: An objective function E : Σ→ R, sparse stochastic matrices S(β)
satisfying the detailed balance condition, a lower bound ∆ > 0 on the spectral
gap of S(β), an error probability ε > 0.
OUTPUT: A random configuration σi ∈ Σ such that Pr(σi ∈ S0) ≥ 1 − ε,
where S0 is the set of optimal configurations that minimize E.

2 Key Results

The main result is a quantum algorithm, referred to as quantum simulated
annealing (QSA), that solves a combinatorial optimization problem with
high probability using mQ ∝ Emax log

√
d/
√

∆ unitaries corresponding to
the stochastic matrices [5]. The quantum speedup is in the spectral gap, as
1/
√

∆� 1/∆ when ∆� 1.
Computationally hard combinatorial optimization problems are typically

manifest in a spectral gap that decreases exponentially fast in log d, the prob-
lem size. The quadratic improvement in the gap is then most significant in
hard instances. The former QSA is based on ideas and techniques from
quantum walks and the quantum Zeno effect, where the latter can be im-
plemented by evolution randomization [6]. Nevertheless, recent results on
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“spectral gap amplification” allow for other quantum algorithms that result
in a similar complexity scaling [7].

2.1 Quantum walks for QSA

A quantization of the classical random walk is obtained by first defining a
d2 × d2 unitary matrix that satisfies [8, 9, 10]

X|σi〉|0〉 =
d−1∑

j=0

√
Prβ(σj |σi)|σi〉|σj〉 . (1)

The configuration 0 represents a simple configuration, e.g., 0 ≡ σ0 = 0 . . . 0
(the n-bit string), and Prβ(σj |σi) are the entries of the stochastic matrix
S(β). The other d2 × d2 unitary matrices used by QSA are P , the per-
mutation (swap) operator that transforms |σi〉|σj〉 into |σj〉|σi〉, and R =
1l− 2|0〉〈0|, the reflection operator over |0〉.

The quantum walk isW = X†PXPRPX†PXR and the detailed balance
condition implies [5]

W
d−1∑

i=0

√
πβ(σi)|σi〉|0〉 =

d−1∑

i=0

√
πβ(σi)|σi〉|0〉 , (2)

where πβ(σi) are the probabilities given by the Gibbs distribution. (X, X†,
and W also depend on β.) The goal of QSA is to prepare the corresponding
eigenstate of W in Eq. 2, within certain precision ε > 0, and for inverse
temperature βm ∝ log d. A projective quantum measurement of |σi〉 on
such a state outputs an optimal solution in the set S0 with probability
Pr(S0) ≥ 1− ε.

2.2 Evolution randomization and QSA implementation

The QSA is based on the idea of adiabatic state transformations [6, 11]. For
β = 0, the initial eigenstate of W is

∑d−1
i=0 |σi〉|0〉/

√
d, which can be pre-

pared easily on a quantum computer. The purpose of QSA is then to drive
this initial state towards the eigenstate of W for inverse temperature βm,
within given precision. This is achieved by applying the sequence of unitary
operations [W (βm)]tm . . . [W (β2)]

t2 [W (β1)]
t1 to the initial state (Fig. 1). In

contrast to SA, (βk+1 − βk) ∝ 1/Emax [11], but the initial and final inverse
temperatures are also β0 = 0 and βm ∝ log

√
d. This implies that the num-

ber of different inverse temperatures in QSA is m ∝ Emax log
√
d, where the

constant of proportionality depends on ε. The nonnegative integers tk can
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be sampled randomly according to several distributions [6]. One way is to
obtain tk after sampling multiple (but constant) times from a uniform distri-
bution on integers between 0 and Q− 1, where Q = d2π/

√
∆e. The average

cost of QSA is then m〈tk〉 ∝ Emax log
√
d/
√

∆. One can use Markov’s in-
equality to avoid those (improbable) instances where the cost is significantly
greater than the average cost. The QSA and the values of the constants are
given in detail in Fig. 1.

k ! 1

k < m
Yes

k ! k + 1

No

Prepare :

d�1X

i=0

|�ii|0i/
p

d

Apply [W (� = k ��)]t

ta, tb = unif[0, Q � 1]

t = ta + tb

Measure |�ii
Output �i :

Pr(�i 2 S0) � 1 � ✏

Figure 1: Flow diagram for the QSA. Under the assumptions, the input
state can be easily prepared on a quantum computer by applying a se-
quence of n Hadamard gates on n qubits. unif[0, Q − 1] is the uniform
distribution on nonnegative integers in that range and Q = d2π/

√
∆e.

δβ = βk+1 − βk = ε/(2Emax) and m = d2βmEmax/εe. Like SA, the final
inverse temperature is βm = (γ/2) log(2

√
d/ε), where γ is the gap of E,

that is, γ = minσ/∈S0
E(σ) − E(S0). The average cost of the QSA is then

mQ = d2πγEmax log(2
√
d/ε)/(ε

√
∆)e, and dependence on ε can be made

fully logarithmic by repeated executions of the algorithm. A quantum com-
puter implementation of W can be efficiently done by using the algorithm
that computes the nonzero conditional probabilities of the stochastic matrix
S(β).
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2.2.1 Analytical properties of W :

The quantum walk W has eigenvalues e±iφj , for j = 0, . . . , d − 1, in the
relevant subspace. In particular, φ0 = 0 < φ1 ≤ . . . ≤ φd−1 and φ1 ≥√

∆ [5, 7, 8, 9]. This implies that the relevant spectral gap for methods based
on quantum adiabatic state transformations is of order

√
∆. The quantum

speedup follows from the fact that the complexity of such methods, recently
discussed in [6, 11, 13, 14], depends on the inverse of the relevant gap.

3 Applications

Like SA, QSA can be applied to solve general discrete combinatorial opti-
mization problems [12]. QSA is often more efficient than exhaustive search
in finding the optimal configuration. Examples of problems where QSA
can be powerful include the simulation of equilibrium states of Ising spin
glasses or Potts models, solving satisfiability problems, or solving the trav-
eling salesman problem.

4 Open Problems

Some (classical) Monte Carlo implementations do not require varying an
inverse temperature and apply the same (time-independent) transition rule
S to converge to the Gibbs distribution. The number of times the transi-
tion rule must be applied is the so-called mixing time, which depends on
the inverse spectral gap of S [15]. The development of quantum algorithms
to speed up this type of Monte Carlo algorithms remains open. Also, the
technique of spectral gap amplification outputs a Hamiltonian H(β) on in-
put S(β). The relevant eigenvalue of such a Hamiltonian is zero, and the
remaining eigenvalues are ±

√
λi, where λi ≥ ∆. This opens the door to

a quantum adiabatic version of the QSA, in which H(β) is changed slowly
and the quantum system remains in an “excited” eigenstate of eigenvalue
zero at all times. The speedup is also due to the increase in the eigenvalue
gap. Nevertheless, finding a different Hamiltonian path with the same gap,
where the adiabatic evolution occurs within the lowest energy eigenstates of
the Hamiltonians, is an open problem.
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