Skip to main content

Generation and Interpretation of Context-Specific Human Protein–Protein Interaction Networks with HIPPIE

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2074))

Abstract

High-throughput techniques for the detection of protein–protein interactions (PPIs) have enabled a systems approach for the study of the living cell. However, the increasing amount of protein interaction data, the varying quality of these measurements, and the lack of context information make it difficult to construct meaningful and reliable protein networks.

The Human Integrated Protein–Protein Interaction rEference (HIPPIE) is a web tool that integrates and annotates experimentally supported human PPIs from a heterogeneous set of data sources. In HIPPIE, one can query for the interactors of one or more proteins and generate high-quality and context-specific networks. This chapter highlights HIPPIE’s most important features and exemplifies its functionality through a proposed use case.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417:399–403

    Article  Google Scholar 

  2. del-Toro N, Dumousseau M, Orchard S, Jimenez RC, Galeota E, Launay G, Goll J, Breuer K, Ono K, Salwinski L et al (2013) A new reference implementation of the PSICQUIC web service. Nucleic Acids Res 41:W601–W606

    Article  Google Scholar 

  3. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U, von Mering C et al (2004) The HUPO PSI’s molecular interaction format—a community standard for the representation of protein interaction data. Nat Biotechnol 22:177–183

    Article  CAS  Google Scholar 

  4. Schaefer MH, Fontaine J-F, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA (2012) HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS One 7:e31826

    Article  CAS  Google Scholar 

  5. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846

    Article  CAS  Google Scholar 

  6. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–D861

    Article  CAS  Google Scholar 

  7. Chatr-aryamontri A, Breitkreutz B-J, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O’Donnell L et al (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43:D470–D478

    Article  CAS  Google Scholar 

  8. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772

    Article  CAS  Google Scholar 

  9. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451

    Article  CAS  Google Scholar 

  10. Isserlin R, El-Badrawi RA, Bader GD (2011) The biomolecular interaction network database in PSI-MI 2.5. Database 2011:baq037

    Article  Google Scholar 

  11. Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stumpflen V, Mewes H-W et al (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21:832–834

    Article  CAS  Google Scholar 

  12. The GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585

    Article  Google Scholar 

  13. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  Google Scholar 

  14. Schaefer MH, Lopes TJS, Mah N, Shoemaker JE, Matsuoka Y, Fontaine J-F, Louis-Jeune C, Eisfeld AJ, Neumann G, Perez-Iratxeta C et al (2013) Adding protein context to the human protein-protein interaction network to reveal meaningful interactions. PLoS Comput Biol 9:e1002860

    Article  CAS  Google Scholar 

  15. Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD (2016) PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 44:D336–D342

    Article  CAS  Google Scholar 

  16. Andrade-Navarro MA, Fontaine JF (2016) Gene set to diseases (GS2D): disease enrichment analysis on human gene sets with literature data. Genom Comput Biol 2:e33

    Article  Google Scholar 

  17. Suratanee A, Schaefer MH, Betts MJ, Soons Z, Mannsperger H, Harder N, Oswald M, Gipp M, Ramminger E, Marcus G et al (2014) Characterizing protein interactions employing a genome-wide siRNA cellular phenotyping screen. PLoS Comput Biol 10:e1003814

    Article  Google Scholar 

  18. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  19. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  Google Scholar 

  20. von Mering C, Jensen LJ, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437

    Article  Google Scholar 

  21. Kalathur RKR, Pinto JP, Hernández-Prieto MA, Machado RSR, Almeida D, Chaurasia G, Futschik ME (2014) UniHI 7: an enhanced database for retrieval and interactive analysis of human molecular interaction networks. Nucleic Acids Res 42:D408–D414

    Article  CAS  Google Scholar 

  22. Turner B, Razick S, Turinsky AL, Vlasblom J, Crowdy EK, Cho E, Morrison K, Donaldson IM, Wodak SJ (2010) iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence. Database 2010:baq023

    Article  Google Scholar 

  23. Chen JY, Pandey R, Nguyen TM (2017) HAPPI-2: a comprehensive and high-quality map of human annotated and predicted protein interactions. BMC Genomics 18:182

    Article  Google Scholar 

  24. Li T, Wernersson R, Hansen RB, Horn H, Mercer J, Slodkowicz G, Workman CT, Rigina O, Rapacki K, Staerfeldt HH et al (2017) A scored human protein–protein interaction network to catalyze genomic interpretation. Nat Methods 14:61–64

    Article  CAS  Google Scholar 

  25. Yeger-Lotem E, Sharan R (2015) Human protein interaction networks across tissues and diseases. Front Genet 6:257

    Article  Google Scholar 

  26. Basha O, Barshir R, Sharon M, Lerman E, Kirson BF, Hekselman I, Yeger-Lotem E (2017) The TissueNet v.2 database: a quantitative view of protein-protein interactions across human tissues. Nucleic Acids Res 45:D427–D431

    Article  CAS  Google Scholar 

  27. Basha O, Flom D, Barshir R, Smoly I, Tirman S, Yeger-Lotem E (2015) MyProteinNet: build up-to-date protein interaction networks for organisms, tissues and user-defined contexts. Nucleic Acids Res 43:W258–W263

    Article  CAS  Google Scholar 

  28. Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann BM, Zaslavsky E, Sealfon SC et al (2015) Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 47:569–576

    Article  CAS  Google Scholar 

  29. Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2016) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44:D536–D541

    Article  CAS  Google Scholar 

  30. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH (2017) HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucleic Acids Res 45:D408–D414

    Article  CAS  Google Scholar 

  31. Hart GT, Ramani AK, Marcotte EM (2006) How complete are current yeast and human protein-interaction networks. Genome Biol 7:120

    Article  Google Scholar 

  32. Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I et al (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90

    Article  CAS  Google Scholar 

  33. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, Wiuf C (2008) Estimating the size of the human interactome. Proc Natl Acad Sci 105:6959–6964

    Article  CAS  Google Scholar 

  34. Schaefer MH, Serrano L, Andrade-Navarro MA (2015) Correcting for the study bias associated with protein–protein interaction measurements reveals differences between protein degree distributions from different cancer types. Front Genet 6:260

    Article  Google Scholar 

  35. Shannon P (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  36. Meek DW (2015) Regulation of the p53 response and its relationship to cancer. Biochem J 469:325–346

    Article  CAS  Google Scholar 

  37. Williams AB, Schumacher B (2016) p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med 6:a026070

    Article  Google Scholar 

  38. Hollstein M, Hainaut P (2010) Massively regulated genes: the example of TP53. J Pathol 220:164–173

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

HIPPIE has been developed and is maintained in the lab of Prof. Miguel Andrade. He also gave valuable feedback on this book chapter. We also thank the Zentrum für Datenverarbeitung of the Johannes Gutenberg Universität for their help in the maintenance of the web server that hosts HIPPIE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregorio Alanis-Lobato or Martin H. Schaefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alanis-Lobato, G., Schaefer, M.H. (2020). Generation and Interpretation of Context-Specific Human Protein–Protein Interaction Networks with HIPPIE. In: Canzar, S., Ringeling, F. (eds) Protein-Protein Interaction Networks. Methods in Molecular Biology, vol 2074. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9873-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9873-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9872-2

  • Online ISBN: 978-1-4939-9873-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics