Skip to main content

On TD-WGcluster: Theoretical Foundations and Guidelines for the User

  • Protocol
  • First Online:
Protein-Protein Interaction Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2074))

Abstract

We review the TD-WGcluster (time delayed weighted edge clustering) software integrating static interaction networks with time series data in order to detect modules of nodes between which the information flows at similar time delays and intensities. The software has represented an advancement of the state of the art in the software for the identification of connected components due to its peculiarity of dealing with direct and weighted graphs, where the attributes of the physical entities represented by nodes vary over time. This chapter aims to deepen those theoretical aspects of the clustering model implemented by TD-WGcluster that may be of greater interest to the user. We show the instructions necessary to run the software through some exploratory cases and comment on the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512. https://doi.org/10.1126/science.286.5439.509. http://science.sciencemag.org/content/286/5439/509

  2. Barahona M, Poon CS (1996) Detection of nonlinear dynamics in short, noisy time series. Nature 381:215–217

    Article  CAS  Google Scholar 

  3. Berenhaut KS, Barr PS, Kogel AM, Melvin RL (2018) Cluster-based network proximities for arbitrary nodal subsets. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-32172-0

  4. Bilgin C, Yener B (2012) Dynamic network evolution: models, clustering, anomaly detection. https://www.cs.rpi.edu/research/pdf/08-08.pdf. Accessed 27 Nov 2015

  5. Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177. https://doi.org/10.1080/0022250X.2001.9990249

    Article  Google Scholar 

  6. Chebotarev PY, Shamis EV (1998) On the duality of metrics and σ-neighborhoods. Autom Remote Control 59:608–612

    Google Scholar 

  7. Clauset A (2005) Finding local community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 72(2 Pt 2):026132

    Article  Google Scholar 

  8. Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Syst 1695. http://igraph.org

  9. Du Q, Emelianenkom M, Ju L (2006) Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellation. SIAM J Numer Anal 44(1):102–119. http://www.personal.psu.edu/qud2/Res/Pre/dej06sinum.pdf

    Article  Google Scholar 

  10. Eagle N, Claxton NMR (2010) Network diversity and economic development. Science 328:1029–1031. https://doi.org/10.1126/science.1186605. http://science.sciencemag.org/content/328/5981/1029

  11. Felice D, Mancini S (2015) Gaussian network’s dynamics reflected into geometric entropy. Entropy 17(8):5660–5672. https://doi.org/10.3390/e17085660

    Article  Google Scholar 

  12. Grindrod P, Parsons MC, Higham DJ, Estrada E (2011) Communicability across evolving networks. Phys Rev E 83:046120. https://doi.org/10.1103/PhysRevE.83.046120. https://link.aps.org/doi/10.1103/PhysRevE.83.046120

  13. Harvey AC (1993) Time series models. Harvester Wheatsheaf, New York

    Google Scholar 

  14. Hazewinkel M (ed) (2001) “Asymmetry coefficient”, Encyclopedia of mathematics. Springer, Berlin

    Google Scholar 

  15. Hubbell CH (1965) An input-output approach to clique identification. Sociometry 28:377–399

    Article  Google Scholar 

  16. igraph R. Reference manual of igraph. https://igraph.org/c/doc/igraph-Community.html. Accessed 02 Jan 2019

  17. igraph R. Web page of manual of (igraph) cluster_spinglass function. https://igraph.org/r/doc/cluster_spinglass.html. Accessed 15 Dec 2018

  18. igraph R. Web page of manual of (igraph) decompose function. https://igraph.org/r/doc/decompose.html. Accessed 01 Nov 2018

  19. igraph R. Web page of manual of (igraph) graphkernels function. https://www.rdocumentation.org/packages/graphkernels/versions/1.6. Accessed 15 Nov 2018

  20. igraph R. Web page of manual of (igraph) walktrap.community function. https://www.rdocumentation.org/packages/igraph/versions/0.5.1/topics/walktrap.community. Accessed 01 Dec 2018

  21. Johannesson T, Bjornsson H (2012) Stineman, a consistently well behaved method of interpolation. http://rpackages.ianhowson.com/cran/stinepack/. Accessed 07 Jan 2015

  22. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18:30–43. https://doi.org/10.1007/BF02289026. https://link.springer.com/article/10.1007/BF02289026#citeas

  23. Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and hierarchical community structure in complex networks. New J Phys 11(3):033015. https://doi.org/10.1088/1367-2630/11/3/033015

    Article  Google Scholar 

  24. Lecca P (2009) Deterministic chemical chaos identification in models and experiments. In: International conference on bioinformatics & computational biology, BIOCOMP 2009, July 13–16, 2009, Las Vegas Nevada, 2 Volumes, pp 307–312

    Google Scholar 

  25. Lecca P, Re A (2016) Module detection in dynamic networks by temporal edge weight clustering. In: Angelini SRC, Rancoita P (ed) Computational intelligence methods for bioinformatics and biostatistics, CIBB 2015. Lecture notes in computer science, vol 9874. Springer, Cham, pp 54–70

    Chapter  Google Scholar 

  26. Luo F, Wang J, Promislow E (2006) Exploring local community structures in large networks. In: Proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence, pp 233–239. https://doi.org/10.1109/WI.2006.72

  27. Makridakis SG, Wheelwright SC, Hyndman RJ (1998) Forecasting: methods and applications. Wiley, New York

    Google Scholar 

  28. Pons P, Latapy M (2005) Computing communities in large networks using random walks. In: Computer and information sciences - ISCIS 2005. Springer, Berlin, pp 284–293. https://doi.org/10.1007/11569596_31

    Chapter  Google Scholar 

  29. Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74:016110. https://doi.org/10.1103/PhysRevE.74.016110. https://link.aps.org/doi/10.1103/PhysRevE.74.016110

  30. Shanafelt DW, Salau KR, Baggio JA (2017) Do-it-yourself networks: a novel method of generating weighted networks. R Soc Open Sci 4(11). https://doi.org/10.1098/rsos.171227

  31. Shervashidze N, Vishwanathan SVN, Petri T, Mehlhorn K, Borgwardt KM (2009) Efficient graphlet kernels for large graph comparison. In: Proceedings of the 12th international conference on artificial intelligence and statistics (AISTATS), vol 5, pp 488–495. http://proceedings.mlr.press/v5/shervashidze09a.html

  32. Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-Lehman graph kernels. J Mach Learn 12:2539–2561. http://www.jmlr.org/

    Google Scholar 

  33. Sugiyama M, Borgwardt KM (2015) Halting in random walk kernels. In: Advances in neural information processing systems (NIPS 2015), vol 28, pp 1630–1638. https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf

  34. Teraesvirta T, Lin CF, Granger CWJ (1993) Power of the neural network linearity test. J Time Ser Anal 14:209–220. https://doi.org/10.1103/PhysRevE.70.066111

    Article  Google Scholar 

  35. www.sci.unich.it: Katz centrality. https://www.sci.unich.it/~francesc/teaching/network/katz.html. Accessed 15 Nov 2018

  36. Yang L, Xin-Sheng J, Caixia L, Ding W (2014) Detecting local community structures in networks based on boundary identification. Math Probl Eng 2014:1–8. https://doi.org/10.1155/2014/682015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Lecca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Re, A., Lecca, P. (2020). On TD-WGcluster: Theoretical Foundations and Guidelines for the User. In: Canzar, S., Ringeling, F. (eds) Protein-Protein Interaction Networks. Methods in Molecular Biology, vol 2074. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9873-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9873-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9872-2

  • Online ISBN: 978-1-4939-9873-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics