Skip to main content

De Novo Pathway-Based Classification of Breast Cancer Subtypes

  • Protocol
  • First Online:
Protein-Protein Interaction Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2074))

Abstract

Breast cancer is a heterogeneous disease for which various clinically relevant subtypes have been reported. These subtypes are characterized by molecular differences which direct treatment selection. The state of the art for breast cancer subtyping utilizes histochemistry or gene expression to measure a few selected markers. However, classification based on molecular pathways (rather than individual markers) is a more robust way to classify breast cancer samples into known subtypes.

Here, we present PathClass, a web application that allows its users to predict breast cancer subtypes using various traditional as well as advanced methods. This includes methods based on classical gene expression panels as well as de novo pathway-based predictors. Users can predict labels for datasets in the Gene Expression Omnibus or upload their own expression profiling data.

Availability: https://pathclass.compbio.sdu.dk/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  Google Scholar 

  2. Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45:872–877

    Article  CAS  Google Scholar 

  3. Parker JS, Mullins M, Cheang MCU et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  Google Scholar 

  4. Slodkowska EA, Ross JS (2009) MammaPrint™ 70-gene signature: another milestone in personalized medical care for breast cancer patients. Expert Rev Mol Diagn 9:417–422

    Article  Google Scholar 

  5. Cronin M, Sangli C, Liu M-L et al (2007) Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem 53:1084–1091

    Article  CAS  Google Scholar 

  6. Thakur S, Das AM, Das BC (2016) Utility of gene expression signature in treatment decision of breast cancer. Transl Cancer Res 5:S1469–S1472

    Article  Google Scholar 

  7. Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10:R65

    Article  Google Scholar 

  8. Staiger C, Cadot S, Kooter R et al (2012) A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer. PLoS One 7:e34796

    Article  CAS  Google Scholar 

  9. Allahyar A, de Ridder J (2015) FERAL: network-based classifier with application to breast cancer outcome prediction. Bioinformatics 31:i311–i319

    Article  CAS  Google Scholar 

  10. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  11. Joshi-Tope G, Gillespie M, Vastrik I et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:D428–D432

    Article  CAS  Google Scholar 

  12. Chatr-aryamontri A, Breitkreutz B-J, Oughtred R et al (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43:D470–D478

    Article  CAS  Google Scholar 

  13. Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2016) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44:D536–D541

    Article  CAS  Google Scholar 

  14. Alcaraz N, List M, Batra R et al (2017) De novo pathway-based biomarker identification. Nucleic Acids Res 45:e151–e151

    Article  Google Scholar 

  15. Alcaraz N, List M, Dissing-Hansen M et al (2016) Robust de novo pathway enrichment with KeyPathwayMiner 5. F1000Res 5:1531

    Article  Google Scholar 

  16. Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112

    Article  CAS  Google Scholar 

  17. Wittkop T, Emig D, Lange S et al (2010) Partitioning biological data with transitivity clustering. Nat Methods 7:419–420

    Article  CAS  Google Scholar 

  18. Diaz-Uriarte R (2009) varSelRF: Variable selection using random forests. R package version 0 7-1. http://ligarto.org/rdiaz/Software/Software.html

  19. Atlas TCG (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  20. Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772

    Article  CAS  Google Scholar 

  21. Brown KR, Jurisica I (2007) Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8:R95

    Article  Google Scholar 

  22. Isserlin R, El-Badrawi RA, Bader GD (2011) The biomolecular interaction network database in PSI-MI 2.5. Database 2011:baq037

    Article  Google Scholar 

  23. Licata L, Briganti L, Peluso D et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–D861

    Article  CAS  Google Scholar 

  24. Bovolenta LA, Acencio ML, Lemke N (2012) HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics 13:405

    Article  CAS  Google Scholar 

  25. Lee I, Blom UM, Wang PI et al (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21:1109–1121

    Article  CAS  Google Scholar 

  26. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  Google Scholar 

  27. Kamburov A, Stelzl U, Lehrach H, Herwig R (2013) The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41:D793–D800

    Article  CAS  Google Scholar 

  28. Haibe-Kains B, Desmedt C, Loi S et al (2012) A three-gene model to robustly identify breast cancer molecular subtypes. J Natl Cancer Inst 104:311–325

    Article  CAS  Google Scholar 

  29. Sørlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression datasets. Proc Natl Acad Sci U S A 100:8418–8423

    Article  Google Scholar 

  30. Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    Article  Google Scholar 

  31. Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14:5158–5165

    Article  CAS  Google Scholar 

  32. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.B. would like to thank 676858-IMCIS for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus List .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

List, M., Alcaraz, N., Batra, R. (2020). De Novo Pathway-Based Classification of Breast Cancer Subtypes. In: Canzar, S., Ringeling, F. (eds) Protein-Protein Interaction Networks. Methods in Molecular Biology, vol 2074. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9873-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9873-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9872-2

  • Online ISBN: 978-1-4939-9873-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics